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Abstract

Background: The coronavirus disease (COVID-19) pandemic has resulted in significant morbidity and mortality; large numbers
of patients require intensive care, which is placing strain on health care systems worldwide. There is an urgent need for a COVID-19
disease severity assessment that can assist in patient triage and resource allocation for patients at risk for severe disease.

Objective: The goal of this study was to develop, validate, and scale a clinical decision support system and mobile app to assist
in COVID-19 severity assessment, management, and care.

Methods: Model training data from 701 patients with COVID-19 were collected across practices within the Family Health
Centers network at New York University Langone Health. A two-tiered model was developed. Tier 1 uses easily available,
nonlaboratory data to help determine whether biomarker-based testing and/or hospitalization is necessary. Tier 2 predicts the
probability of mortality using biomarker measurements (C-reactive protein, procalcitonin, D-dimer) and age. Both the Tier 1 and
Tier 2 models were validated using two external datasets from hospitals in Wuhan, China, comprising 160 and 375 patients,
respectively.

Results: All biomarkers were measured at significantly higher levels in patients who died vs those who were not hospitalized
or discharged (P<.001). The Tier 1 and Tier 2 internal validations had areas under the curve (AUCs) of 0.79 (95% CI 0.74-0.84)
and 0.95 (95% CI 0.92-0.98), respectively. The Tier 1 and Tier 2 external validations had AUCs of 0.79 (95% CI 0.74-0.84) and
0.97 (95% CI 0.95-0.99), respectively.
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Conclusions: Our results demonstrate the validity of the clinical decision support system and mobile app, which are now ready
to assist health care providers in making evidence-based decisions when managing COVID-19 patient care. The deployment of
these new capabilities has potential for immediate impact in community clinics and sites, where application of these tools could
lead to improvements in patient outcomes and cost containment.

(J Med Internet Res 2020;22(8):e22033) doi: 10.2196/22033
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Introduction

Coronavirus disease (COVID-19) was first reported in Wuhan,
Hubei, China, in December 2019 [1], and it was declared a
pandemic by the World Health Organization (WHO) [2] soon
thereafter. As of June 15, 2020, about 8 million cases have been
confirmed, with approximately 435,000 deaths from the disease
worldwide [3]. The COVID-19 crisis has exposed critical gaps
in diagnostic testing and population-level surveillance [4]. With
hospitalization rates of 20% to 31% and intensive care unit
(ICU) admission rates of 5% to 12% [5], surges of patients are
requiring care, which has overwhelmed local health care systems
and depleted reserves of medical resources.

Physicians are tasked with evaluating large amounts of rapidly
changing patient data and making critical decisions in a short
amount of time. Well-designed clinical decision support systems
(CDSSs) deliver pertinent knowledge and individualized patient
information to health care providers to enhance medical
decisions [6]. These systems may rely on surveys of similar
cases, while others may use a “black box” approach [7].
Traditional scores such as Sepsis-related Organ Failure
Assessment (SOFA) [8-10] and Acute Physiology and Chronic
Health Evaluation (APACHE) II [11,12] are commonly used
in hospitals for determining disease severity and mortality,
whereas clinical decision management systems, such as
electronic ICU (eICU), enable systematic collection of
comprehensive data [13]. However, CDSSs that use
conventional variables, such as demographics, symptoms, and
medical history, often do not reach their full diagnostic potential
[14]. There is a compelling need for a COVID-19 disease
severity assessment to help prioritize care for patients at elevated
risk of mortality and manage low-risk patients in outpatient
settings or at home through self-quarantine.

Several scoring systems for COVID-19 severity have been
developed or adapted from existing tools, such as the
Brescia-COVID Respiratory Severity Scale [15], African
Federation for Emergency Medicine COVID-19 Severity
Scoring Tool [16], Berlin Criteria for Acute Respiratory Distress
Syndrome [17,18], and Epic Deterioration Index [19]. However,
these tools have either not yet been externally validated in
peer-reviewed publications or were not developed specifically
for COVID-19 patient populations. Recently, we developed an
integrated point-of-care COVID-19 Severity Score and CDSS
that combines multiplex biomarker measurements and risk
factors in a statistical learning algorithm to predict mortality
with excellent diagnostic accuracy [20]. The COVID-19 Severity
Score was trained and evaluated using data from 160

hospitalized COVID-19 patients from Wuhan, China. The
COVID-19 Severity Score was significantly higher for patients
who died than for patients who were discharged, with median
scores of 59 (IQR 40-83) and 9 (IQR 6-17), respectively, and
an area under the curve (AUC) of 0.94 (95% CI 0.89-0.99).

COVID-19 has caused and continues to cause significant
morbidity and mortality globally. A validated tool to assess and
quantify viral sepsis severity and patient mortality risk would
address the urgent need for disease severity categorization.
Toward the goal of improving prognostic judgement and
outcomes, we assembled a multidisciplinary team representing
stakeholders from technology, machine learning, engineering,
primary care, and in vitro diagnostic testing to develop a
COVID-19 disease severity test. The unfolding novel COVID-19
pandemic has greatly illuminated the important role of
community health centers in providing safe and effective patient
care. The Family Health Centers (FHC) at New York University
(NYU) Langone is a large Federally Qualified Health Center;
it provides comprehensive primary and preventive health care
to a diverse population of patients across the New York City
metropolitan area and is well-positioned to improve survival
by fast-tracking hospitalization of patients at high risk of severe
disease. This study describes a clinical decision support tool
for COVID-19 disease severity developed using recent data
from the FHC and externally validated using data from two
recent studies from hospitals in Wuhan, China. We describe a
practical and efficient tiered approach that involves a model
with nonlaboratory inputs (Tier 1), a model with biomarkers
commonly measured in ambulatory settings (Tier 2), and a
mobile app to deliver and scale these tools. The deployment of
these new capabilities has potential for immediate clinical
impact in community clinics, where these tools could lead to
improvements in patient outcomes and prognostic judgment.

Methods

Patient Data
Data from 701 patients with COVID-19 were collected across
9 clinics and hospitals within the FHC network at NYU
Langone, one of the largest Federally Qualified Health Center
networks in the United States. All patients had detectable severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection as evidenced by polymerase chain reaction testing.
The following outcomes were recorded: not hospitalized,
discharged, ventilated, and deceased. The data that support the
Tier 1 Outpatient Model and Tier 2 Biomarker Model
development are available from the authors upon reasonable
request and with permission of FHC at NYU Langone.
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Validation data for the Tier 1 Outpatient Model were derived
from a study of 160 hospitalized patients with COVID-19 from
Zhongnan Hospital of Wuhan University. The data that support
validation of the Tier 1 Outpatient Model are available from
the authors upon reasonable request and with permission of
Zhongnan Hospital of Wuhan University. Validation data for
the Tier 2 Biomarker Model were derived from a study of 375
hospitalized patients with COVID-19 from Tongji Hospital in
Wuhan, China. The data that support the validation of the Tier
2 Biomarker Model are available as Supplementary Data in a
publication by Yan et al [21].

Clinical Decision Support Tool
This study describes the development of a two-tiered CDSS for
the assessment of COVID-19 disease severity using similar
methods to those described previously [20,22]. The Tier 1
Outpatient Model uses nonlaboratory data that are readily
available prior to laboratory measurements and is intended to
help determine whether Tier 2 biomarker-based testing and/or
hospitalization are necessary. Here, a lasso logistic regression
model was trained to distinguish between patients who were
not hospitalized or who were hospitalized and discharged home
without need for ventilation vs patients who were ventilated or
died. Patients who were still hospitalized when the data were
compiled were excluded. The following predictors were
considered in model training: age, gender, BMI, systolic blood
pressure, temperature, symptoms (cough, fever, or shortness of
breath), known cardiovascular comorbidities (patient problem
list includes one or more of cerebrovascular disease, heart
failure, ischemic heart disease, myocardial infarction, peripheral
vascular disease, and hypertension), pulmonary comorbidities
(asthma and chronic obstructive pulmonary disease), and
diabetes.

The Tier 2 Biomarker Model predicts disease severity using
biomarker measurements and patient characteristics. A lasso
logistic regression model was trained to distinguish patients
who died versus patients who were either never hospitalized or
discharged home. Patients who were ventilated or still
hospitalized when the data were compiled were excluded. The
following predictors were considered in model training: age,
gender, comorbidities, C-reactive protein (CRP), cardiac
troponin I (cTnI), D-dimer, procalcitonin (PCT), and N-terminal
fragment of the prohormone brain natriuretic peptide
(NT-proBNP). Predictors that were not relevant to the model
(ie, coefficients equal to zero) were removed. Laboratory
measurements across all time points were log-transformed.
Patients with no measurements for the aforementioned
biomarkers were excluded. Biomarker values below the limits
of detection were set to the minimum measured value divided
by the square root of 2.

Model Development and Statistical Analysis
Both Tier 1 and Tier 2 models were developed using the same
procedure. All continuous predictors were standardized with a
mean of 0 and a variance of 1. Missing data were imputed using
the multivariate imputation by the chained equations algorithm
in the statistical software R (R Project) [23]. Predictive mean
matching and logistic regression imputation models were used
to generate 10 imputations for continuous and categorical

predictors, respectively. Samples in the training and test sets
were partitioned using stratified 5-fold cross-validation to
preserve the relative proportions of outcomes in each fold.
Model training and selection were performed on each of the 10
imputation datasets for 10 Monte Carlo repetitions and
optimized for the penalty parameter corresponding to one
standard error above the minimum deviance for additional
shrinkage. After the initial training, only predictors with nonzero
regression coefficients were retained, and the model was
retrained with a reduced number of predictors. The training
process was repeated until all predictors yielded nonzero
coefficients. Model performance was documented in terms of
the mean (95% CI) of the AUC, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
Median (IQR) cross-validated COVID-19 scores were compared
across disease outcomes. The COVID-19 scores for both models
and biomarker measurements were compared using the
Wilcoxon rank sum test. Normally distributed predictors were
compared using an independent t test. Proportions were
compared using the chi-squared test [24,25]. Two-sided tests
were considered statistically significant for P<.05.

External Validation
We externally validated the Tier 1 Outpatient Model using data
from a study of 160 hospitalized patients with COVID-19 from
Zhongnan Hospital of Wuhan University. Only patients with
complete information (age, systolic blood pressure, gender,
diabetes, and cardiovascular comorbidities) were included. The
model performance was documented in terms of AUC,
sensitivity, specificity, PPV, and NPV. Results were presented
in a scatter/box plot of COVID-19 outpatient scores for patients
who were discharged and those who died.

Similarly, we externally validated the Tier 2 Biomarker Model
using data from a study of 375 hospitalized patients with
COVID-19 from Tongji Hospital in Wuhan, China, collected
between January 10 and February 18, 2020 [21]. While most
patients had multiple lab measurements over time, the first
available lab value for each biomarker was used to validate the
model to maximize lead time. Patients with one or more missing
predictor values were excluded. Model performance was
documented in terms of AUC, sensitivity, specificity, PPV, and
NPV. Results were presented in a scatter/box plot of COVID-19
Biomarker Scores for patients who were discharged and who
died.

To demonstrate how the COVID-19 Biomarker Score could be
used to track changes in disease severity over time, the model
was evaluated based on time series biomarker data. Because
the lab measurements were reported asynchronously, the model
was reevaluated every time a new biomarker measurement
became available. Time series plots of the COVID-19 Biomarker
Score were generated for each patient.

Results

This study describes the development of a 2-tiered CDSS to
assess COVID-19 disease severity using similar methods to
those described previously [20,22]. The Tier 1 Outpatient Model
uses nonlaboratory data that are readily available prior to
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laboratory measurements and is intended to help determine
whether Tier 2 biomarker-based testing and/or hospitalization
are warranted. The Tier 2 Biomarker Model predicts disease
severity using biomarker measurements and patient
characteristics.

The CDSS and mobile app are designed to support decisions
made in multiple settings, including home care, primary care
or urgent care clinics, emergency departments, and hospital and
intensive care (Figure 1). The process starts with symptomatic
patients who are positive or presumably positive for COVID-19
and seeking care at a family health center or emergency room.
In the family health center, decisions are made in two key stages,
or tiers. The Tier 1 algorithm is intended for individuals in an
outpatient setting where laboratory data are not yet readily
available, and it uses only age, gender, blood pressure, and
comorbidities. Patients with a low COVID-19 Outpatient Score
may be managed in a home or telemedicine setting, while
patients with a high COVID-19 Outpatient Score are referred
for a blood draw and Tier 2 biomarker-based test. The Tier 2
algorithm, which is directly related to mortality risk, predicts
disease severity using biomarker measurements and age. Patients
with a low COVID-19 Biomarker Score are expected to be
managed in a low-to-moderate risk group (eg, 5-day telehealth
follow-up), while patients with a high COVID-19 Biomarker
Score are expected to be hospitalized in most cases or managed
in a high risk group (eg, 24- to 48-hour follow-up). Providers
encountering clinically evident severe cases, as in urgent care
or emergency departments, may choose to bypass the Tier 1
Outpatient Score and perform biomarker testing and Tier 2
triage on all patients with COVID-19. Last, in the hospital
setting, patients are serially monitored for their COVID-19
Biomarker Scores. This personalized time series information
directly related to mortality risk has strong potential to optimize

therapy, improve patient care, and ultimately save lives. For
both algorithms, we selected cutoffs that balanced sensitivity
and specificity; however, these algorithms can be easily tuned
for high sensitivity or high specificity by adjusting the weighting
or relative importance of sensitivity and specificity in clinical
practice.

Of the 701 patients with detectable COVID-19 infection cared
for in one of the 9 clinics within the FHC network, 402 (57.3%)
were not hospitalized, 185 (26.4%) were hospitalized and
discharged, 19 (2.7%) were ventilated, and 95 (13.6%) died
(Table 1). Ventilated and deceased patients were older than
those who were not hospitalized or discharged (P=.03 and
P<.001, respectively). Of patients who were ventilated and
deceased, 14/19 (73.7%) and 60/95 (63.2%) were male,
respectively, vs 271/587 (46.1%) for patients with less severe
disease (ie, not hospitalized or discharged) (P=.02 and P=.002,
respectively). Diabetes was also a statistically significant factor,
with 9/19 (47.4%) and 52/95 (54.7%) in the ventilated and
deceased groups vs 149/587 (25.3%) in the nonhospitalized and
discharged groups (P=.03 and P<.001, respectively). Likewise,
10/19 (52.6%) of ventilated patients (P=.04) and 65/95 (68.4%)
of deceased patients (P<.001) had one or more cardiovascular
comorbidities, vs 181/587 (30.8%) for the less severe disease
categories, with hypertension being the most common
comorbidity. Interestingly, systolic blood pressure was
significantly higher for patients who were not hospitalized vs
those who were discharged (P=.004), and patients who died
had abnormally low blood pressure relative to patients with less
severe disease (P<.001). All biomarkers (cTnI, CRP, PCT,
D-dimer, and NT-proBNP) were measured at significantly
higher levels in patients who died vs those who were not
hospitalized or discharged (P<.001).
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Figure 1. Clinical decision support system and mobile app for managing COVID-19 care. COVID-19: coronavirus disease; CRP: C-reactive protein;
PCT: procalcitonin.
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Table 1. Characteristics of the patients included in model training. Data are represented as n (%), mean ± standard deviation, or median (IQR).

Deceased (n=95)Ventilated (n=19)Discharged (n=185)Not hospital-
ized (n=402)

Characteristic

P valuebValueP valuebValueP valueaValueValue

<.00167 (14).0358 (20).3250 (17)48 (17)Age (years), mean (SD)

.00260 (63.2).0214 (73.7).5289 (48.1)182 (45.3)Male sex, n (%)

.0625 (6).4629 (5).1628 (6)25 (4)BMI, kg/m2, mean (SD)

<.00194 (40).78126 (20).004123 (19)132 (14)Systolic BPc (mm Hg),
mean (SD)

<.00154 (26).2970 (12)<.00171 (11)82 (8)Diastolic BP (mm Hg),
mean (SD)

.12100 (2).6699 (1).5498 (5)99 (1)Temperature (ºF), mean
(SD)

.0274 (54).0393 (14).0684 (14)90 (18)Pulse (beats per minute),
mean (SD)

.316 (6.3).373 (15.8).0912 (6.5)44 (10.9)Asthma, n (%)

.4815 (15.8).743 (15.8).0617 (9.2)60 (14.9)COPDd, n (%)

<.00114 (14.7).072 (10.5).735 (2.7)13 (3.2)Cancer, n (%)

<.00165 (68.4).0410 (52.6).4561 (33.0)120 (29.9)Cardiovascular comorbidi-

tiese, n (%)

<.00152 (54.7).039 (47.4).2253 (28.6)96 (23.9)Diabetes, n (%)

.0533 (3.2).690 (0.0).682 (1.1)3 (0.7)HIV/AIDS, n (%)

.764 (4.2).122 (10.5).1110 (5.4)11 (2.7)Liver disease, n (%)

<.00121 (22.1).103 (15.8).05117 (9.2)20 (4.9)Renal disease, n (%)

<.00173.50 (7.07-
712.00)

<.00120.00 (7.07-
63.75)

.307.07 (7.07-7.07)7.07 (7.07-7.07)cTnIf (pg/mL), median
(IQR)

<.001176.00 (115.00-
287.00)

.4437.30 (27.30-
139.72)

.2867.90 (17.95-
121.50)

51.40 (16.55-
101.35)

CRPg (mg/L), median (IQR)

<.0011.61 (0.35-8.31).0080.69 (0.07-1.91).310.10 (0.05-0.31)0.12 (0.06-0.36)PCTh (ng/mL), median
(IQR)

<.0011.58 (0.72-5.35)<.0010.86 (0.50-3.02).0470.27 (0.18-0.56)0.39 (0.20-0.71)D-Dimer (μg/mLi), median
(IQR)

<.001937.00 (160.25-
5728.50)

.13217.00 (78.00-
394.25)

.6088.00 (28.50-
298.00)

93.00 (36.50-
375.25)

NT-proBNPj (pg/mL), medi-
an (IQR)

aCompared to patients who were not hospitalized.
bCompared to patients who were not hospitalized or discharged.
cBP: blood pressure.
dCOPD: chronic obstructive pulmonary disease.
eCardiovascular comorbidities: one or more of cerebrovascular disease, heart failure, ischemic heart disease, myocardial infarction, peripheral vascular
disease, and hypertension.
fcTnI: cardiac troponin I.
gCRP: C-reactive protein.
hPCT: procalcitonin.
iµg/mL: micrograms per milliliter.
jNT-proBNP: N-terminal fragment of the prohormone brain natriuretic peptide.

Tier 1 Outpatient Model
The Tier 1 Outpatient Model for COVID-19 disease severity
was developed and internally validated using data from the

FHCs at NYU Langone (Figure 2). The model retained the
following predictors: age, gender, systolic blood pressure,
cardiovascular comorbidities (one or more of cerebrovascular
disease, heart failure, ischemic heart disease, myocardial
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infarction, peripheral vascular disease, and hypertension), and
diabetes. The median COVID-19 Outpatient Scores were 11,
13, 20, and 27 for not hospitalized, discharged, ventilated, and
deceased patients, respectively. The AUC of the model was
0.79 (95% CI 0.74-0.84) at the optimal cutoff COVID-19

Outpatient Score of 18 (Table 2). The median scores (Figure 2)
had statistically significant differences for comparisons between
all patient groups, except for not hospitalized vs discharged
(P=.18).

Figure 2. Validation of the Tier 1 Outpatient Model. A. Lasso logistic regression coefficients revealing the relative importance of predictors in generating
the score. B. Box/scatter plot from the internal validation showing the Tier 1 Outpatient Scores for the four outcomes. A cutoff score of 18 (red dotted
line) balances sensitivity and specificity for “Noncase” vs “Case” patients (gray line). COVID-19: coronavirus disease; CV comorbidities: cardiovascular
comorbid conditions; No Hosp.: patients who were not hospitalized; Vent.: patients who were ventilated.

Table 2. Internal validation performance in terms of AUC, sensitivity, specificity, PPV, and NPV (95% CI) from 5-fold cross-validation. The Tier 1
and 2 models were trained and tested using data from Family Health Centers at New York University.

Tier 2 Biomarker ModelTier 1 Outpatient Model

0.95 (0.92-0.98)0.79 (0.74-0.84)AUCa

0.89 (0.86-0.92)0.73 (0.69-0.76)Sensitivity

0.89 (0.86-0.92)0.73 (0.69-0.76)Specificity

0.70 (0.65-0.74)0.34 (0.30-0.38)PPVb

0.97 (0.94-0.98)0.93 (0.91-0.95)NPVc

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

Tier 2 Biomarker Model
The Tier 2 Biomarker Model for COVID-19 disease severity
was developed and internally validated using data from the
FHCs at NYU Langone (Figure 3). Patients who were ventilated
(n=19) and still hospitalized (n=19) were excluded. Patients
with fewer than one biomarker measurement were excluded
(n=190 not hospitalized, n=64 discharged, n=1 deceased). The
remaining 427 patients with one or more biomarker
measurements were included in the analysis (n=212 not
hospitalized, n=121 discharged, n=94 deceased). The model

retained the following predictors after shrinkage and selection:
age, D-dimer, PCT, and CRP. The median COVID-19
Outpatient Scores were 5, 5, and 64 for not hospitalized,
discharged, and deceased patients, respectively. The AUC of
the model was 0.95 (95% CI 0.92-0.98) at the optimal cutoff
COVID-19 Outpatient Score of 27 (Table 2). The median
COVID-19 Outpatient Scores (Figure 3) had statistically
significant differences for comparisons between patients who
were not hospitalized and patients who died (P<.001) and
between patients who were discharged and patients who died
(P<.001).
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Figure 3. Validation of the Tier 2 Biomarker Model. A. Lasso logistic regression coefficients revealing the relative importance of predictors in generating
the score. B. The box/scatter plot from internal validation shows Tier 2 Biomarker Scores for the three patient outcomes. A cutoff score of 27 (horizontal
red dotted line) balances sensitivity and specificity for “Noncase” vs “Case” patients (vertical gray line) COVID-19: coronavirus disease; No Hosp.:
patients who were not hospitalized.

External Validation
We externally validated the Tier 1 Outpatient Model using data
from a study of 160 hospitalized patients with COVID-19 who
had hypertension from Zhongnan Hospital of Wuhan University,
Wuhan, China [26]. Of the 160 patients in the study, 4 (2.5%)
were missing one or more predictors and were excluded from
the analysis. The COVID-19 Biomarker Scores were evaluated
for 115 patients who were discharged and 41 patients who died
(Figure 4A). The median COVID-19 Biomarker Scores were
27.9 (IQR 22.0-36.4) for patients who were discharged and 39.7
(34.2-47.4) for patients who died. The external validation
diagnostic performance was determined using a cutoff score of
34 (Table 3).

We externally validated the Tier 2 Biomarker Model using data
from a study of 375 hospitalized COVID-19 patients from

Tongji Hospital in Wuhan, China, collected between January
10 and February 18, 2020 [21]. To maximize potential lead
time, the first available laboratory measurements during
hospitalization were used to generate cross-sectional COVID-19
Biomarker Scores, representing the first in a series of
measurements collected for hospital stays lasting a median of
12.5 (IQR 8-17.5) days prior to the outcomes (discharged or
deceased). Out of the 375 patients in the study, 133 were missing
one or more lab values and excluded from the analysis. The
COVID-19 Biomarker Scores were evaluated for 112 patients
who were discharged and 130 patients who died (Figure 4B).
The median COVID-19 Biomarker Scores were 1.6 (IQR
0.5-6.2) for patients who were discharged and 59.1 (IQR
36.6-78.9) for patients who died. The external validation
diagnostic performance was determined using a cutoff score of
19 (Table 3).
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Figure 4. External validation results. A. The Tier 1 Outpatient Model was evaluated using data from patients with COVID-19 at Zhongnan Hospital
of Wuhan University [26]. B. The Tier 2 Biomarker Model was evaluated using data from patients with COVID-19 at Tongji Hospital [21]. COVID-19:
coronavirus disease.

Table 3. External validation performance in terms of AUC, sensitivity, specificity, PPV, and NPV (95% CI). The Tier 1 Outpatient Model was evaluated
on the Zhongnan Hospital dataset [26]. The Tier 2 model was evaluated on the Tongji Hospital dataset [21].

Tier 2 Biomarker ModelTier 1 Outpatient Model

0.97 (0.95-0.99)0.79 (0.70-0.88)AUCa

0.89 (0.84-0.93)0.76 (0.68-0.82)Sensitivity

0.93 (0.89-0.96)0.73 (0.65-0.80)Specificity

0.94 (0.90-0.96)0.50 (0.42-0.58)PPVb

0.88 (0.83-0.92)0.89 (0.83-0.94)NPVc

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

We also evaluated the COVID-19 Biomarker Scores for patients
over time using longitudinal biomarker measurement data from
individual patients in the external validation set (Figure 5).
These data represent individual patients’ scores over a median
of 12.5 days (IQR 8-17.5) between admission and outcomes of
discharge or death. The first scores available after admission

were significantly higher in patients who died vs patients who
were discharged (AUC 0.97, cutoff score of 19); over time,
patients who were discharged had an average decrease in score
(–4.7), while patients who died had an average increase in score
(+11.2).
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Figure 5. Spaghetti plot of longitudinal COVID-19 Biomarker Scores for patients in the external validation set from Tongji Hospital [21] between
January 10 and February 18, 2020. These data represent individual patients’ scores over a median (IQR) of 12.5 (8–17.5) days between admission and
outcomes of discharged or deceased. The first scores available after admission were significantly higher in those that died vs those that were discharged
(AUC 0.97, cutoff score of 19), and over time patients who were discharged had an average decrease in score (-4.7) while those that died had an average
increase in score (+11.2).

Discussion

As the COVID-19 pandemic continues to create surges and
resurgences without an effective vaccine, the goal of this
multidisciplinary team was to develop a triage and
prognostication tool that strengthens community-level testing
and disease severity monitoring. A CDSS and mobile app for
COVID-19 severity have been designed, developed, and
validated using data from 1236 patients with COVID-19 across
numerous clinics and hospitals in the coronavirus disease
epicenters of Wuhan, China, and New York, United States.
These clinically validated tools have potential to assist health
care providers in making evidence-based decisions in managing
the care of patients with COVID-19. The significance of this
work is realized by the algorithms developed and validated here,
which are accurate, interpretable, and generalizable.

Accurately identifying patients with elevated risk for developing
severe COVID-19 complications can empower health care
providers to save lives by prioritizing critical care, medical
resources, and therapies. With respect to accuracy, both Tier 1
and Tier 2 models were effective in discriminating disease
outcomes, with statistically significant differences between the
most relevant patient groups (AUCs of 0.79 and 0.97 for Tier
1 and Tier 2 external validation, respectively). As expected, the
diagnostic accuracy of the Tier 1 Outpatient Model in terms of
AUC was lower than that of the Tier 2 Biomarker Model, which
demonstrates the importance of biomarker data in determining
disease severity. The accuracy with which the Tier 2 Biomarker
Score identified patients who eventually died reflects the
unfortunate and morbid reality of the COVID-19 pandemic to
date. However, as medical knowledge and experience with

COVID-19 progresses, it is possible that future treatments and
interventions could improve patient survival. In this context,
the Tier 2 Biomarker Score could be used to monitor patients’
treatment progression or regression over time and modify
therapies accordingly.

Another strength of this approach is the interpretability of the
models. While many predictive tools rely on “black box”
methods in which algorithmic decisions and the logic supporting
those decisions are uninterpretable, the lasso logistic regression
method is transparent through its coefficients (ie, log odds) and
probabilistic output. The Tier 1 Outpatient Score is the
probability of severe disease (ventilation or death) based on the
predictors (age, gender, diabetes, cardiovascular comorbidities,
and systolic blood pressure). Likewise, the Tier 2 Biomarker
Score is the probability of mortality based on CRP, D-dimer,
PCT, and age. Predictive models such as these are more likely
to be adopted for clinical applications in which transparency
and interpretability are valued.

One of the most clinically relevant features of this new CDSS
is the capacity to monitor individual patients over time. The use
of this precision diagnostic approach allows for the
amplification of early signs of disease, which can be achieved
by focusing on time-course changes of biomarker signatures
that are referenced not to population metrics, but rather back to
the individual patient. As an example, the use of time course
changes in individual biomarker fingerprints has been explored
previously in the study of early detection in ovarian cancer [27].
Studies demonstrated that cancer antigen 125 by itself for a
single time point was a poor diagnostic marker due to
overlapping reference range problems across the population.
However, when each patient was treated as their own point of
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reference and biomarker slopes for individual patients were
considered, the diagnostic accuracy for this same biomarker
increased significantly. Similarly, the COVID-19 Biomarker
Score time series (Figure 5) reveals a strong capacity to separate
patients who die of COVID-19 complications from those who
are discharged from the hospital. Note that the app includes
capabilities to use proximal biomarker measurements, allowing
for biomarker measurements to be collected over time without
the rigid restriction of requiring completion of all biomarker
measurements at the same time for all time points. This
flexibility is anticipated to afford more convenience for
longitudinal monitoring of patients.

Lastly, the models developed here demonstrated generalizability
through external model validation. External validation is
essential before implementing prediction models in clinical
practice [28]. We found that the AUCs for both the Tier 1 and
Tier 2 models were similar for internal vs external validation,
demonstrating that the models are generalizable to making
predictions for these disease indications in different care settings
and for different patient demographics. Usually, prediction
models perform better on the training data than on new data;
however, in this study, we found that the external validation
results were approximately the same or better (Tier 1: AUC of
0.79 vs 0.79; Tier 2: 0.95 and 0.97 for internal and external
validation, respectively), suggesting that patients in the external
validation sets may have suffered from more severe disease.

Despite the potential for CDSSs to transform health care, major
challenges remain for translating and scaling these tools. Future
data and, thus, future model performance may have large
heterogeneity, which may be exacerbated by missing data
(potentially not missing at random), nonstandard definitions of

outcomes, and incomplete laboratory measurements and
follow-up times [29]. The mobile app developed here is intended
to reduce heterogeneity by encouraging the harmonization of
data collection across multiple care settings. Further, models
may be tuned through optimization of cutoffs for certain patient
subpopulations. Another challenge in deploying a CDSS that
relies on biomarker measurements is accounting for differences
in laboratory testing across hospitals and clinics. The variability
of these measurements across institutions may have a large
impact on the distribution of COVID-19 Biomarker Scores.
This challenge creates a unique opportunity for standardized,
well-calibrated, and highly scalable point-of-care tests for
COVID-19 disease severity [20,30,31]. Finally, the COVID-19
pandemic is a fluid and rapidly evolving crisis. Not only will
our epidemiological and physiological understanding of the
disease evolve over time, but viral mutations could also alter
disease severity in future outbreaks. The two-tiered algorithms
developed here are highly amenable to future adaptations in
which new data are included in the training through periodic or
continuous learning.

A commercial app has been developed in collaboration with
OraLiva, Inc for deployment of these tools to frontline health
care workers managing COVID-19 patients. Plans are now in
place to assess the usability, user satisfaction, and confidence
in results of this CDSS and mobile app in the FHCs at NYU.
Future efforts will focus on point-of-care testing capabilities to
more rapidly assess the Tier 2 biomarkers described in this study
using a previously developed and published platform [20,30,31].
The deployment of these new capabilities has potential for
immediate clinical impact in community clinics, where the
application of these tools could significantly improve the quality
of care.
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