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Abstract

Background: The electronic health record (EHR) contains a wealth of medical information. An organized EHR can greatly
help doctors treat patients. In some cases, only limited patient information is collected to help doctors make treatment decisions.
Because EHRs can serve as a reference for this limited information, doctors’ treatment capabilities can be enhanced. Natural
language processing and deep learning methods can help organize and translate EHR information into medical knowledge and
experience.

Objective: In this study, we aimed to create a model to extract concept embeddings from EHRs for disease pattern retrieval
and further classification tasks.

Methods: We collected 1,040,989 emergency department visits from the National Taiwan University Hospital Integrated Medical
Database and 305,897 samples from the National Hospital and Ambulatory Medical Care Survey Emergency Department data.
After data cleansing and preprocessing, the data sets were divided into training, validation, and test sets. We proposed a
Transformer-based model to embed EHRs and used Bidirectional Encoder Representations from Transformers (BERT) to extract
features from free text and concatenate features with structural data as input to our proposed model. Then, Deep InfoMax (DIM)
and Simple Contrastive Learning of Visual Representations (SimCLR) were used for the unsupervised embedding of the disease
concept. The pretrained disease concept-embedding model, named EDisease, was further finetuned to adapt to the critical care
outcome prediction task. We evaluated the performance of embedding using t-distributed stochastic neighbor embedding (t-SNE)
to perform dimension reduction for visualization. The performance of the finetuned predictive model was evaluated against
published models using the area under the receiver operating characteristic (AUROC).

Results: The performance of our model on the outcome prediction had the highest AUROC of 0.876. In the ablation study, the
use of a smaller data set or fewer unsupervised methods for pretraining deteriorated the prediction performance. The AUROCs
were 0.857, 0.870, and 0.868 for the model without pretraining, the model pretrained by only SimCLR, and the model pretrained
by only DIM, respectively. On the smaller finetuning set, the AUROC was 0.815 for the proposed model.

Conclusions: Through contrastive learning methods, disease concepts can be embedded meaningfully. Moreover, these methods
can be used for disease retrieval tasks to enhance clinical practice capabilities. The disease concept model is also suitable as a
pretrained model for subsequent prediction tasks.
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Introduction

Background
Diagnosing a disease is like putting together a puzzle. When
more pieces match, we can decipher the picture more easily.
Or, if we have a reference picture of the puzzle, matching the
pieces can be accomplished more easily. Many “puzzles” have
been collected in electronic health records (EHRs), which
contain abundant information about patients and diseases and
represent a treasure trove for medical research. However, EHRs
are challenging to use effectively due to the heterogeneity of
the data types they can contain [1-3].

Sometimes, doctors in emergency departments must develop
treatment plans based on limited information from seriously ill
patients. In such cases, only demographic information, vital
signs (eg, blood pressure, respiratory rate, and blood oxygen
saturation), and major discomfort information can be obtained.
However, a patient’s medical history may be collected through
old records in the hospital database, and these records can
provide doctors with vital information that can help them to
identify serious diseases [4]. Based on the doctor’s knowledge
and experience, the patient’s information can characterize the
disease, enable the doctor to diagnose the patient, and allow the
doctor to develop an appropriate treatment plan to prevent the
disease from worsening.

Doctors can make great use of the rich information contained
within patients’ EHRs. However, it is almost impossible for
EHRs to be of help to doctors if they are not organized. Full
use of the medical information contained within EHRs in clinical
practice greatly enhances doctors’ abilities to treat patients
[3,5,6].

The International Statistical Classification of Diseases and
Related Health Problems 10th Revision (ICD-10) code [7] is a
well-established classification system for diseases that contains
approximately 70,000 diagnoses. These diagnoses are highly
specific and contain meaningful words that can be used for
patient medical records. ICD codes can easily be used as
keywords to search for an EHR. However, it is difficult to search
for records without the ICD code of a patient.

With the rapid development of natural language processing and
deep learning during this decade, several models have been
released to manage EHRs [1,8-10] using several primary tasks,
including disease classification, prediction of clinical events,
and concept embedding [2]. Due to the lack of gold standard
label data for model training, concept embedding is critical to
all EHR-related tasks [1,2,11,12]. Concept embedding can be
regarded as a pretrained model that can be finetuned with limited
label data for further event prediction, disease classification,
and detection, including the diagnosis of diseases. Concept
embedding can also be used for data retrieval [13,14], and can
be further integrated into medical software, web services, and
apps used by patients for disease screening purposes.

Therefore, the concept-embedding model is essential to EHR
research because it can organize rich medical experience and
knowledge. We aim to develop a disease embedding model that
can cluster disease patterns based on initial data (eg,
demographic information, vital signs, chief complaint, and
medical history) collected from patients who have just arrived
at a hospital.

Related Works
Structural data (eg, demographic information, blood pressure,
and heart rate) and free text records are collected in an EHR.
In traditional medical research, free text records are more
difficult to analyze, and significant human resources are required
to classify free text into tables using rule-based methods
[1,2,10]. With the vigorous development of deep learning,
several language models for extracting features from free text
records have become available [15-17]. Long short-term
memory [18] is a model architecture that can feed sequence
data and properly ignore input or memory history data to extract
accurate features. It was widely used on natural language
processing tasks before Transformer [19] was proposed.

Transformer contains the multihead self-attention model, which
can learn the attention (attention can be regarded as relevance)
of words within the text. Transformer was released to perform
translation tasks and speed up learning by feeding all data
simultaneously (instead of feeding them one-by-one as is the
case with long short-term memory). Bidirectional Encoder
Representations from Transformers (BERT) [16] is an extension
of Transformer, which has achieved excellent performance
ratings in several competitions. The first version of BERT
contained only Transformer’s encoder, which pretrained the
embedding of subwords (words broken into pieces) unsupervised
through a cloze procedure and subsequent sentence prediction.
Because translation was the original goal of Transformer, the
multilingual pretrained BERT is suitable for EHR research in
Taiwan because Taiwanese medical records contain English
and Chinese.

Previous methods for concept embedding of the EHR model
include long short-term memory, convolutional neural networks,
and autoencoders [1,2,11,12]. An autoencoder is a widely used
unsupervised method for concept embedding. It contains an
encoder that converts the original input data into a hidden
embedding vector, while the decoder reconstructs a result similar
to the input data from the hidden embedding vector. In the EHR
field, autoencoders outperform traditional machine learning
methods [1]. However, the risk of reidentification is a critical
issue for autoencoders. Some studies exist on protecting patient
privacy with autoencoders [20,21]. However, if the autoencoder
is not designed to protect privacy, there is still a risk of
reidentification because the decoder is designed to minimize
the difference between the original data and the output.

In the EHR field, the contrastive self-supervised learning
methods that belong to unsupervised learning, including Deep
InfoMax (DIM) [22] and Simple Contrastive Learning of Visual
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Representations (SimCLR) [23], may be superior. DIM adopted
discriminators (replacing the autoencoder’s decoder) that
maximize mutual information between the input data and the
embedding vectors. SimCLR minimizes the embedding distance
within groups while maximizing the embedding distance among
groups. Compared with autoencoders, contrastive self-supervised
learning methods demonstrate superior results when performing
classification tasks [22], even at the level of supervised learning
[23], but no decoder model produces the risk of reidentification.

Due to the vectorization of objects of interest, disease
concept-embedding can be used for retrieval [24]. Vector
representation of big data can be operated simultaneously using
linear algebra methods [25]. EHR-based clinical information
retrieval [3,13,26,27] has been proposed. One study [13] focused
on creating test sets for information retrieval research. Two
studies [3,26] used keyword-based information retrieval systems,
which did not use the semantic analysis method and could not
identify negation semantics. Another study [27]developed a
document-level semantic-based query recommendation search
engine. Furthermore, these studies only focused on EHR-related
retrieval methods that cannot be directly applied to predictive
models. No objective score or standard exists to evaluate the
performance of the concept-embedding model or the information
retrieval [3]. However, visualization is a widely used method
for evaluating the performance of concept embedding [10]. The
t-distributed stochastic neighbor embedding (t-SNE) [28]
method reduces the embedding’s dimensionality to visualize
the clustering effects of unsupervised learning. Although not
objective, another evaluation method is sampling each cluster
group and determining its topic [13,29]. Therefore, we can use
a patient’s data to retrieve neighbor samples and verify the
consistency of the samples’ concepts. Furthermore, if a new
patient data is provided, concept embedding can be used to
retrieve the top five most similar data, after which we can
evaluate the retrieval capabilities.

In some papers, subsequent applications of classification have
been adopted [2]. For emergency department employees, a
patient’s condition severity and emergency information are most
relevant. We introduced a label for critical care outcome, defined
as either (1) an intensive care unit admission or (2) death in the
hospital after an emergency department visit [30-35]. This
outcome was used to finetune the pretrained embedding model
for the classification task. Furthermore, we compared the
performance of the embedding model with that of state-of-the-art
models.

Objective
This study aims to create a model that uses limited patient
information to extract disease concept-embedding for disease
retrieval and classification tasks. Accordingly, we present a
disease concept-embedding method, the EDisease model, based
on Transformer and the contrastive self-supervised learning
method.

Methods

Materials
A sample of 1,040,989 emergency department visits was
collected from the National Taiwan University Hospital
Integrated Medical Database, a private EHR data set. The sample
included the patients of National Taiwan University Hospital
(one medical center in Taipei City and two regional hospitals
in Hsinchu City and Yunlin County), who visited the hospital
from January 1, 2013 to December 31, 2017. This study was
approved by Research Ethics Committee B at National Taiwan
University Hospital (201902078RINB).

In the data preprocessing stage, if the chief complaint was
missing data or the structural data were unreasonable (eg, blood
pressure was higher than 300 mmHg, diastolic blood pressure
was higher than systolic blood pressure, heart rate was higher
than 250 beats/minute, respiration rate was higher than 100
times/minute, body temperature was higher than 48°C or lower
than 20°C, and body weight and height were higher than 400kgs
and 250cms, respectively), the samples were discarded. In this
stage, structural data with missing values were retained.

Individual patients may have visited the hospital several times
during the specified period, and each visit corresponded to one
account. Thus, each patient’s ID number may have been
associated with multiple EHRs. In the National Taiwan
University Hospital, if a patient visits more than once within
24 hours, the last account number can be retained for reuse using
another revisit flag. In this study, we retained only the last
sample with the same account but different revisit flags.
Furthermore, for each ID number, there are several medical
records in the EHR, and we used the triage time to filter future
records.

We then split the sample of 1,019,437 visits into sizes of
815,550 (80.0%), 101,943 (10.0%), and 101,944 (10.0%) for
the training, validation, and test sets, respectively (Figure 1).
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Figure 1. Data analysis flowcharts.

We also collected National Hospital and Ambulatory Medical
Care Survey emergency department data from 2007 to 2017
[36]. This survey data is available in a public EHR database
provided annually by the Centers for Disease Control and
Prevention National Center for Health Statistics. We
preprocessed the structured data using the same preprocessing
method described previously and excluded patients with death
on emergency department arrival, or those who left before being
seen by a practitioner or against medical advice. Structured
chief complaints and comorbidities were converted into free
text as the chief complaints and past medical history,
respectively. For the National Hospital and Ambulatory Medical
Care Survey data, we split the 297,508 visit sample into sizes
of 238,006 (80.0%), 29,751 (10.0%), and 29,751 (10.0%) for
training, validation, and test sets, respectively (Figure 1).

The means and standard deviations were counted after
discarding the missing data. Moreover, critical care outcome
was selected as the outcome. Critical care outcome refers to the
union of intensive care unit admission and death. We
distinguished the definitions of intensive care unit admission

and death for each data set. In the National Taiwan University
Hospital Integrated Medical Database, intensive care unit
admission is defined as whether an intensive care unit record
existed within three days after a patient’s emergency department
visit. Death is defined as whether a death record existed within
three days after a patient’s emergency department visit [30,31].
In the National Hospital and Ambulatory Medical Care Survey,
intensive care unit admission is defined as direct admission to
an intensive care unit, and death is defined as in-hospital death
(Table 1).

Emergency staff work in shifts to treat emergency patients
promptly. Therefore, an alert system for impending emergency
events is useful. Consequently, we chose a three-day interval
as the cut-off point for disease progression, resulting in the
outcome in the National Taiwan University Hospital Integrated
Medical Database being defined as any critical event within
three days after an emergency department visit. In contrast, our
definition of critical care outcome in the National Hospital and
Ambulatory Medical Care Survey was identical to that of the
reference [32-34].
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Table 1. Structural information and outcomes.

NHAMCSaNational Taiwan University Hospital Integrated Medical DatabaseVariable

Emergency depart-
ment data
(n=297,508)

Total
(N=1,019,437)

Regional hospitals
(Yunlin County)
(n=244,150)

Regional hospitals
(Hsinchu City)
(n=233,921)

Medical center
(Taipei City)
(n=541,366)

      

37.4 (24.0)43.7 (26.9)46.9 (26.0)42.2 (27.2)43.1 (27.0)Age, mean years (SD)

135,147 (45.4)514,927 (50.5)129,221 (52.9)118,815 (50.8)266,891 (49.3)Gender (male), n (%)

Vital signs

132.9 (23.5)135.4 (27.3)136.2 (26.2)140.2 (28.5)133.0 (26.9)Systolic blood pressure, mmHg (SD) 

77.7 (14.6)78.3 (15.8)80.3 (17.2)77.7 (15.4)77.8 (15.2)Diastolic blood pressure, mmHg (SD) 

91.1 (22.8)95.8 (25.6)90.0 (20.8)97.0 (26.0)97.6 (26.8)Heart Rate, BPMb (SD) 

97.3 (6.2)97.2 (3.64)97.6 (5.6)97.1 (3.0)97.0 (2.8)Saturation, % SpO2 (SD) 

19.3 (4.4)19.5 (3.4)17.6 (2.4)20.4 (2.5)19.9 (3.7)Respiratory rate, BrPMc (SD) 

36.8 (0.6)37.1 (1.0)36.9 (1.0)37.1 (1.0)37.1 (0.9)Body temperature, °C (SD) 

N/Ad152.8 (26.6)157.4 (20.4)153.4 (25.5)151.6 (27.9)Body height, cm (SD) 

N/A52.5 (22.8)54.4 (21.9)47.0 (25.1)53.3 (22.3)Body weight, kg (SD) 

4.8 (3.7)2.7 (3.2)2.3 (2.9)3.1 (3.3)2.6 (3.2)Pain index, value (SD) 

14.5 (2.1)14.7 (1.4)14.6 (1.7)14.7 (1.4)14.8 (1.3)Glasgow coma scale, value (SD) 

N/A4.0 (0.3)3.9 (0.4)4.0 (0.3)4.0 (0.3)Eye response, value (SD) 

N/A4.9 (0.6)4.8 (0.7)4.9 (0.6)4.9 (0.5)Verbal response, value (SD) 

N/A5.9 (0.5)5.9 (0.7)5.9 (0.5)5.9 (0.4)Motor response, value (SD) 

Outcomes

4,375 (1.5)2,907 (0.2)613 (0.3)336 (0.1)1,958 (0.4)Admission to ICU, n (%) 

381 (0.1)3,590 (0.4)891 (0.4)706 (0.3)1,993 (0.4)Death, n (%) 

4,755 (1.6)6,437 (0.6)1,492 (0.6)1,039 (0.4)3,906 (0.7)Critical care outcome, n (%) 

aNHAMCS: National Hospital and Ambulatory Medical Care Survey.
bBPM: beats per minute.
cBrPM: breaths per minute.
dN/A: not available.

Model Architecture
Transformer was adopted as the central architecture in this study,
based on BERT with the PyTorch adaptation released by the
HuggingFace team [37]. Initially, we collected structural data

S ∈ R15, including age, gender, blood pressure, heart rate, blood
oxygen saturation, respiratory rate, body temperature, height,
weight, subjective pain score, and Glasgow coma scale. We
filled each unavailable data point with the average value of each
S and performed noise processing on each element in S with a
random scale based on the standard deviation of each element
[38]. The fully-connected neural network for structural data LS

is a multilayer perceptron, which converts S to MS ∈ R96 (Figure
2). For the free text medical record data, the pretrained
“bert-base-multilingual-cased” model (ie, BERT-pretrained) is

used to extract features CC, Hx, ∈ R768 from the free text (chief
complaint, C, and past medical history, P). Because the number
of past medical history data points changes, we averaged the

features of all Hx and obtain the Hxmean that represents the
patient’s medical history. If there is no medical history in the

EHR, we use a padding vector to fill the Hxmean. The
fully-connected neural network LB for BERT is a multilayer

perceptron that converts CC and Hxmean to Mcc and MHx ∈ R96,
respectively.

n is the total number of samples, k denotes the numbers of
medical history.
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Figure 2. Deep-learning model architecture.

We embed the diseases to concepts by adopting another BERT
architecture as BERT-Disease (βED), a 12-layer Transformer
encoder with 12 self-attention heads and a hidden size of 96.
We concatenate MS, Mcc, MHx and modify it with a leading head
[CLS] as the input embedding. Position embedding indicates
each element’s position in the input embedding sequence, and
segment embedding indicates the level to which the element
belongs [16]. All segment embeddings are of the same level at
this stage, but we reserved this settable variable for the
subsequent work in this study. We obtain the sum of input
embedding, position embedding, and segment embedding as
the input of βED.

The Mask ∈ {0,1} indicates whether the element is valid (1) or
invalid (0). For example, some patients did not have any medical

history records in their EHRs. In these cases, the padding Hxmean

will be used as the input; however, the padding element should
be ignored. Furthermore, when we gathered more information
from some patients, Mask enabled us to ignore other padding
elements and is, therefore, essential to this extensible model.
We also used the random mask on MHx for the augmentation of
M to improve the ability to embed the disease concept in a state
with less information. This augmentation of a random history
mask is also adopted in the subsequent work with another
modification M. In this part, we obtained the embedding of
disease:

DIM was adopted to further construct accurate disease
embedding. DIM’s core principle is to maximize the mutual
information between the samples and embedding [22]. The
mutual information on M and EDisease is as follows, where
p(m) denotes the probability of each visit in the sample.

We assumed that each visit was unique. Therefore, p(m),∀m ∈
M are the same constant. Moreover, we assumed the number of
disease embedding data points was limited and smaller than the

number of visits, such that . The result is that
BED : M→EDisease is a surjective function also known as onto,
so we then obtain p(ε) = p(ε|M)p(M).

We then set the function DIM Loss as follows and minimized
it to maximize the mutual information.
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We achieved this goal by adopting another BERT architecture,
BERT-Discriminator (βD), which shares the same model
architecture as BED and estimate βD (ε, m) = p(ε|m). In this stage,
M is modified not only by [CLS] but also by EDisease and
[SEP]. The [SEP] is used to separate EDisease and M and this
modification is similar to “the next sentence prediction” task
in BERT [16]. We used segment embedding with a level of 0
to modify the [CLS] and EDisease with a level of 1 to modify
[SEP] and M. We set Y(ε,m)=1, when i=j, ∀mi,εj and Y(ε,m)=0,
when i≠j, ∀mi, εj and simplified as follows.

A part of Loss could now be discovered using the cross-entropy
loss, similar to noise-contrastive estimation [39,40]. However,
one part remained to be solved. We had to establish an adequate
prior distribution to constrain the embedding distribution as
proposed by DIM [22] and to minimize the ∑p(ε)log(p(ε)).

The function F(x) = x log x is convex [41]. Then,

and two parts are equal if and only if every number xi is the
same (it can be proved by the Lagrange multiplier), which is
equivalent to the uniform distribution that can minimize Loss.
Consequently, we adopted a uniform distribution Prior on

[–1,1]96 to constrain p(ε).

Generative adversarial networks [42] can be used to constrain
an embedded distribution to a prior distribution [22]. The final

distribution of EDisease is difficult to distinguish from the

prior distribution uniform distribution using a linear domain
discriminator LDD. This discriminator detects whether each input
distribution belongs to the prior or EDisease domain and
estimates the distribution divergence of each domain. Moreover,
this goal can be achieved using the generative adversarial
network iteration algorithm.

Therefore, we simplify our goal to the following equation:

For a more robust concept embedding, we also introduced the
SimCLR loss. Just as with the augmentation in SimCLR, each
mi is augmented to another m’i by random noise. Ideally, the
cosine similarity of BED(mi) to BED(m’i) is 1 (positive sample),
and the cosine similarities of BED(mi) to BED(mj) and BED(m’j)
are -1 (negative sample), ∀j ≠ i.

Therefore, the final loss function is:

Loss = DIM Loss + SimCLR Loss

In the further finetuning stage for predicting the outcome,
EDisease is fed to a multilayer linear model FLC (Figure 2).

We can add an extended model for the extended information to
enhance the architecture (see Multimedia Appendix 1). We
demonstrated the extensible model by obtaining MPI after
feeding an illness to the model and concatenating it to the vanilla
M. The subsequent training methods are identical to those in
Figure 2.

For improved performance with free text feature extraction, we
again pretrained BERT-pretrained using the free text medical
records in the National Taiwan University Hospital Integrated
Medical Database. In the medical record, the chief complaint
in triage was the patient’s words for their discomfort, and present
illness, I, was the doctor’s word for the patient’s problem; thus,
the similarity between the chief complaint and patient illness
should, ideally, be high. Furthermore, some patients had several
medical history records, and their subsets may also have been

highly similar. Consequently, CC, PI, Hx1
mean, Hx2

mean ∈R768

were extracted by BERT-pretrained, the pair CC, PI representing

the same patient’s complaints, and the pair Hx1
mean, Hx2

mean

representing the same patient’s medical history. We then used
the contrastive learning method used previously to pretrain
BERT-pretrained. Due to graphic processing unit memory
limitations, after again pretraining the language model, we fixed
the model’s weights such that the grading of subsequent training
would not change the weight of the model.

We used Adam optimization [43] for the hyperparameters and

set the learning rate as 1×10–4, with a minibatch size of 1024.
The hyperparameter γ=0.1 was chosen in this study. The source
code is available on GitHub [44].

Evaluation
We selected the training set and fed it into the model to obtain
the set of disease embedding. We then used the t-SNE to reduce
the dimensionality of the embedding to two for visualization.
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We enhanced visualization based on demographic information,
hospital level, triage level, whether medical history existed, and
outcome. Furthermore, we illustrated the model’s ability to
cluster diseases by selecting patients from the validation set as
queries to retrieve similar patients in the training set. The
relevance of each result to the query was judged by a seasoned
doctor, who used the number of hits on the top 5 results to score
from 0-5.

Furthermore, we finetuned the model based on the outcome and
compared it with the published model based on the receiver
operating characteristic curve. In order to check whether the
embedding could be used as a pretrained model, even if only a
small amount of label data was collected, we also took 10,000
samples from the validation (National Hospital and Ambulatory
Medical Care Survey) set as a small data set for finetuning.

Then, we performed ablation studies by deleting each
unsupervised learning method and comparing them.

Results

We used the t-SNE method to reduce the 96-dimensional
embedding to 2-dimensional embedding and enhance the
visualization by gender, age (10-year intervals), hospital level,
triage level, existence of a medical history, and outcome (see
Multimedia Appendix 2).

We sampled the patients in the validation set as queries to
retrieve the 5 most similar patients in the training set in the
embedding space. Moreover, a doctor evaluated the relevance
of 25 random query results (see Multimedia Appendix 3, Figure
3, and Multimedia Appendix 4).

Figure 3. Disease Retrieval Demonstration. The query subject (orange) was a 53-year-old female patient who suffered from abdominal pain in the
upper-right quadrant to right flanks for three days and noticed dizziness and tarry stool on the day of the interview. Through the retrieval, we obtained
the top five similar patients (green) whose symptoms were hematuria, bloody stools, abdominal distention, abdominal pain, dizziness, and abdominal
pain in the upper-right quadrant. GCS: Glasgow coma scale. SBP: Systolic blood pressure. DBP: Diastolic blood pressure. HR: Heart rate. SpO2: Blood
oxygen saturation. RR: Respiratory rate. BT: Body temperature in Celsius. BH: Body height. BW: Body weight. PS: Pain scale. E: Eye response in
Glasgow coma scale. V: Verbal response in Glasgow coma scale. M: Motor response in Glasgow coma scale. N/A : Not available.
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The query subject (orange) was a 53-year-old female patient
who suffered from abdominal pain in the upper-right quarter to
right flanks for 3 days and noticed dizziness and tarry stool on
the day of the interview. Through the retrieval, we obtained the
5 most similar patients (green) whose symptoms were hematuria,

bloody stools, abdominal distention, abdominal pain, dizziness,
and abdominal pain in the upper-right quarter.

In the subsequent finetuning based on the outcome, our proposed
EDisease model demonstrated the highest performance among
all compared models based on the area under the receiver
operating characteristic of 0.876 (Table 2, Figure 4).

Table 2. Area under the receiver operating characteristic results.

Critical care outcomeModel

NHAMCSbNTUH-iMDa

0.85N/AcDeep neural network [33] (age≤18)

0.86N/ADeep neural network [32] (age≥18)

0.84N/AHierarchical model [34]

0.860.83Proposed model (without pretraining)

0.880.84Proposed model

aNTUH-iMD: National Taiwan University Hospital Integrated Medical Database.
bNHAMCS: National Hospital and Ambulatory Medical Care Survey.
cN/A: not applicable.

Figure 4. Ablation study ROC curves. Both DIM and SimCLR can improve prediction performance through pretrained embedding. Small: denotes
finetuned on the smaller data set. ROC: receiver operating characteristic. DIM: Deep InfoMax. SimCLR: Simple Contrastive Learning of Visual
Representations. AUROC: area under the receiver operating characteristic.

The ablation study results demonstrate that our model
outperformed those using fewer or no unsupervised methods,
both on the large and small finetuning set. Unsurprisingly, the
models finetuned on the smaller data set performed worse than
those finetuned on the large National Hospital and Ambulatory
Medical Care Survey training data set (Figure 4).

Discussion

The EDisease model performed well in the disease
concept-embedding task and illustrated suitable clustering
performance for the disease pattern. It also demonstrated
promising results in the subsequent finetuning of the outcome.
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The embedding of disease is meaningful. The enhanced label
with the triage level indicates that the fifth level was clustered
and illustrates some influence on different classification levels
(see Multimedia Appendix 2). This embedding system can be
used as a disease retrieval model, which encodes queries and
finds the most relevant patients and diseases. In the retrieval
demonstration, the query subject was a 53-year-old female
patient who suffered from abdominal pain in the upper right
quarter to right flanks for 3 days and noticed dizziness and tarry
stool on the day of the interview. Through the retrieval, we
obtained the five most similar patients with similar symptoms
that were possibly related to different diseases (Figure 3). In
another example of retrieval, the query subject was a 63-year-old
male patient who suffered from sudden nausea, vomiting, and
weakness and felt facial numbness at work. Patients with
cardiogenic symptoms or neurologic symptoms were the
retrieval results (see Multimedia Appendix 4). These results are
meaningful for clinical practices, such as treating cardiogenic
or neurological problems, as they characterize the most likely
differential diagnoses.

Furthermore, because the multilingual BERT model is used as
the text feature extractor, the proposed model can search for
free text in English or Chinese. The retrieval results included
relevant symptoms and possible diseases, likely from the
co-occurrence relationship [27] of structural data or the feature
extracted from the multilingual BERT model. The multilingual
BERT model was pretrained again by the chief complaint and
present illness pair. Even if we only use the chief complaint
with structured data and medical history as input, the
characteristics of the chief complaint may reflect those patients
with the same complaint but different diseases discovered by
the doctor.

The potential of the semantic vector on the EHR search engine
has already been demonstrated [27]. Our main contribution to
the development of EHR retrieval is the construction of
patient-level conceptual embeddings. However, in some cases,
such as complaints about epileptiform (query 12) and
shingles-like skin lesions (query 6) (see Multimedia Appendix
3), retrieval performance was poor. They would also result from
a co-occurrence relationship with structural data or medical
records. In future work, more EHR data could be used to extend
the model, which may enrich the performance for differential
diagnosis and retrieval.

This pretrained model is also suitable for finetuning the outcome
prediction. For the National Hospital and Ambulatory Medical
Care Survey, our pretrained model outperformed the reference.
The pretrained method of disease concept-embedding can
improve the performance of subsequent tasks. The outcome
prediction performance we obtained for National Hospital and
Ambulatory Medical Care Survey data was slightly higher than
for data from the National Taiwan University Hospital Integrated
Medical Database. This result may be related to the structured
chief complaints and comorbidities in the National Hospital and
Ambulatory Medical Care Survey data. These structural features
had been well extracted by humans using rule-based methods.
In future work, we will use all medical histories instead of their
average values or preprocess them using extractive
summarization methods.

We proposed a model that uses limited information for
embedding. The model is a useful contribution, given that the
input data can be collected by people without a medical
background. For instance, a sick person who has no idea what
occurred to him or her can still collect information and feed it
into the model to obtain more information about his or her
problem. Simultaneously, the model can also help hospital staff
determine a patient’s disease with limited information. Most
doctors (not only emergency department doctors) develop
treatment plans based on limited information. Initially, doctors
can obtain basic demographic information only after the patient
has made an appointment. The doctor will then collect more
information when the patient visits, including the chief
complaint, symptoms, and medical histories.

Furthermore, physical examination and some blood laboratory
examinations, radiology, or ultrasound examinations are
arranged to help establish a diagnosis and finalize the treatment
plan. The disease concept was initially established by limited
information and prompted doctors to arrange specific
examinations; the disease concept will become more prominent.
Similarly, disease embedding obtained through limited
information can only be used for preliminary differential
diagnosis. It can be further applied to suggest the most relevant
information for the final diagnosis. After more information is
appended to the embedding model, a precise diagnosis could
be identified.

Some EHR models use ICD codes as inputs. However, problems
may arise; for example, the disease might not have the correct
ICD code in EHRs [9], or ICD coding rules might change,
invalidating the model trained on the old ICD codes. In this
study, we did not use ICD codes as inputs. In addition to the
time-varying ICD coding rules, ICD coding requires experts,
which is difficult for people with no medical background.
Sometimes, if there is not enough information, even experienced
doctors have difficulty with ICD coding. However, doctors can
collect more information during treatment and observation, and
then determine the disease and choose the most appropriate ICD
code. Consequently, some of the ICD codes recorded in an EHR
may be future information and may not be suitable for input to
predictive models in some retrospective studies.

For machine learning methods used to embed disease concepts,
vast amounts of patient data are required. Therefore, protecting
personal privacy is a crucial issue in the research process. A
leak of a patient’s disease information would be disastrous and
would infringe upon the patient’s legal rights. Although several
studies have focused on this issue, no accurate quantitative
method exists to assess the privacy of research data sets [2]. For
private EHR data sets that have not been evaluated for
de-identification quality, encoding the patient’s records and
decoding them outside the hospital could create legal issues. In
this study, DIM and SimCLR were used as the unsupervised
methods, which have greater embedding capabilities [20] and
do not train the decoder together, so there is no risk of leaking
private information.

For the DIM method that maximizes mutual information, we
assume each patient’s visit is unique. This assumption is also
critical for the SimCLR method, because the self-supervised
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learning methods require negative samples to maximize the
embedding distance among groups. If the same input exists in
the negative sample, it will disrupt the training process and
cause failure to converge. This assumption is reasonable because
everyone is undoubtedly unique. The only problem arises when
the same patient revisits a health care facility because of the
same disease. However, this problem can be solved by deleting
duplicate accounts in the data set. For patients with several
accounts, these visits can still be regarded as different due to
different health conditions, chief complaints, or previous medical
histories. We also assume that the number of diseases is limited
and fewer than all visits. This assumption is also reasonable
because the total number of visits is set to the size of the training
set, and in medical experience, at least two patients suffer from
the same disease.

The SimCLR method proposed a simple method to use a large
amount of negative samples for self-supervised learning. In this
study, ideally, we would have randomly masked the tokens in
the input free text data. However, owing to graphic processing
unit memory limitations and the heavy BERT model, if an ideal
augmented method is adopted for a positive sample, only 8
samples could be used in each mini-batch, thereby sacrificing
the advantage of a large number of negative samples.
Consequently, we ended up adding a little noise to each mi as
a positive sample; in other words, we sacrificed the advantage
of a positive sample.

Based on the ablation study results, both DIM and SimCLR can
improve prediction performance through pretrained embedding.
Although the improvement gap was small, the embedded
pretraining method may be useful in future work. Furthermore,
combining these two self-supervised methods can further

improve prediction performance. These results are similar to
those of DIM, which used two different discriminators on the
training process and achieved a higher score [22].

Limitations
Although the National Taiwan University Hospital Integrated
Medical Database included one medical center and two regional
hospitals and had many patients and staff with extensive disease
treatment experience, there is still a problem of “out-of-disease,”
which indicates that the disease is not in the EHR data set. This
problem will result in poor performance for newly diagnosed
diseases (eg, COVID-19), but diseases with related symptoms
can be found for reference. Because the National Taiwan
University Hospital Integrated Medical Database data set was
not public, we only recruited one doctor to evaluate the
relevance of the search results. Although the evaluation results
were subjective, no objective score exists (according to previous
studies) for evaluating information retrieval performance. We
recognize that other evaluation methods in this study might
have been more meaningful.

Conclusions
The EDisease model uses limited information from patients and
appropriately represents concept embedding. It can be further
expanded as more data about the patient is collected.

The suitably-pretrained EHR model can be used as a medical
experience retrieval system online in conjunction with the clinic
staff. Moreover, it can be further finetuned to predict emergency
events and enhance employees’ capabilities. The EDisease
model could be widely adopted in the near future to help ease
emergency department overcrowding: “ED-is-ease.”
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Multimedia Appendix 1
Extended model.
[PNG File , 58 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Visualization of Embedding of Disease by t-SNE(2D). The embeddings were displayed in a list of (A) non-enhanced, (B) enhanced
by gender, (C) age (10-year interval), (D) hospital level, (E) triage level, (F) whether a medical history exists, (G) outcome of
ICU admission, and (H) death. There seems to be no specific difference in disease embedding based on (B) gender, (C) age> 10
years, (D) hospital grade, and (F) medical history. Triage level five, purple, was clustered together (E). In this disease embedding,
the outcome of ICU or death did not appear to be linearly separable.
[PNG File , 4815 KB-Multimedia Appendix 2]
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Multimedia Appendix 3
Disease Retrieval Relevance. The relevance of each result to the query was judged by a seasoned doctor, who used the number
of hits on the top five results to score from zero to five. Retrieval performance was high, but in some cases, such as shingles-like
skin lesions (query 6) and epileptiform (query 12), the retrieval performance was poor.
[PNG File , 18 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Disease Retrieval Demonstration. The query subject (orange) was a 63-year-old male patient who suffered from sudden nausea,
vomiting, and weakness and felt facial numbness at work. Through the retrieval, we obtained the top five similar patients (green)
whose symptoms were palpitation, chest pain, nausea, dizziness, anorexia, insomnia, and dizziness combined with limbs tremor.
GCS: Glasgow coma scale. SBP: Systolic blood pressure. DBP: Diastolic blood pressure. HR: Heart rate. SpO2: Blood oxygen
saturation. RR: Respiratory rate. BT: Body temperature in Celsius. BH: Body height. BW: Body weight. PS: Pain scale. E: Eye
response in Glasgow coma scale. V: Verbal response in Glasgow coma scale. M: Motor response in Glasgow coma scale. N/A :
Not available.
[PNG File , 379 KB-Multimedia Appendix 4]
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