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Abstract

Background: Reminiscence is the act of thinking or talking about personal experiences that occurred in the past. It is a central
task of old age that is essential for healthy aging, and it serves multiple functions, such as decision-making and introspection,
transmitting life lessons, and bonding with others. The study of social reminiscence behavior in everyday life can be used to
generate data and detect reminiscence from general conversations.

Objective: The aims of this original paper are to (1) preprocess coded transcripts of conversations in German of older adults
with natural language processing (NLP), and (2) implement and evaluate learning strategies using different NLP features and
machine learning algorithms to detect reminiscence in a corpus of transcripts.

Methods: The methods in this study comprise (1) collecting and coding of transcripts of older adults’ conversations in German,
(2) preprocessing transcripts to generate NLP features (bag-of-words models, part-of-speech tags, pretrained German word
embeddings), and (3) training machine learning models to detect reminiscence using random forests, support vector machines,
and adaptive and extreme gradient boosting algorithms. The data set comprises 2214 transcripts, including 109 transcripts with
reminiscence. Due to class imbalance in the data, we introduced three learning strategies: (1) class-weighted learning, (2) a
meta-classifier consisting of a voting ensemble, and (3) data augmentation with the Synthetic Minority Oversampling Technique
(SMOTE) algorithm. For each learning strategy, we performed cross-validation on a random sample of the training data set of
transcripts. We computed the area under the curve (AUC), the average precision (AP), precision, recall, as well as F1 score and
specificity measures on the test data, for all combinations of NLP features, algorithms, and learning strategies.

Results: Class-weighted support vector machines on bag-of-words features outperformed all other classifiers (AUC=0.91,
AP=0.56, precision=0.5, recall=0.45, F1=0.48, specificity=0.98), followed by support vector machines on SMOTE-augmented
data and word embeddings features (AUC=0.89, AP=0.54, precision=0.35, recall=0.59, F1=0.44, specificity=0.94). For the
meta-classifier strategy, adaptive and extreme gradient boosting algorithms trained on word embeddings and bag-of-words
outperformed all other classifiers and NLP features; however, the performance of the meta-classifier learning strategy was lower
compared to other strategies, with highly imbalanced precision-recall trade-offs.
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Conclusions: This study provides evidence of the applicability of NLP and machine learning pipelines for the automated
detection of reminiscence in older adults’ everyday conversations in German. The methods and findings of this study could be
relevant for designing unobtrusive computer systems for the real-time detection of social reminiscence in the everyday life of
older adults and classifying their functions. With further improvements, these systems could be deployed in health interventions
aimed at improving older adults’ well-being by promoting self-reflection and suggesting coping strategies to be used in the case
of dysfunctional reminiscence cases, which can undermine physical and mental health.

(J Med Internet Res 2020;22(9):e19133) doi: 10.2196/19133
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Introduction

Reminiscence and Healthy Aging
The world’s population is rapidly aging. With its first world
report on aging and health [1], the World Health Organization
(WHO) promoted a global paradigm shift in aging research by
moving from a disease-focused model to a dynamic,
contextualized, person-focused model of “healthy aging” [1].
This model emphasizes the interplay of personal characteristics
(eg, abilities), environments, and their interactions in producing
functioning. Activities represent the interaction between person
characteristics and environments; they are understudied in
traditional aging research. The novel WHO model encourages
aging researchers to step outside the lab and into the real world
to examine activities in everyday life [2], aiming to empower
individuals to observe, measure, and take earlier action for their
own health [3,4]. In this study, we embrace the healthy aging
model by examining one such real-life activity: reminiscence.

Reminiscence [5] is the “naturally occurring act of thinking
about or telling others about personally meaningful past
experiences” [6,7]. These experiences may refer to specific
events (eg, the first kiss), repeated ones (eg, going to the gym
every Friday), extended ones (eg, a Christmas trip), or even
long periods of life (eg, living in a foreign country for some
years) [8]. Recalling or sharing valuable life experiences with
third parties can support decision-making, bonding with others,
and self-understanding [9]. Reminiscing can be a volitional or
nonvolitional process recollecting memories [7], an activity that
may be private or involve others [7]; in the latter case, we refer
to social reminiscence. Many disciplines are interested in the
study of reminiscence, such as nursing, social work, education,
theology, psychology, and gerontology [10], with a strong focus
on reminiscence in the context of aging. Researchers who study
aging emphasize a cognitive activity in old age such as
reminiscence to be an essential part of healthy aging [11]; in
fact, the use of memory interventions and reminiscence in
therapies for older adults is common, emphasizing the relation
between self-positive functions of reminiscence and well-being
[12], according to Webster and Cappeliez’s tripartite model of
reminiscence [13].

Naturalistic Observation as a New Approach to the
Study of Reminiscence
The study of reminiscence in older adults has traditionally
focused on (1) reflective self-reporting and life reviews [11]

and (2) automated reminiscence therapy, that is, “a
nonpharmacological intervention involving the prompting of
past memories, […] for therapeutic benefits, such as the
facilitation of social interactions or the increase of self-esteem”
[14], especially for dementia patients.

The use of self-reporting has potential limitations, such as recall
biases, response styles, demand characteristics, social
desirability, and limitations to introspection [15]. Moreover,
the self-report method provides researchers only with the
average frequency of an activity over a certain period of time
[16]. Studies with a focus on automated reminiscence therapy,
in contrast, typically aim at eliciting reminiscence from users
(eg, with the remote assistance of a therapist), rather than
collecting spontaneous reminiscence events during everyday
life settings [17-19].

In 2017, Demiray et al [6] were the first to examine
reminiscence using a naturalistic observation method to enable
investigating reminiscence in the real world. As opposed to
those used in the reminiscence therapies, this method does not
rely on self-report and tracks objective behaviors, such as speech
in everyday life, with no elicitation of reminiscence events. It
can also involve older adults in scientific investigations who
would otherwise be excluded from real-life studies relying on
self-reporting (eg, older adults who are intimidated by
technology or therapy are unable to use a smartphone to
complete surveys or to self-report due to worsened eyesight,
and/or are part of a clinical population). Furthermore, this
method allows for microlongitudinal study designs with many
measurement points per participant and both within- and
between-persons perspectives in analyses.

However, to understand what kinds of reminiscence patterns
are predictive of maintaining healthy aging and quality of life
[2], each instance of reminiscing has to be reliably detected in
everyday life contexts. In fact, reminiscing is a
context-dependent, real-world cognitive activity [20]; if it can
be reliably and accurately assessed, it is possible to study the
effects of real-world cognitive activities on health outcomes,
such as cognitive abilities or cognitive impairments [6,12]. A
rich body of literature exists on the link between reminiscence
therapies and cognitive and well-being benefits in aging
populations: a recent review [21] based on 22 randomized
controlled studies showed evidence for the positive effects of
reminiscence therapy on quality of life, cognition, and
communication in dementia patients. Subramaniam and Woods
[22] specifically reviewed the effects of individual-based therapy
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and concluded that it shows immediate benefits on well-being
and cognition. The challenge, however, is to find automated
ways to extract and disambiguate the cognitive activity
information from data streams collected from many persons in
real-world situations [23]. Tracking, detecting, and prompting
functional as well as positive reminiscence behaviors in
everyday life should allow researchers to design digital
interventions to enhance the quality of life of healthy older
adults and other patient populations. To these ends, natural
language processing (NLP) and machine learning methodologies
allow researchers to explore the possibility of reliably predicting
reminiscence in combination with naturalistic observation
methods and in real time.

Using NLP and Machine Learning for Reminiscence
Yordanova et al [24] were the first to investigate the
applicability of NLP and machine learning methodologies on
data from a naturalistic observation study by Demiray et al [6];
they introduced an NLP pipeline and machine learning routines
to automatically code the social behaviors and interactions (eg,
talking to a partner or daughter/son, giving advice, receive
support, etc) in the transcripts of recorded conversations. As
coding is a manual process that involves much effort and time,
their results showed that the use of NLP and machine learning
automation on transcripts of recorded conversations enabled
reliable coding of social behaviors and interactions, reducing
effort and time. However, they did not consider detecting
reminiscence. Their proposed pipeline included data
augmentation procedure to cope with highly imbalanced classes,
feature engineering based on linguistic, contextual and statistical
approaches, and supervised learning with classifiers such as
decision trees, random forests (RF), and support vector machines
(SVM). As the extreme imbalance between classes poses a
central problem in automated coding of textual data, other works
propose training classifiers with annotated data sets and later
performing manual evaluation to correct misclassified instances
by experts [25]. This second manual step is expensive and
time-consuming, but it shows that NLP and machine learning
deliver promising results with respect to the automated analysis
of textual data in social science applications. In fact, the use of
NLP and machine learning methods has shown great potential
for analyzing social media posts for social affect and behavior,
identifying trends in society and demographics, as well as
generating predictions of society-changing events, such as
diseases [26-28].

Motivated by the availability of reminiscence data from the
naturalistic observation study [6] and the results of Yordanova
et al [24], this study aims to develop pipelines with NLP and
machine learning strategies to automatically detect reminiscence
in older adults’ everyday conversations in German using their
written transcripts. To do so, we introduce various NLP features
(bag-of-words models, part-of-speech [POS] tagging, and
pretrained word embeddings) to preprocess written transcripts,
which are fed into four families of machine learning algorithms
(RF, adaptive boosting [ADA], extreme gradient boosting
[XGB], and SVM); multiple learning strategies are setup to
cope with class imbalance in data. The methods of this study
support the understanding of a key activity of the healthy aging
model, that is, reminiscence, in a real-world setting by

leveraging transcriptions of everyday life conversations.
Moreover, they could support the design of computer systems
to detect social reminiscence in the everyday lives of older adults
in real time and classify different reminiscence functions. These
systems lie at the core of digital health intervention programs
[29] aimed at improving older adults’ well-being by promoting
self-reflection, as suggested by the healthy aging model. They
also provide users with coping strategies for dysfunctional
reminiscence [13], which has a negative emotional valence and
affects physical and mental health [30-32]. Even when the
real-time recording of older adults’memory activities contained
in daily conversations in a research study is shown to be feasible,
there are multiple challenges to scaling up this intervention to
a large population. However, current findings suggest that
despite potential concerns about privacy and data protection
issues, there are now a number of technical [33] and analytical
solutions for privacy-preserving machine learning for such data
[34]. Additionally, a majority of older adults is willing to share
portable data collections with researchers [3].

Methods

Overview of the Study Design
This study comprises the following steps: (1) collecting data
from a naturalistic observation study [6], (2) preprocessing data
with NLP methodologies, and (3) training and validating
machine learning models to detect reminiscence in a given
corpus of transcriptions, by implementing three distinct learning
strategies to cope with class imbalance in the data.

Data Collection: Older Adults’ Everyday
Conversations and Reminiscence

Data Source
The aim of the naturalistic observation study by Demiray et al
[6] was to collect everyday conversations of older adults and
examine social reminiscence behavior. Random snippets of
older adults’ everyday conversations were collected using the
Electronically Activated Recorder (EAR) [35]. They generated
13,275 audio files from 48 older adults (22 men and 26 women)
residing in Zurich, Switzerland, over a period of 4 days. The
average age of the sample was 70.54 years (SD 4.65, range
62-83 years). To be eligible for the study, participants were
required to have a minimum score of 27 on the Mini Mental
State Examination [36]. The participants had an average of 10.5
years of education (SD 3.0, range 7-25 years), and they all spoke
Swiss German. The study included an introductory session, an
observation period, and a feedback session. In the introductory
session of the study, participants signed informed consent and
received an iPhone in which the EAR was installed. They were
informed that the EAR would randomly record a few seconds
of audio multiple times per day, except for an automatically
inactivated period from every midnight to 6 AM the next day,
during the whole observation period. They were told to carry
the iPhone and continue daily living, and they were informed
that they would not notice when the EAR was recording.

The observation period started the day after the introductory
session and lasted 4 consecutive days, during which the audio
file recording occurred. After the observation period, the
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participants were invited to the feedback session, where they
returned the phones, completed further questionnaires, and
provided their feedback about their experiences of carrying the
EAR. They received password-protected CDs containing all of
their audio files. All study procedures were approved by the
Ethics Research Institute of the Department of Philosophy at
the University of Zurich.

The EAR App
The EAR (version 2.3.0) [35,37] was installed on each iPhone.
It was set to randomly record 30-second audio files 72 times
over 4 days. Thus, each participant was recorded 288 times and
for a total 144 minutes each. Each iPhone was set to “airplane
mode” and locked with a screen-lock password. The participants
were instructed to charge the iPhone in the evenings. At the end
of the study, the participants reported that the EAR did not affect
their daily activities or way of speaking [20].

Data Generation: Transcribing and Coding Audio Files
For each audio file, all utterances by the study participants were
transcribed by two research assistants, who were fluent in Swiss
German and standard written German. Swiss German is an
Alemannic dialect spoken in the German-speaking part of
Switzerland, which does not have a standard written form. Thus,
the Swiss-German dialect in the audio files was translated
word-by-word into standard written German and then
transcribed. Coders generated binary variables (with values 0
and 1), indicating whether the participant was talking or not
and whether he or she was reminiscing or not. The function(s)
of reminiscence [8] and participants’ conversation partners (ie,
partner/spouse, daughter/son, other family members, etc) were
also coded.

Coding Reminiscence
Two coders performed the manual coding of reminiscence in
each audio file independently. The interrater reliability for the
coding of reminiscence, that is, the percentage of audio files
with the same coding assigned by both coders, was 95%. All
discrepancies in coding were solved by relistening and recoding
through discussion. To classify reminiscence, the coders
generated a binary variable with values 0 and 1, which
correspond to a general conversation and a reminiscence case,
respectively.

Preparing Data
Of the 13,275 audio files generated during the study by Demiray
et al [6], 2214 contained conversations of older adults. The data
set used for this study comprises these 2214 transcripts, of which
109 (4.9%) were coded as reminiscence. Before applying NLP
to the transcripts, we preprocessed the data with regular
expressions to remove coding artifacts like “xxx,” “YYY,”
“xxxx,” etc, denoting utterances from the audio recording that
were not possible to transcribe as well as leading and trailing
whitespaces.

Natural Language Processing of Transcripts
To use written transcripts as inputs of machine learning models,
we preprocessed them by computing the NLP features (1)
“bag-of-” models on both words and POS tags and (2)

real-valued embeddings for each transcript in the data set using
pretrained German word embeddings.

Bag-of-Words Models
Bag-of-words models [38,39] represent transcripts as real-valued
vectors by tokenizing all transcripts in the provided data set,
collecting unique tokens, and counting their occurrences before
applying normalization (eg, term frequency–inverse document
frequency [tf–idf] [38,39]). Bag-of-words models do not
consider the order of words in transcripts and generate
high-dimensional representation of textual data. In fact,
bag-of-words models represent each transcript by a real-valued
vector whose dimension is equal to the size of the vocabulary
of the whole data set of transcripts. They are widely used for
text classification tasks, including studies in digital health
[29,40-42]. We computed bag-of-words models using the
TfIdfVectorizer() function in the Python sklearn library [43].

Bag-of-POS Models
POS tagging is the process of assigning a POS tag to each word
in a given corpus [38,39]; the algorithm that performs the
tagging is called a POS tagger; a set of all tags is called a tagset.
POS tagging enables including information from a word’s
context (ie, its relationships with close and related words in a
document) in text classification tasks [29]. In this study, we
used the POS tagger provided in the core model for the German
language “de_core_news_sm,” which is available in the Python
library SpaCy [44], to generate the POS tags for all tokens
retrieved from the corpus of 2214 transcripts. The SpaCy POS
tagger has a tagset comprising 17 distinct tags; similar to
bag-of-words models, a bag-of-POS model extracts all POS
tags (instead of words) from a transcript and counts their
occurrences before applying normalization, such as tf–idf. With
bag-of-POS models, one can encode information on the
linguistic structure of each transcript in a real-valued,
low-dimension representation.

Word Embeddings
Word embeddings are real-valued representations of textual
data encoding the “distributional hypothesis” [45] about
language and words: words that occur in similar contexts tend
to be closer to each other as real-valued vectors. Moreover,
word embeddings are generally real-vector representations of
textual data of much lower dimension than, for example, those
in bag-of-words models. They have emerged as a common
technique to compute representations of textual data, including
studies in digital health [29,40]. In this study, given the limited
number of available transcripts, we opted for pretrained German
word embeddings using the SpaCy core model for the German
language “de_core_news_sm.” The model is “German multi-task
CNN trained on the TIGER and WikiNER corpus” [46] and
each word embedding has 300 dimensions. The TIGER corpus
[47] is curated by the Institute for Natural Language Processing
at the University of Stuttgart; it comprises 900,000 tokens from
sentences of German text, taken from the Frankfurter Rundschau
newspaper [48]. On the other hand, WikiNER [49] is a corpus
for multilingual named entity recognition from Wikipedia. In
this study, the embedding of each transcript is a real vector of
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300 dimensions resulting from averaging the embeddings of all
words generated from the given transcript after its tokenization.

Machine Learning on Transcripts: Learning Strategies

Class Imbalance
The data set of 2214 transcripts has 109 records coded as
reminiscence; therefore, it has a class imbalance with a ratio of
20:1. A class imbalance [50-53] is a common phenomenon in
machine learning and, in particular, in textual data [24,40,54,55].
Since most machine learning algorithms are biased toward the
majority class [53], researchers have proposed various solutions
to cope with learning with imbalanced data sets [50,51], such
as class-based weighting of misclassification errors or data
resampling techniques aimed at reducing imbalance [53].
Research has also promoted the use of performance measures,
which consider the presence of class imbalance [53] to evaluate
machine learning models.

Machine Learning Methods
In this study, to cope with class imbalance during the training
of machine learning models to detect reminiscence, we
implemented the following learning strategies: (1)
class-weighted learning (CWL), (2) meta-classifier (MC)
learning, and (3) learning in the presence of data augmentation
with the Synthetic Minority Oversampling Technique (SMOTE)
algorithm [56]. For all the learning strategies, we trained
machine learning classifiers [57] using the RF, ADA, XGB
[58], and SVM algorithms fed on all NLP features:
bag-of-words, bag-of-POS NLP models, and pretrained word
embeddings. In the cases of RF or boosting algorithms trained
on either bag-of-words or bag-of-POS features, we computed
feature importance using the sklearn property
.feature_importances_. Table 1 summarizes all the NLP features,
classifiers, and learning strategies used in this study.

Table 1. Summary of all natural language processing (NLP) features, machine learning algorithms (ie, classifiers), and learning strategies considered
in this study.

CasesFeatures, algorithms, and strategies

NLP features • Bag-of-words
• Bag-of-POSa

• Pretrained German word embeddings

Algorithm (classifier) • Random forests
• Adaptive boosting
• Extreme gradient boosting
• Support vector machines

Learning strategy • Class-weighted training
• Meta-classifier training
• Data augmentation with SMOTEb

aPOS: part-of-speech.
bSMOTE: Synthetic Minority Oversampling Technique.

Evaluation Metrics
For all the learning strategies, the performance of the machine
learning models on test data was computed using the area under
curve (AUC), precision, recall (or sensitivity), the average
precision (AP), specificity, and the F1 score measures. The
AUC summarizes in a single number the performance of the
classifier shown in the receiver operating curve [59,60], which
plots the true positive rate versus the false positive rate, at
various classifier thresholds settings. Precision is the number
of true positives (ie, transcripts containing reminiscence, which
are correctly predicted by the machine learning model) divided
by the number of transcripts, which are predicted to contain
reminiscence by the model. Recall (or sensitivity) is the number
of true positives divided by the number of transcripts containing
reminiscence. The sklearn implementation of the AP [61]
summarizes the precision-recall curve [62] as the weighted mean
of precisions achieved at each threshold by the classifier, the
increase in recall from the previous threshold used as the
weighting. We chose to report the AUC and AP, as they provide
a global overview of the classifier performance, for all possible
classification thresholds. Specificity is the number of true

negatives divided by the total number of negative instances,
while the F1 score is the harmonic mean of precision and recall
measures [38]; it is a common evaluation metric in the presence
of imbalanced data.

The formulas for AP and F1 score are as follows:

In the AP formula, Rn denotes the recall computed at step n
(similarly for Rn–1), while Pn is the precision at step n.

Error Analysis
To identify errors in detecting reminiscence, we analyzed the
false positives with the highest predicted probabilities (10% of
all cases) and the false negatives with the lowest predicted
probabilities (10% of all cases) computed for all the models
presented in Table 2.
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Experimental Setting

Class-Weighted Learning

We show the CWL strategy in Figure 1, top panel. After an
initial partition of the data into train and test subsets with a
80:20 ratio, a 5-fold cross-validation routine was applied to the
1771 training data (87 reminiscence) to select the best model
for all NLP features and families of classifiers shown in Table
1. We use the AUC to measure performance on the validation
folds. The CWL strategy does not modify the imbalanced class
distribution of training data, but reweighs them according to

their class during the training of the machine learning algorithm
at hand [40,52,54], penalizing the cost of misclassifying data
points from the minority class [52,63,64]. For example, for the
RF, ADA, and SVM algorithms, we selected the parameter
“class_weight=balanced” [65] in their sklearn implementations.
Similar considerations held for XGB algorithms, where we
selected “scale_pos_weight=weight,” where weight denoted
the ratio of the number of negative class samples to the positive
class (ie, reminiscence) [66]. The best model resulting from the
cross-validation was evaluated on test data, by computing AUC,
AP, and F1.

Figure 1. Top panel: Class-weighted learning and data augmentation learning strategies. We performed a single data partition into train and test sets;
the best classifier emerged from 5-fold cross-validation (CV). Bottom panel: meta-classifier learning strategy; we undersampled the training data 50
times, collecting 50 distinct models in a voting ensemble after CV. We applied the three strategies for all the combinations of natural language processing
features and machine learning algorithms shown in Table 1.

Meta-Classifier Training

We show the MC strategy in Figure 1 (bottom panel). The MC
is a majority voting ensemble classifier [67] comprising 50
equally weighted distinct models resulting from 50 runs of
5-fold cross-validation on 50 randomly undersampled (with 1:1
ratio) training data sets. Undersampling is a common technique
in imbalanced learning [41,68]; the use of voting allows
reducing the bias of a single undersampling of training data.
For each run, the cross-validation routine was performed on
174 training transcripts (87 reminiscence). The AUC and AP
of the MC were computed on test data.

Data Augmentation With SMOTE

Figure 1 (top panel) shows the strategy involving data
augmentation with the SMOTE algorithm: it follows the same
steps as the one implemented for CWL. However, during the
5-fold cross-validation, the results of all NLP pipelines on
transcripts are preprocessed with SMOTE before being fed into
the machine learning classifiers. SMOTE [50] is an algorithm

that generates synthetic examples of the minority class (in this
study, the reminiscence class) in imbalanced data sets; given a
minority class data point, SMOTE generates synthetic examples
along line segments connecting the given data point to its K
nearest neighbors (K=5 is the default value). SMOTE is widely
used to perform data augmentation in the presence of imbalanced
learning, including clinical studies [40,69,70]. The Python
implementation of the SMOTE algorithm also allows controlling
the oversampling quota, that is, the ratio between the minority
class (after resampling) and the majority class. For example,
using SMOTE on training data to reach a 1:1 ratio among
classes, we ran the cross-validation routines in Figure 1 (top
panel) on a total of 3368 data points (1684 reminiscence).

Cross-Validation

For all three learning strategies, as shown in Figure 1, we
performed cross-validation by tuning the hyperparameters of
(1) the NLP pipelines computing bag-of-words and bag-of-POS
features, together with those of (2) the machine learning
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algorithms before retrieving the best classifier (MC in the case
of the voting learning strategy).

NLP Preprocessing Pipelines

For the bag-of-words features, we tuned the n-grams, German
stopword list (ie, its removal or not), minimum document
frequency, maximum document frequency, and maximum
number of feature hyperparameters. After preprocessing, in case
of 1-grams we have 6596 tokens, and 38,347 in the case of
2-grams. The preprocessing of the POS features follows the one
for bag-of-words, with the exception of the German stopword
list; in case of 1-grams we obtained 16 tokens, and 270 in the
case of 2-grams.

Machine Learning Models: Hyperparameters

For ADA classifiers, we tuned the number of estimators and
the learning rate; for XGB, we tuned the number of estimators,
the learning rate, and the maximum tree depth; and for RF, we
tuned the number of trees in the ensemble, their depth, and the
number of features considered at each tree split during training.
In addition, when considering the data augmentation learning
strategy, we tuned the SMOTE number of nearest neighbors
and oversampling quota hyperparameters. The NLP
preprocessing pipelines are the same for all machine learning
models.

Results

Machine Learning Modeling
Multimedia Appendix 1 displays the results of the machine
learning modeling, reporting the best performing classifier for
all NLP features and learning strategies, together with its AUC,

AP, precision, recall, F1, and specificity performance measures,
which we computed on test data (443 transcripts, 22
reminiscence).

Table 2 displays the two best performing classifiers (considering
the F1 score as performance measure) for each learning strategy.
We choose two best models per learning strategy to show how
different combinations of machine learning algorithms and NLP
features may result in different precision-recall trade-offs.

Considering the class weighting strategy, SVM outperforms all
other classifiers, with the highest F1 score (0.48) when trained
on bag-of-words features, with a balanced precision-recall
trade-off and very high specificity (0.98). On the other hand,
SVM trained on word embeddings shows higher AP (0.61) and
recall (0.77); however, its lower precision (0.21) results in a
lower F1 score (0.33), together with a lower specificity (0.85).

The best performing classifiers for the MC strategy, which are
trained on word embeddings and bag-of-words features, show
F1 scores (0.30 for both ADA and XGB classifiers) lower than
those in the class-weighted and data augmentation strategies.
This is due to low precision; similarly, they show low
specificities. However, they reach very high recall (1.00 for
ADA and 0.86 for XGB classifiers) and high AUCs.

Finally, for the data augmentation strategy, SVM on word
embeddings shows highest F1 score (0.44), with recall (0.59)
higher than precision (0.35) and high specificity (0.94). On the
other hand, ADA classifiers trained on word embeddings show
a more balanced precision-recall trade-off, with a higher
precision (0.43) but lower recall (0.41) than the SVM classifier,
resulting in a slightly lower F1 score (0.42) but higher specificity
(0.97).

Table 2. Summary of best models for each learning strategy, considering the F1 score.

SpecificityF1RecallPrecisionAPcAUCbClassifier familyLearning strategy and

NLPa feature

Class weighting

0.980.480.450.500.560.91SVMeBOWd 

0.850.330.770.210.610.91SVMEMBf

Meta-classifier

0.790.300.860.180.450.90XGBgBOW 

0.760.301.000.180.380.92ADAhEMB

Data augmentation

0.940.440.590.350.540.89SVMEMB 

0.970.420.410.430.360.84ADAEMB

aNLP: natural language processing.
bAUC: area under the curve.
cAP: average precision.
dBOW: bag-of-words.
eSVM: support vector machines.
fEMB: word embeddings.
gXGB: extreme gradient boosting.
hADA: adaptive boosting.
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Feature Analysis
Overall, considering Table 2 and the F1 score, the use of word
embeddings outperformed other NLP features for the data
augmentation strategy; it delivers performance equal to the one
with bag-of-words features for the MC strategy; on the other
hand, for class weighting, bag-of-words features deliver the
highest performance with the SVM classifier.

Considering bag-of-words features, for the data augmentation
strategy XGB outperformed the other classifiers (with 1-grams,
and no German stopword removal) with 300 boosting iterations,
shallow trees (ie, a depth of 1), and the number of neighbors
used by SMOTE equal to K=13. The words with the highest
feature importance were German stopwords (eg, “gewesen,”
“und,” “wir,” “ist,” and “ich” [“been,” “and,” “we,” “is,” and
“I”]). Training the same classifier but removing the stopwords
led to a strong decline in performance (AUC=0.79, AP=0.22,
F1 = 0.27); in this case, the words with the highest feature
importance comprised adverbs (eg, “aber,” and “einfach” [“but”
and “simply”]) and past participles (eg, “gesagt” and “gehabt”
[“said” and “had”]), among others.

Considering POS features and the class weighting strategy,
XGB delivered the highest performance in the presence of 1-
and 2-grams, with few boosting iterations (ie, 50) and shallow
trees (ie, a depth of 1). The 1-grams with the highest feature
importance were auxiliary verb forms (eg, imperative, infinitive,
perfect participle of “sein,” “haben,” and “werden” [ie, “to be,”
“to have,” and “to become”]), conjunctions, and adverbs, while
the 2-grams comprised verbs and auxiliary verbs (eg, the
combinations of a noun and the past participle of “sein,”
“haben,” and “werden”), adverbs and verbs (eg, “aber weisst,”
“dann sagt,” or “mehr gegessen”).

On the other hand, considering the data augmentation strategy
and POS features, the XGB algorithm presented in Multimedia
Appendix 1 performs on 10 boosting iterations, in the presence
of shallow trees, 2-grams, and K=5 neighbors used by SMOTE.
In the case of the class weighted learning strategy and POS
features, it performs on 50 boosting iterations, shallow trees,
and 2-grams.

The POS 2-grams with the highest feature importance comprised
punctuation signs followed by a conjunction (eg, “. Und,” “.
Aber,” or “, oder”), adverbs and auxiliary verbs (eg, “dann
habe/n” and “da hat/ben”), prepositions and determinative
articles (eg, “mit einer/m” and “mit der/m,” [ie, “with a(n)” and
“with the”]) and adverbs followed by verbs (eg, “aber weisst,”
“mehr gegessen,” and “selber gefahren”).

Finally, considering word embeddings, SVM with radial basis
kernel (and scaling) on augmented data outperformed all other
classifiers, with K=5 neighbors used by SMOTE (F1=0.44),
followed by ADA algorithms (F1=0.42) on K=9 SMOTE
neighbors. The model with SVM shows much higher recall
(0.59), AUC, and AP, while the model with ADA improves
precision (0.43) and consequently specificity (0.97).

Discussion

Principal Results
The primary purpose of this study was to leverage NLP features
and machine learning strategies to detect reminiscence in the
conversations of older adults in German in a naturalistic
observation study. We used the written transcripts of the
conversations and a manually coded variable (reminiscence or
not reminiscence) as the basis for the prediction. We considered
a wide array of methodologies, including different NLP features
(ie, bag-of-words, POS tagging, and pretrained German word
embeddings), multiple machine learning algorithms, and
learning strategies to handle class imbalance. Results indicate
that selected combinations (see below) of learning strategies,
NLP features, and machine learning models show the potential
to detect reminiscence. We argue that their performance can be
further improved through feature engineering, by combining
NLP features, using NLP-driven data augmentation techniques
and collecting more data.

Learning Strategies
Class weighting SVM outperforms others machine learning
models, with the highest performance seen when trained on
bag-of-words (F1=0.48) with a balanced precision-recall
trade-off, high specificity (0.98), AUC=0.91, and AP=0.56. MC
strategies show lower F1 scores than class weighted and data
augmentation ones, with highly imbalanced precision-recall
trade-offs, resulting in low precision and, consequently, low F1
score and specificity. On the other hand, data augmentation
with SMOTE delivers performance comparable to the one of
class weighting, although only when using word embeddings.
However, SMOTE is a purely computational approach to data
augmentation, as it generates new data points from any
numerical representation of transcripts (eg, on word
embeddings). On the other hand, data augmentation algorithms,
such as replacing with synonyms, random inserting, swapping,
or deleting words [71], process transcripts directly and have
improved text classification performance across multiple data
sets [71]. We will further investigate the use of NLP-driven
data augmentation methodologies and feature engineering [72]
in forthcoming studies.

Machine Learning Classifiers
Overall, SVM delivered the highest performance across the
class-weighted and data augmentation learning strategies, and
boosting methodologies for the MC strategy. SVM proved to
exhibit competitive performance in NLP tasks with imbalanced
data sets, such as detecting offensive language (including
German) [55,73,74], while the XGB algorithm proved its
effectiveness in a vast array of machine learning problems
[75,76]. Consequently, RF learning methods were outperformed
by all learning strategies and NLP features.

NLP Features
Bag-of-words and word embeddings delivered the highest
performance of all learning strategies; machine learning models
trained on POS features delivered low performance due to their
low precision (combined with low recall, such as in the case of
ADA for class weighting and data augmentation strategies).
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Considering models trained on bag-of-words features, German
stopwords related to past tense (eg, “gewesen”), personal
pronouns (eg, “ich” and “wir”), and connecting words (eg, “und”
and “aber”) showed high feature importance, suggesting that
they can encode the time, personal narrative, and structure of
reminiscence. Models trained on POS tags, however, use both
1-gram and 2-grams; in particular, 2-grams comprising
punctuation signs followed by a conjunction, such as “. Und”
and “. Aber,” suggest that reminiscing is a multisentence act
during which the speaker pauses and uses forms of emphasis
to elevate certain clauses to positions of more influence and
importance. We will further investigate these points in future
studies, introducing linguistic measures for reminiscence
transcripts like other studies [24,77] to improve bag-of-words
and POS models with additional sets of features to encode the
phrase structure of a sentence and combining bag-of-words and
POS features together.

Error Analysis
Based on an error analysis conducted on the false positives and
false negatives for all the models in Table 2, the models tend
to predict long transcripts with multiple sentences referring to
the past incorrectly as reminiscence (ie, false positives). This
results in low precision, affecting the F1 score of all classifiers.
On the other hand, false negatives (ie, transcripts incorrectly
classified as not reminiscence) are typically short transcripts
with few words; more coded transcriptions will help to reduce
both errors, in particular the false positives, enlarging the corpus
of conversations and improving vocabulary richness.

In this study, we considered only transcripts in German;
therefore, we have no specific insight into the specific challenges
of detecting reminiscence in another language, such as English.
However, earlier studies [24] have compared the application of
NLP methods on transcripts of daily conversations in both
German and English. Evaluated on the same set of methods and
analysis pipeline, the results have suggested no significant
difference in performance between the two languages. The use
of different NLP features, classifiers, and learning strategies
discussed in this study seems promising to develop a system
for the real-time detection of reminiscence in everyday
conversations in German of older adults. Such a system could
leverage audio-to-text software [78] of advanced methods from
automated coding [24] to automate the transcription of
conversations before NLP preprocessing and the computation
of machine learning predictions.

Limitations
This study has several limitations. The data set of conversations
used to classify reminiscence had a limited number of records
due to the short duration of the naturalistic observation study
(4 days) [6]. Moreover, as we considered data from a single
observation study, we cannot infer the generalizability of the
presented results to other data sources. The results are based on
a single partitioning of data into train and test sets. In this study,
we used SpaCy pretrained German word embeddings; clearly,
these embeddings are trained on corpora that may not fully
encode the linguistic specificities characterizing conversations
among older adults. In addition, due to the small data set
available for this study, we refrained from training embeddings

as well as performing machine learning with data-intensive deep
learning models [79].

Comparison With Prior Work
Previous research focused on reminiscence as a therapy against
dementia have shown the efficacy of information and
communication technologies [14]; in particular, studies
addressing the topic of automated reminiscence therapy aim at
eliciting reminiscence from the users rather than detecting the
presence of reminiscence in everyday life [17,18]. These studies
have assumed that reminiscence is elicited in a setting with a
human companion (eg, a therapist) or through a digital
companion device using the Wizard of Oz technique [19]. Few
studies have attempted to identify the presence of reminiscence
with methods from pattern recognition and machine learning.
For example, Naini et al [80] proposed a machine learning model
for ranking posts from social media to create life summaries
and retain memorable Facebook posts, that is, posts in a user’s
timeline worth remembering. A retention model based on the
learning-to-rank RankSVM algorithm [81] selects posts.
Alternatively, Kikhia et al [82] proposed a method to identify
places of importance in lifelogging events using clustering
methods and locational sensor data. The use of lifelogs allows
individuals to reminisce by recalling memories, experiences,
and valuable past events for fun, as a personal diary, or as a
support for people with memory problems [83].

Data from Demiray et al’s observational study [6] have been
recently used in studies using NLP methodologies and machine
learning. For example, one study [24] used their data to address
the more general problem of coding social and cognitive
variables from the transcripts of older adults’ daily
conversations. They trained multiple families of classifiers (ie,
SVM, decision trees, and RF) on NLP features, including latent
Dirichlet allocations and data augmentation, achieving good
performance in different categories. Another study [77] used
their data to compute linguistic features (ie, entropy and number
of clauses) to examine the effects of age on the use of real-life
language in contexts with social interactions. However, to our
knowledge, this is the first study investigating the detection of
reminiscence directly from the transcripts of daily conversations.
Due to the presence of imbalanced data and the type of language
(German) used in the conversations, this study addresses
problems that are only partially present in prior scientific works
in the reminiscence literature.

Conclusions
This work provides evidence to support the use of NLP and
machine learning in detecting reminiscence based on written
transcripts of older adults’ everyday conversations in German.
These results represent a novelty in the literature on
reminiscence. The proposed methodology can be applied to
larger natural observation studies to investigate the differences
in reminiscing among cultures, countries, and social contexts
using, in particular, lexical features and linguistic measures.

The aim of the WHO healthy aging model is to empower
individuals to observe, measure, monitor, and take earlier action
for their own health; reminiscence is an essential activity for
promoting healthy aging among older adults. Real-time detection
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of reminiscence in everyday conversations can offer valuable
information for older adults to understand their own health
behaviors in everyday life and to support their autonomy in
health maintenance.

Therefore, the training of high-performance classifiers supports
the design of digital health interventions to improve older adults’
quality of life by supporting their healthy aging through the
real-time monitoring of reminiscence events in everyday
conversations. The digital interventions may consist of a daily
diary function to support the contextualization of identified

reminiscing events and suggest reminiscence-related positive
activities, such as replaying positive life stories and prompting
more active social interactions. Another possible implementation
is a conversational agent–based digital support function to
support users in detecting dysfunctional reminiscence events
by suggesting coping strategies. The effectiveness of the
interventions could be measured by quantifying their effect on
depression, quality of life, and social behavior scores, therefore
assessing the impact of reminiscence therapies on healthy aging
in everyday life contexts.
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ADA: adaptive boosting
AP: average precision
AUC: area under the curve
CLW: class-weighted learning
EAR: Electronically Activated Recorder
NLP: natural language processing
POS: part-of-speech
RF: random forests
SMOTE: Synthetic Minority Oversampling Technique
SVM: support vector machines
tf–idf: term frequency–inverse document frequency
WHO: World Health Organization
XGB: extreme gradient boosting
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