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Abstract

Background: Theinherent difficulty of identifying and monitoring emerging outbreaks caused by novel pathogens can lead to
their rapid spread; and if left unchecked, they may become major public health threats to the planet. The ongoing coronavirus
disease (COVID-19) outbreak, which has infected over 2,300,000 individuals and caused over 150,000 deaths, is an example of
one of these catastrophic events.

Objective: We present atimely and novel methodology that combines disease estimates from mechanistic models and digital
traces, via interpretable machine learning methodologies, to reliably forecast COVID-19 activity in Chinese provincesin real
time.

Methods: Our method uses the following as inputs: (a) official health reports, (b) COVID-19—+elated internet search activity,
(c) news media activity, and (d) daily forecasts of COVID-19 activity from a metapopulation mechanistic model. Our machine
learning methodol ogy uses aclustering technique that enablesthe exploitation of geospatial synchronicities of COVID-19 activity
across Chinese provinces and a data augmentation technique to deal with the small number of historical disease observations
characteristic of emerging outbreaks.

Results: Our model isableto produce stable and accurate forecasts 2 days ahead of the current time and outperformsacollection
of baseline modelsin 27 out of 32 Chinese provinces.

Conclusions: Our methodology could be easily extended to other geographies currently affected by COVID-19 to aid decision
makers with monitoring and possibly prevention.
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Introduction

First detected in Wuhan, China, in December 2019, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
had rapidly spread by late January 2020to al Chinese provinces
and many other countries[1-4]. On January 30, 2020, the World
Health Organization (WHO) issued a Public Health Emergency
of International Concern (PHEIC) [5-8]; and on March 11th,
the WHO declared the coronavirus disease (COVID-19) a
pandemic [5]. By April 18, 2020, the virus had affected more
than 2,300,000 peopl e and caused the deaths of 150,000 in more
than 180 countries[7].

In the last decade, methods that leverage data from
internet-based data sources and datafrom traditional surveillance
systems have emerged asacomplementary alternativeto provide
near real-time disease activity estimates (eg, for influenza and
dengue) [9-13]. Despite the fact that these methodol ogies have
successfully addressed delaysin the availability of health reports
aswell as case count data quality issues, developing predictive
models for an emerging disease outbreak such as COVID-19is
an even more challenging task [14]. There are multiple reasons
for this, for example, the availability of epidemiological
information for this disease is scarce (there is no historical
precedent about the behavior of the disease); the daily/weekly
epidemiological reports that become available are frequently
revised and corrected retrospectively to account for mistakes
in data collection and reporting (a common practice in public
health reports); and the presence of a diverse array of
uncertainties about disease burden duein part to underreporting
of cases[15].

Most effortsto estimate the time evol ution of COVID-19 spread
and the effect of public health interventions have relied on
mechanistic models that parameterize transmission and
epidemiological characteristicsto produce forecasts of disease
activity [16,17]. In contrast, only a limited number of studies
have investigated waysto track COVID-19 activity, leveraging
internet search data [1,13,18], and few to the best of our
knowledge have combined internet-based data sources and
mechanistic estimates to forecast COVID-19 activity [19].

We present a novel hybrid methodology that combines
mechanistic and machine learning methodol ogiesto successfully
forecast COVID-19 in real time at the province level in China
[20,21]. We used a data-driven approach to incorporate inputs
from (@) official health reportsfrom Chinese Center for Disease
Control and Prevention (China CDC), (b) COVID-19—elated
internet search activity from Baidu, (c) news media activity
reported by Media Cloud, and (d) daily forecasts of COVID-19
activity from the simulation epidemiological model GLEAM
(global epidemic and mobility), a metapopulation mechanistic
model [16]. Inspired by a methodology previously used to
successfully forecast seasonal influenzain the United States at
the state level [11] and previous methods to monitor emerging

http://www.jmir.org/2020/8/e20285/

outbreaks[22,23], our method is capable of reliably forecasting
COVID-19 activity even when limited historical disease activity
observations are available. From amethodol ogical perspective,
the novelty in our approach comes from a clustering technique
that enables the exploitation of geospatial synchronicities of
COVID-19 activity across Chinese provinces and a data
augmentation technique to mitigate the scarcity of historical
data for model training.

Methods

Experimental Design

Our method was designed for forecasting COVID-19 2 days
ahead of the current time. We used as inputs the following data
sources. COVID-19 activity reports from China CDC; internet
search frequenciesfrom Baidu; anumber of related news reports
from 311 media sources, as reported by the Media Cloud
platform; and COVID-19 daily forecasts from ametapopul ation
mechanistic model. Our machine learning methodology also
used a clustering and data augmentati on technique. We provide
details about data sources and statistical methods in the
following sections.

Data Sources

Daily Reports of COVID-19

Case counts of COVID-19 were obtained from China CDC.
These data are curated and publicly available viathe Models of
Infectious Disease Agent Study (MIDAS) association [24]. Al
data were collected on the original date they became available.
Indeed, case counts released by China CDC can be revised, up
to several weeks later. In this study, we only used unrevised
data, which is the real case scenario to produce real-time
estimates. The reports, available for all the provinces, include
various activity trends such as new diagnosed cases, new
suspected cases, and new reported deaths. For our study, we
selected the number of confirmed cases as the epidemiol ogical
target and collected activity reports from January 10, 2020, to
February 21, 2020.

Baidu I nternet Search Activity: Data Exclusion

We collected the daily search fraction for three different
COVID-19—+elated search terms in Mandarin (“COVID-19
symptoms” [*FiERAEEIR"], “how many degree is fever”
[“%PEEAIE"], and “symptoms of fever” [“ & EREIR"]).
These terms were selected based on their correlation and
potential association with case counts of COVID-19 [25] and
collected individually for each province from January 1, 2020,
to February 21, 2020. Our decision to use internet activity asa
source of information is based on the hypothesis that search
frequencies from COVID-19-related keywords reflect, to an
extent, the number of people presenting symptoms related to
COVID-19 beforetheir arrival at aclinic. Given Baidu imposes
limitsto data accessfor researchers, we were unableto conduct
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of the Baidu search term time series can be seenin Figure 1.

Figure 1. Visualization of the evolution of coronavirus disease (COVID-19) cases and Baidu search trends. The evolution of COVID-19 cases is
represented in gray and Baidu search trends in green and orange. All-time series have been smoothed for visualization purposes.
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“pneumonia,” “fever,” “cough,” and the name of each province
News Reports

An online open-source platform called Media Cloud, which
allows the tracking and analysis of media for any topic of
interest through the matching of keywords, was used. We
obtained volumes of the number of news articles available over
timefrom acollection of 311 Chinese mediawebsites using the
keywords “coronavirus,” “COVID-19,” “2019-nCoV,’

http://www.jmir.org/2020/8/e20285/
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to generate province-specific news activity trends. Media data
from January 1, 2020, to February 21, 2020 were collected and
used as additional source information.

Global Epidemic and Mobility Model
The global epidemic and mobility model, GLEAM, is an
individual-based, stochastic, and spatial epidemic model [26-28]
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that hasbeen used to simulate the early stages of the COVID-19
epidemicin mainland Chinaand acrosstheworld [16]. GLEAM
is based on a metapopulation approach in which the world
population is divided into subpopul ations centered around major
transportation hubs (usually airports). Over 3000 subpopulations
in about 200 different countries and territories are included in
the model. The subpopulations are connected by short-range
commuting and long-range travel networks that determine the
flow of individuas traveling daily among them. Short-range
mobility patterns (eg, daily commuting) are derived from data
collected from the National Statistical Offices of 30 countries
on five continents[26]. In addition, for the COVID-19 epidemic,
mobility variations in mainland China are further calibrated
using deidentified and aggregated domestic population
movement data as derived from Baidu L ocation-Based Services.
Theairlinetransportation data consider daily origin-destination
traffic flows obtained from the Official Aviation Guide and the
International Air Transport Association databases (updated in
2019), and accounting for travel restrictions in 2020. Within
each subpopulation, the human-to-human transmission of
COVID-19 is modeled using a compartmental representation
of the disease where each individual can occupy one of the
following four states: susceptible (S), latent (L), infectious (1),
and removed (R). Susceptible individual s can acquire the virus
through contacts with individuals in the infectious state, and
become latent, meaning they are infected but cannot transmit
the infection yet. Latent individuals progress to the infectious
stage with a rate inversely proportional to the latent period.
Infectious individuals progress into the removed stage with a
rate inversely proportional to the infectious period. Removed
individuals represent those who can no longer infect others,
meaning they were isolated, hospitalized, died, or have
recovered.

Themodel produces an ensemble of possible epidemic scenarios
providing epidemic indicators, such as the number of newly
generated infections and deaths in each subpopulation. The
model isinitialized by a starting date of the epidemic between
November 15, 2019, and December 1, 2019, with 20to 40 cases
caused by zoonotic exposure[29-32]. Thetransmission dynamic
is calibrated by using an Approximate Bayesian Computation
approach to estimate the posterior distribution of the basic
reproductive number R, that uses as evidence the detection of
infectionsimported from Chinaat international locations across
the world [33-37]. A sensitivity analysis has been performed
on the initial conditions of the model considering different
values for the mean latency period (range 3-6 days), the mean
infectious period (range 2-8 days), the generation time (range
6-11 days), and the initial number of zoonotic cases (range
20-80). The calibrated model is then used to generate the
out-of-sample ensembl e of stochastic epidemic evolutions across
mainland China.

Statistical Analysis

Aggregation of Daily Reports

To enhance signal and reduce noise, we aggregated case count,
search volumes, and media article count for each &t = 2 days
window.
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As COVID-19 is an emerging outbreak, the amount of
epidemiological information, either officia or unofficial, islow,
and thus, limits our capacity to build predictive models. To
maximize usage of data, we applied the strategies bel ow.

Clustering

We clustered the 32 provinces into several groups and trained
a model for each group. Clustering and model retraining
processes were repeated on every single new prediction date.
To determinethe similaritiesin outbreak patternsacross Chinese
provinces, we calculated the pairwise correlation matrix for
confirmed COVID-19 casesby using al historical dataavailable.
Then, based on similarity matrix, provinces were clustered by
using complete linkage hierarchical clustering, which is an
agglomerative hierarchical clustering method, creating clusters
based on most dissimilar pairs[38]. The number of clusters K
was determined by choosing the K, thereby maximizing the
Calinski-Harabasz index [39]. Our clustering method gained
higher stability when more data points were available for
clustering [40]. More details of the clustering method are
presented in Multimedia Appendix 1 [41-43].

Data Augmentation

We conducted data augmentation by using a bootstrap method
to resample each data point of the training data set. We made
100 bootstrap samples for each data point to which we added
arandom Gaussian noise with a mean of 0 (SD 0.01). Due to
the stochasticity of both the clustering algorithm and the model
training processing, on each prediction day, we run the whole
clustering-training process 20 times and take an average of the
outputs as our final prediction. Our multistep approach may
introduce stochasticity in three different steps: (a) the clustering
process, (b) the dataaugmentation process, and (c) theregression
algorithm. To ensure robustness of our prediction results, the
whole process (from clustering to out-of-sample prediction) on
each prediction date was repeated at least 20 times and the
ensemble (viaan averaging approach) predictionswere reported
asthe final prediction. We chose to use an empirical approach
to explore whether the number of computational experiments
were sufficient to lead to a stable performance. In order to
achieve this, we conducted ensemble prediction experiments
using redizations from 1 to 50 prediction efforts. We
documented the performance of these ensemble predictions
using root mean square error (RMSE) and correlation in
(Multimedia Appendix 2, Table S1). The performance of the
ARGONet + GLEAM method plateaued after about 10-15
realizations as seen on thistable. Therefore, we concluded that
20 realizations of our agorithm was an adeguate number to
ensure robustness and stability of the prediction while not
imposing too much computational burden.

Predictive Model

For our prediction task, we fitted a LASSO (least absolute
shrinkage and selection operator) multivariable regularized
linear model for every data set generated from our clustering
and augmentation steps at timet.

The LASSO technique minimizes the mean sguared error
between observations and predictions subject to a L1 norm
congtraint (more details of this method are provided in
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Multimedia Appendix 1). The number of new confirmed
COVID-19 cases for the next bi-day can be then expressed as:

Yr+st = ZaEYTfib't + St +yMr + 8Dr + YCr + €r45e
whereyy, g istheestimate at date T + &t; ot = 2 days; yristhe
number of cases at date T; S; is the search volume at date T,
M7 is the number of media articles at date T; D+ is the number

Liuetd

of deaths at date T; C isthe number of cumulative cases at date
T, and 1, & isthe normally distributed error term.

Models were dynamically recalibrated, similar to the method
presented by Santillanaet al [44] and Lu et a [11]. Our method,
ARGONet + GLEAM, was implemented in an R 3.5.3
environment with aglmnet 3.0-2 library.

A summary of our method can be seen in Figure 2.

Figure2. Summary of the methods used to obtain our coronavirus disease (COVID-19) estimates. GLEAM: global epidemic and mobility.
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Performance of Model and Relevance of Predictors

Two different metrics were used to measure the performance
of ARGONet + GLEAM: (1) the RMSE and (2) the Pearson
correlation. To assessthe predictive power of our methodol ogy,
we compared our performance against the following models:

1. Persistence rule (baseline): a rule-based model that uses
the new case count at date T as an estimate of the prediction
for T+ot so that yT+t = yT

2. Autoregressive (AR): a simple AR mode built on
COVID-19 cases that occurred in the previous three AR
lags (2-day reports) (see Multimedia Appendix 1 for more
information on this model)

3. ARGONEet: an alternate version of our methodology that
does not include any mechanistic information but including
clustering and data augmentation approaches.

As linear models are used in this study, the relevance of
predictorsin predicting new cases can be defined thanks to the
associated factor of each term in the trained model. As all data
were normalized using the z-score (strictly within the training
data sets) during training and prediction, the associated factor
can be approximately understood as how many standard

http://www.jmir.org/2020/8/e20285/

deviations the predicted new cases y; + ot will change if 1
standard deviation changesin the predictor.

Data Sharing

All codes and data will be made available via the Harvard
dataverse.

Results

We produced 2-day-ahead (strictly out-of-sampl€) and real-time
COVID-19 forecasts for 32 Chinese provinces for the time
period spanning February 3, 2020, to February 21, 2020. A
visual representation of our out-of-sample model forecasts is
shown in Figure 3 aong with the subsequently observed
COVID-19 cases, as reported by China CDC.

Our results show that ARGONet + GLEAM outperforms the
persistence model in 27 out of 32 Chinese provinces. Even in
provinces where ARGONet + GLEAM failed to produce
improvements to the baseline model, our model produced
reasonable disease estimates as seen in Figure 3. These
provinces include Shanxi, Liaoning, Taiwan, Hong Kong, and
Guangxi (thelatter three with very different administration, and
likely hedth care, systems compared to the rest of the
provinces).
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Figure 3. Graphical visuaization of the estimates obtained by ARGONet + GLEAM. The number of new confirmed cases for coronavirus disease
(COVID-19), as reported by China CDC (solid black), along with ARGONet + GLEAM (solid red) 2-day, ahead-of-time estimates between February
3, 2020, to February 21, 2020. As a comparison, the dotted blue line represents the persistence model.
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Experimental Design AR M odel

We analyzed the performance of models built using only local,
province-level epidemiological data as input. We generated an
AR model for each province, built on COVID-19 cases that
occurred in the previous three AR lags (ie, the previous three
2-day reports), and compared our estimates with the baseline.
Our results, presented in Figure 4 (also see Tables S2 and S3

http://www.jmir.org/2020/8/€20285/

XSL-FO

RenderX

Feb 21

Feb 21

Feb 03

Feb03  Feb2l Jan 18

Prediction Date

Jan 18

in Multimedia Appendix 2 for a detailed description of our
model results), labeled AR, show that the AR model’spredictive
power was overdl inferior to baseline performance, with
exception to Jilin, Tianjin, Hebei, Hubei, and Heilongjiang.
Subsequently, we incorporated local disease-related internet
search information from Baidu and news alert datafrom Media
Cloud as inputs to build ARGO-type models [9]. These
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ARGO-type models showed marginal predictive power outperformed the baseline in seven provinces.

improvements when compared with AR models and only

Figure 4. Graphical visualization of the models’ performances. Comparison of the improvement in terms of root mean square error (RM SE) (top) and
Pearson correlation (bottom) for each model used in the study. To facilitate comparison between model scores in each province in terms of RMSE, we
normalized the RM SE score of each model by the baseline’'sRM SE and visualized itsinverse value. In thisway, scores above oneimply animprovement
(RM SE reduction), whereas a score below oneimplies the model had abigger RM SE in comparison to the baseline. In the case of correlation, we plotted
the difference between the absolute values between each model’s correlation and the baseline. Each panel is ordered, from left to right, based on the

metric performance of ARGONet + GLEAM (solid red). AR: autoregressive.
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Dynamic Clustering of Chinese Provinces

Based on prior work on influenza activity prediction [11], we
added historical COVID-19 activity information for all Chinese
provinces to the input of our local models. We calculated the
pairwise correlation matrix for confirmed COVID-19 cases
between all Chinese provinces, between February 1 and
February 21, 2020 (Figure 5). Our results showed that most of
the provinces experienced similar epidemic trends. To build
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our (clustered) predictive models, we combined the data
available from several provinces with similar trends (in terms
of correlation, which was strictly cal culated within our training
period at the time-step of prediction). The clustering modeling
approach, which incorporated internet-based data sources as
the ARGO-type models, produced forecasts that led to error
reductions for 17 out of 32 provinces compared to the
persistence model and improved correlation valuesin 20 out of

32 provinces.

JMed Internet Res 2020 | vol. 22 | iss. 8|€20285 | p. 7
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Liuetd

Figure 5. Visualization of the pairwise correlation matrices of confirmed cases and human mobility from Wuhan to each Chinese province. During
the period of January, we can see a similar trend of mobility for a big cluster of provinces as well as a similar trend of number of confirmed cases for

the period of February.
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Data Augmentation

Asan additional way to increase the number of observationsin
the training set of each cluster, we implemented a data
augmentation technique. This process consisted of generating
new observationsviaaBootstrap method and addition of random

Gaussian noise (€~ N(0,0.01)) g every randomly selected
observation.
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ARGONet Model

The results of incorporating both clustering and augmentation
techniques can be seen in Figure 4 and a visuaization of the
errors can be seen in Figure 6. For simplicity, we |abeled these
predictions ARGONEet, even though this implementation of
ARGONEet is an enhanced version specifically designed for
emerging outbreaks where data are scarce. In terms of RM SE,
our results show that ARGONet’s predictive power was able
to outperform AR and the persistence model in 25 of the 32
Chinese provinces. In terms of correlation, ARGONet
outperformed the baseline (persistence) model in 18 provinces.
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Figure 6. Visuaization of the errors. Graphical visualization of the out-of-sample coronavirus disease (COVID-19) error (y-y) between February 3,

2020, and February 21, 2020.
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Prediction Date

ARGONet + GLEAM Modél

We included forecasts produced by mechanistic model as an
additional input in our models (prior to the clustering and
augmentation steps). Theresults of incorporating these estimates
can be seenin Figure 4 with the name of ARGONet + GLEAM
and a visualization of the errors can be seen in Figure 6. Our
results show that the inclusion of mechanistic model estimates
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improved ARGONEet's predi ctive power across most provinces.
ARGONEet + GLEAM led to error reductions in 27 out of 32
provinces compared to the baseline. In terms of correlation, it
improved in 26 out of 32 provinces. Provinces like Qinghai,
Hunan, and Jiangxi showed the biggest improvement, whereas
Taiwan, Hong Kong, Shanxi, and Liaoning did not display error
reductions.
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Visualization of the Results

As an alternative way to visualize ARGONet + GLEAM’s
predictive performance, we plotted a map with Chinese
provinces (Figure 7), color coded based on the improvement
shown in Figure 4. From a geographical perspective, the
provinces where ARGONet + GLEAM had the most
improvement (Anhui, Jiangxi, Fujian, Sichuan, and Guangdong)
were located in south central China. Shanxi, Liaoning, Taiwan,

Liuetd

Hong Kong, and Guangxi are the provinces where our models
were not able to reduce the error compared to the baseline.
While ARGONEet + GLEAM'’s performance in these provinces
was not superior to the baseline, its predictions were within a
reasonable range, as seen in Figures 2 and 3. We were not able
to perform any analysis on Tibet, one of the largest provinces
in China, and Macau given their low count of detected
COVID-19 cases.

Figure 7. Geographical visualization of the relative improvement of ARGONet + GLEAM compared to the baseline. Chinese provinces that show an
increase in performance relative to the baseline are shaded green, while provinces that did not perform better than our baseline are shaded purple.
Provinces with the highest improvement (Anhui, Shanghai, Sichuan, Fujian, Jiangxi, Guangdong, and Qinghai) and underperformance (Taiwan, Shanxi,
Liaoning, Hong Kong, and Guangxi) are identified by ared dot over the province.

Analysis of the Importance of the Sour ces of
Information Over Time

To minimizethe prediction errorsin our estimates, the dynamic
design of our methodology utilizes different sources of
information as needed over time. This means that for each
province (or group of provinces within a cluster), we can
quantify the predictive power of different features used in our
models as time evolves. Our analysis, visualized in Figure 8,
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showsthat historical COV1D-19 confirmed cases and suspected
cases were consistently relevant sources of information over
most of the study period. Internet-based search termsfrom Baidu
were also frequently used. Daily news counts were used by our
models in a selected number of provinces. However, for many
of these provinces, the importance of media article counts
decrease over time. Estimates from mechanistic models
contributed to our model prediction, especialy in early February
2020.
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Figure 8. Graphical visualization of the relevance of data sources. Time evolution of the value (averaged over the 20 experiments) of the linear
coefficients for the features used in our methodology, visualized per province. Every heatmap includes the same number of features (rows) and is

organized in the same order.
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Discussion

Principal Findings

We presented a methodol ogy capable of producing meaningful
and reliable short-term (2 days ahead) forecasts of COVID-19
activity, at the province level in China, by combining
information from reports from China CDC, internet search
trends, news article trends, and information from mechanistic
models. Our approach is capable of overcoming multiple
challenges characteristic of emerging outbreaks caused by novel
pathogens. These challenges include the lack of historical
disease activity information to calibrate models, thelow volume
of case count data, and the inherent delay in gaining access to
data. Methodologically speaking, our method maximizes the
use of alimited number of observations asthe outbreak unfolded
by (a) choosing an appropriate aggregation time-window (2
days) to improve the signal-to-noise ratio, (b) leveraging
synchronicitiesin the spatiotemporal trendsin COVID-19 across
provincesto produce cluster-specific models of prediction, and
(¢) using data augmentation methodsto increase stability in the
training of our models.

Previous methods, such as the ARGONet model [11,45], have
been shown to make accurate real-time prediction at the state
level in the United States for seasonal infectious diseases such
asinfluenza. In addition, Chinazzi et al [16] showed that it was
possibleto estimate the evolution of an emerging outbreak using
amechanistic model. Nevertheless, as far as we know, reliable
real-time methodologies to forecast new case counts for an
emerging disease outbreak remained an unsolved problem. In
this study, we showed that a dynamically trained machine
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learning model can accurately produce real-time estimates for
COVID-19 outbreaks.

In terms of prediction error, our proposed methodology,
ARGONet + GLEAM, was able to outperform the persistence
model in 27 out of 32 provinces. While our method does not
show prediction error improvements in Guangxi, Liaoning,
Shanxi, Taiwan, and Hong Kong, our forecasts are till within
rangein all provinces except for Taiwan, where very few cases
werereported during thetime period of thisstudy. It isimportant
to note that Taiwan, Hong Kong, and Guangxi have different
administrative (and likely health care) systems compared with
the other provinces. This could explain the differences in
COVID-19 trends in these regions and could help explain why
our models do not seem to add value to the persistence model.
Features studies should investigate if incorporating disease
activity estimates from other mechanistic models, likely
designed with different assumptions and mathematical
formulations, could lead to further improvements.

We were unable to identify an accurate (daily) parametrization
of changes in human mobility due to the widespread local
lockdowns during the period of our study (February 3-21, 2020),
and thus, we did not include this data source as a potential
predictor. Future studies may incorporate (high temporal
resol ution) human mobility dataasamodulator of transmission
and predictor of disease activity. When looking at the entire
time period of this study, however, we observed that the
data-driven clustering of provinces used in our approach and
based on COVID-19 activity appears to have similarities with
the clustering one would obtain from using human mobility
datamade available by Baidu (Figure 5). Thisresult alignswith
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the conclusion of other available studiesthat found that thetime
evolution of the COVID-19 outbreak in Chinawas significantly
influenced by changesin human mobility (consegquence of public
health interventions) [16,17,46], and associated with the
percentage of people traveling from Wuhan in the early stages.

Limitations

One limitation of our study is that during the test time period
of our methods a consistent decrease in COVID-19 cases (due
to strong public health interventions) was observed and thus
our methods could not be tested for their ability to identify the
epidemic peaks across provinces. The brevity of the COVID-19
epidemic outbreak in Chinese provinces was the limiting factor
for this as the observations that corresponded to the growth
phase of the outbreak were used for training purposes. Future

Liuetd

model implementations in other locations where the growth
phase has spanned longer time periods, like New York, United
States, should investigate the ability of our models to properly
identify peaks.

Conclusions

Our findings suggest that it is possible to use very limited
amounts of datafrom multiple data sourcesto conduct real-time
forecasting in the early stage of an emerging outbreak. We
believe that our method, ARGONet + GLEAM, could proveto
be useful for public health officials to monitor (and perhaps
prevent) the spread of the virus [8,11,25,47]. As the
SARS-CoV-2 virus continues to spread around the world,
extensions of our methods could be implemented to provide
timely and reliable disease activity estimatesto decision makers.
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