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Abstract

Background: Artificial intelligence (AI) and the Internet of Intelligent Things (IIoT) are promising technologies to prevent the
concerningly rapid spread of coronavirus disease (COVID-19) and to maximize safety during the pandemic. With the exponential
increase in the number of COVID-19 patients, it is highly possible that physicians and health care workers will not be able to
treat all cases. Thus, computer scientists can contribute to the fight against COVID-19 by introducing more intelligent solutions
to achieve rapid control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease.

Objective: The objectives of this review were to analyze the current literature, discuss the applicability of reported ideas for
using AI to prevent and control COVID-19, and build a comprehensive view of how current systems may be useful in particular
areas. This may be of great help to many health care administrators, computer scientists, and policy makers worldwide.

Methods: We conducted an electronic search of articles in the MEDLINE, Google Scholar, Embase, and Web of Knowledge
databases to formulate a comprehensive review that summarizes different categories of the most recently reported AI-based
approaches to prevent and control the spread of COVID-19.

Results: Our search identified the 10 most recent AI approaches that were suggested to provide the best solutions for maximizing
safety and preventing the spread of COVID-19. These approaches included detection of suspected cases, large-scale screening,
monitoring, interactions with experimental therapies, pneumonia screening, use of the IIoT for data and information gathering
and integration, resource allocation, predictions, modeling and simulation, and robotics for medical quarantine.

Conclusions: We found few or almost no studies regarding the use of AI to examine COVID-19 interactions with experimental
therapies, the use of AI for resource allocation to COVID-19 patients, or the use of AI and the IIoT for COVID-19 data and
information gathering/integration. Moreover, the adoption of other approaches, including use of AI for COVID-19 prediction,
use of AI for COVID-19 modeling and simulation, and use of AI robotics for medical quarantine, should be further emphasized
by researchers because these important approaches lack sufficient numbers of studies. Therefore, we recommend that computer
scientists focus on these approaches, which are still not being adequately addressed.
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Introduction

With the emergence of the novel coronavirus disease
(COVID-19) pandemic, many regions and countries have been
facing different risks at different times. Due to the high
infectivity and spread of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19,
combined with its increased hospitalization rate, COVID-19 is
a serious public health threat worldwide [1,2]. Artificial
intelligence (AI) systems such as cognitive computing, deep
learning, convolutional neural networks, and machine learning
can play a critical role in detection, large-scale screening,
monitoring, reduction of caregiver workload, and prediction of
possible interactions with the new therapies for this virus [3-6].
In this review, we provide an analysis of AI applications that
may help limit the spread of or even help eradicate this virus if
properly adapted and applied by countries.

Methods

We conducted an electronic article search using the MEDLINE,
Google Scholar, Embase, and Web of Knowledge databases.
The search included only English-language publications, with
a focus on evidence-based research articles. The search focused
on both randomized and nonrandomized controlled trials,
longitudinal studies, cross-sectional studies, and retrospective
studies. A list of keywords were used with different
combinations, as follows: SARS-CoV-2, COVID-19, novel
coronavirus, artificial intelligence, internet of things,
telemedicine, machine learning, modeling, simulation, and
robotics.

Results

Figure 1 shows a summary of AI-based approaches to prevent
the spread of COVID-19.

AI for Detection of Suspected COVID-19 Cases
A pandemic creates unique challenges to the delivery of health
care, and these challenges must be faced by a limited number
of health care workers. AI can help address these problems; for
example, a smartphone app could be developed that collects
signs, symptoms, previous locations of the patient, travel history,
and updated areas of the outbreak, then processes and filters
this information using algorithms so that only suspected cases
are examined by physicians (Figure 2) [7].  

On January 22, 2020, the Center for Systems Science and
Engineering at Johns Hopkins University launched a publicly
shared web-based interactive dashboard [8]. The aim of this
dashboard was to accurately visualize and track reported cases
of COVID-19 in real time. This revolutionary idea has
contributed to the rapid identification of new outbreaks of the
disease. The information on this dashboard is updated twice
daily, which provides an added advantage. This has opened a
new spectrum of AI to predict and recommend quarantine in
areas where a threshold number of cases is reached. It can also
aid early diagnosis of patients if they report travelling to these
areas. All these data are displayed freely through Google Sheets
and the ArcGIS Living Atlas [9].

Another important application of AI is remote monitoring of
home-quarantined patients and their families via smartphones
or smart bracelets. An automatic alarm will sound and provide
a warning message if the patient or family member breaks
quarantine.

All these contributions can significantly decrease the burden
on health care workers and enable them to work more efficiently
in a safe environment [7].
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Figure 1. Summary of AI approaches to address the COVID-19 pandemic. AI: artificial intelligence; CAD: computer-aided diagnosis; COVID-19:
novel coronavirus disease.
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Figure 2. Potential artificial intelligence–based detection of suspected patients with coronavirus disease using a smartphone app.

AI for Large-Scale COVID-19 Screening
Noncontact systems that use AI to measure signs and symptoms
of COVID-19 are extremely important for large-scale screening
in a significantly short period (Table 1). Rapid screening using
these systems not only enables remote detection of suspected
cases but can also be performed by significantly fewer
personnel, which can reduce the work stain on areas such as
airports and supermarkets and further augment social distancing
[7].

Noncontact systems that can be used for large-scale screening
include infrared thermal imaging technology and camera-based
motion detection software to detect and analyze abnormal
respiratory patterns [10].

One of the diagnostic signs of COVID-19 is fever [10]. Infrared
thermal cameras enable real-time visualization of any transient

or constant changes in the energy radiating from individuals,
which enables estimation of surface temperature [11]. With the
aid of AI detection algorithms, suspected individuals with
COVID-19 can be automatically identified and tracked using
infrared thermal cameras with minimal need for human
monitoring.

Respiratory pattern is another diagnostic sign of individuals
with COVID-19 [12,13]. The pattern of respiration in
COVID-19 is quite different from that in the common cold or
influenza [14,15]. Tachypnea, or abnormally rapid breathing,
may indicate infection with COVID-19. Using a depth camera
to conduct noncontact respiratory measurements of individuals
and analyzing these measurements using AI detection algorithms
was found to be a promising method for additional confirmation
of COVID-19 cases [12,13].
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Table 1. Comparison of the cost and efficiency of AI systems versus conventional human labor for large-scale screening of COVID-19.

Conventional human labor for COVID-19 screeningAIa systems for COVID-19b screeningParameter

May be high or low according to country but will
generally have higher cumulative cost, including the
added cost of applying preventive measures for direct
contact.

May be initially high but significantly decrease with
time, leading to lower cumulative cost.

Cost

Affected by distractors.Very high if multiple confirmatory methods are used.Sensitivity (probability of detection)

When screening is performed by expert health care
workers, specificity will be high.

False positive results may occur due to other condi-
tions having similar signs.

Specificity (excluding negative condi-
tions)

Relatively long and may require additional employees
to shorten the duration.

Very short.Duration of screening

No more than 48 hours of work per week and no more
than an average of 8 hours of nighttime work per 24
hours of total work [16].

24 hours, 7 days a week in addition to the working
hours of quarantined physicians and health care
workers who are suspected to have COVID-19, who
will be able to work from home.

Number of working hours

High risk of transmission of COVID-19 infection even
if preventive measures are followed, as human error
may occur.

Very little or no contact between persons, which
significantly decreases the possibility of transmission
of COVID-19 infection.

Possibility of COVID-19 infection
among examined subjects and examin-
ers

aAI: artificial intelligence.
bCOVID-19: coronavirus disease.

AI for COVID-19 Monitoring
Large amounts of data from patients with COVID-19 are
routinely manually collected and interpreted in hospitals with
or without standalone monitoring devices. The processes of
collecting patients’ monitor data in hospital wards are different
in many hospitals, as different approaches are used worldwide.
In some hospitals, data are only collected manually and then
recorded in spreadsheets, which are discarded after the patient
is discharged [17].

AI systems can collect monitor data from patients using personal
digital assistants (PDAs), tablets, and similar equipment; the
patients’data can be stored in electronic health records (EHRs),
where they can be easily shared and rapidly transferred when
needed [18].

With different technologies and AI, the collection, analysis, and
interpretation of patients’ monitor data can be fully or partially
automatized, which diminishes both infection risk and the
burdens imposed on medical staff to constantly gather, store,
analyze, and interpret these data [17].

Several intelligent and expert systems have been developed for
medical monitoring using wireless sensor networks. These
methods have been found to be efficient when signals are
continuous; however, the applicability of these expert systems
to incomplete data has not yet been established [19].

Thoracic computed tomography (CT) without contrast is
considered to be an effective method to detect, quantify, and
monitor symptoms of patients with COVID-19. Deep learning
algorithms could be developed to contribute to the analysis,
interpretation, and tracking of large numbers of thoracic CT
examinations [20].

Developing a video imaging–based high-speed medical
monitoring system that uses motion tracking monitoring
algorithms for patients with COVID-19 can also provide a large

amount of factual information regarding vital signs (temperature,
heart rate, respiratory rate, blood pressure, oxygen saturation)
as well as status, condition severity, existing comorbidities, and
patient discharge. Modal parameters can be subsequently
extracted to analyze the level of severity or damage from
COVID-19. Motion tracking monitoring has been investigated
in several studies with very promising results [21,22].

It has been reported that patients with COVID-19 can be
discharged from the quarantine ward if they meet the following
criteria: being afebrile for a minimum duration of three days,
respiratory symptoms resolved, improvements in radiological
signs for pulmonary infiltrates, at least two consecutive negative
COVID-19 nucleic acid tests with sampling intervals of at least
24 hours [15].

AI-based automated analysis tools for tracking the discharge
criteria for patients with COVID-19 should be developed to
determine and differentiate treated patients from those who still
need to be isolated. In addition, AI-based automated CT image
analysis tools for tracking, quantification, and detection of
COVID-19 can assist in differentiating patients with COVID-19
from individuals who do not have the disease. Moreover,
artificial neural networks can be trained to infer qualitative
characteristics that are based on intensity as well as network
inferences, which can be correlated according to the patient’s
condition.

An exploratory study showed that AI can reliably and efficiently
contribute to accurate detection and tracking of the progression
or resolution of COVID-19. In this work, it was also reported
that the rapid developments in AI-based automated tools for
CT image analysis can achieve a high degree of accuracy in
detection of COVID-19–positive patients in addition to precise
assessment of the severity of the disease [23,24].

J Med Internet Res 2020 | vol. 22 | iss. 8 | e19104 | p. 5https://www.jmir.org/2020/8/e19104
(page number not for citation purposes)

Adly et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


AI for Analysis of Experimental Therapies for
COVID-19
Computer-aided drug design is highly efficient for rapidly
identifying drug repurposing candidates and should be further
investigated.

One example is the mechanism-based inhibitor N3, which was
identified using computer-aided drug design. N3 was found to
particularly inhibit the main protease of SARS-CoV-2 because
it can fit within a substrate-binding pocket [25].

A crucial application for computer-aided drug repurposing is
treating novel diseases such as COVID-19 by identifying drugs
that were developed to treat other diseases. Drug repurposing
can be realized by conducting systematic drug-drug interaction
analyses and studying drug-target interactions, which can be
performed using AI-based algorithms [26-28].

AI has been recognized to have a transformative influence on
drug development. In accordance with a recent report, machine
learning and big data can have great effects on health care
systems and may have positive outcomes in the pharmaceutical
market, as it has been predicted by industry experts that
developing drugs through AI methods will provide significantly
improved feedback. However, AI-based drug development may
be slower to launch in the long term. If applied correctly, these
methods can be highly competitive in the pharmaceutical
industry [29,30].

Natural language processing is another branch of AI that can
be applied in COVID-19 drug development. Its methods can
be beneficial for extracting meaning from text using machine
learning approaches and searching for external biomedical
content in drug discovery [31,32]. Another AI approach is
machine or computer vision, which is the use of algorithms to
enable computers to comprehend the content of images. These
images can be used to understand cell anatomy and identify
novel treatments for COVID-19 [33].

The use of AI is prevalent in drug discovery, and many
pharmaceutical corporations have established in-house
partnerships or initiatives with AI companies. Some
organizations are currently using AI approaches to find novel
uses for late-stage drug candidates or repurpose existing drugs
[34,35]. However, data of sufficient quality are needed to train
systems for COVID-19 AI implementation. Data accessibility
is an additional challenge because the systems will be trained
via supervised learning, which requires substantial amounts of
data on COVID-19 to accurately perform complex tasks.

Accessibility of data can also create costs if these data must be
accessed by corporate partners or technology providers.
Additionally, the data should be of high quality, as poor or
corrupt data can affect the results. At present, although industry
standards for data have been established for many uses, they
currently may not apply in the case of COVID-19. Moreover,
a substantial amount of effort is required to integrate data on
COVID-19 into corporation systems to use it for AI.

AI for Screening COVID-19 Pneumonia
COVID-19 is spreading very rapidly worldwide; meanwhile, it
can be difficult to diagnose the disease. These limitations can

be partially accredited to the limited number of physicians who
are capable of interpreting data and using identification methods
compared to the great increase in the number of cases [36].

It has been reported that radiologists can distinguish COVID-19
pneumonia from other types of pneumonia in chest CT images
with high specificity. Other reports have demonstrated that
reverse transcriptase–polymerase chain reaction (RT-PCR)
analysis has a low sensitivity of about 60% to 71% for detection
of COVID-19 [37]. This may be due to decreased viral load in
the test specimen or to laboratory error. The false negatives
produced by RT-PCR analysis can hinder quarantine efforts
and require tests to be repeated. On the other hand, the
sensitivity of chest CT has been established to be approximately
56% to 98% for COVID-19 detection at initial presentation,
and it may help rectify false negative results that are obtained
by RT-PCR analysis during the early stages of development of
the disease. Additionally, chest CT images can reveal disease
progression [33].

Compared to non–COVID-19 pneumonia, CT images of
COVID-19 pneumonia are more likely to show vascular
thickening, fine reticular opacity, ground-glass opacity,
peripheral distribution, and reverse halo sign in addition to
bilateral peripheral involvement of multiple lobes. The CT signs
may improve gradually approximately 14 days after the onset
of symptoms. On the other hand, CT images of COVID-19
pneumonia are unlikely to show both peripheral and central
distribution, pleural effusion, pleural thickening,
lymphadenopathy, or air bronchogram [38]. Thus, future
directions in chest CT may involve developing an AI-based
classifier that can further augment the performance of
radiologists when combined with clinical information.

Exploration of automated pneumonia analysis via deep learning
is a very important issue for examination for many different
reasons. The most important reason is that the chest radiographs
of COVID-19 patients must be reviewed by highly trained
specialists, which creates large amounts of work for those
specialists. Further, it is very difficult to read these images
because pneumonia is normally revealed over one or more areas
of increased opacity [39]. This increase may be due to a
reduction of the ratio of gas to soft tissue (lung parenchyma,
stroma, and blood) in the lungs. Thus, when an amplified
attenuation area (opacification) is reviewed on a CT or chest
radiograph, it is crucial to define where the opacifications occur.
Diagnosis is very complicated because other conditions can
alter the appearance of a radiograph, such as bleeding, surgical
changes, post-radiation changes, pulmonary edema, lung cancer,
and volume loss due to collapse or atelectasis; aspects such as
inspiration depth and patient positioning may also affect the
radiograph. Due to these issues, interpreting chest images of
COVID-19 patients by the human eye alone is extremely
challenging [38].

Although the fields of machine learning and pneumonia research
are individually well developed, very limited work is currently
available regarding the application of machine learning for
diagnosis of pneumonia, especially for patients with COVID-19.
Research on deep learning algorithms has recently shown rapid
progress. In general, pneumonia diagnosis for medical fields is
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a broadly known discipline. The combination of those two areas
would be novel and promising [40]. Previous research has been
performed to apply image processing techniques for
identification of cases with pneumonia. Other algorithms have
been developed to crop and extract the lung regions from
images. The Otsu thresholding method has been used to
segregate infected cloudy pneumonia lung regions from healthy
regions. Another detection method has been proposed based on
cellular neural networks; the simulated results showed
remarkable performance in differentiating the lung region area
and normal area based on changes in segmentation and grayscale
color [41].

It was also reported that machine learning has the important
advantage of increased capability to evaluate the effects of
interventions when studying subpopulations in clinical
pneumonia research [40]. Another significant aspect of machine
learning for identifying COVID-19 infection is image
classification. This has resulted in the development of a range
of networks for image classification. These networks usually
employ backpropagation algorithms. Very large neural networks
are usually needed for deep learning architectures. Some
commonly used deep learning architectures include GoogLeNet,
ResNet, and AlexNet [42].

Computational models for deep learning can discover intricate
structures in very large data sets by using backpropagation
algorithms to indicate how a machine would modify the internal
parameters it uses to compute representations of each layer from
representations of the previous layer [43]. Training deep learning
networks that can recognize symptoms of COVID-19 pneumonia
would be very beneficial. These networks could facilitate
prescreening and automated diagnosis.

Research has provided insights into testing difficulties associated
with very large radiograph image data sets. Most research in
this area focuses on small and controlled data sets. For these
data sets, irregular features may not be an issue. However, as
the size of the data set increases, the number of irregular images
also increases. It is particularly important to overcome this
potential hurdle for COVID-19 diagnosis because a model that
is used by medical industries must be capable of considering
all radiographic forms. However, the model will still be required
to function at high levels regardless of whether these image
types are imputed [42].

Applying computer-aided detection to radiographs of patients
with pneumonia may provide a supplement or alternative to
human reading [44]. To develop an efficient AI algorithm that
uses chest radiographs to predict clinical outcomes, the clinical
settings and disease burden profiles of COVID-19 prevalence
should be considered.

Software should be trained to use selected chest radiographs of
patients with COVID-19 to automatically segment fields of the
lung in other radiographs. After the classifier is trained on
randomly selected chest radiographs, it can be applied to the
remaining chest radiographs.

Chest radiographs commonly demonstrate many categories of
abnormalities. Some disease processes may show a combination
of abnormal shapes where the disease process has altered the

patient’s normal anatomy, such as cardiomegaly and focal
abnormalities. These focal abnormalities may appear as isolated
density changes, such as pulmonary nodules and texture
abnormalities. Texture abnormalities are characterized by diffuse
changes [45]. In these situations, texture analysis may be useful
for assigning a probability to each location in the lung fields
[39].

In general, further developments and validation should be
performed in multicenter studies, which would be significant
for future research on AI and computer-aided diagnosis in
COVID-19 radiology.

AI and the Internet of Intelligent Things for COVID-19
Data and Information Gathering and Integration
Patients with COVID-19 can provide novel types of data that
are relevant to achieving medical goals. Self-tracking devices,
mobile health apps, and social media can provide patients with
information about COVID-19 and can enable them to monitor
their health or even achieve a certain goal. Incorporating AI
into devices offers tools and methods for designing and
analyzing therapies that can be made accessible to patients and
clinicians while supporting consistent integration into patients’
lives and clinicians’ practices [17,46,47]. This field not only
offers promising challenges for patients with COVID-19 but
can also improve systematic data collection to determine
treatment effectiveness.

In the context of the Internet of Intelligent Things (IoIT), a
“thing” is a system or entity composed of subsystems, and every
subsystem is an indispensable component of the system [48].
Thus, if we divide COVID-19 medical and diagnostic devices
in health centers or hospitals into things and modulate these
things to be sufficiently intelligent to operate on their own, we
can establish a behavior for every subsystem. The challenge is
to understand each thing separately. Therefore, to understand
the behavior of things used to help control COVID-19, it is
necessary to understand the main subcomponents of each thing;
then, we must understand the behavior of each subsystem to
understand the behavior of the thing as a whole and how to
enable it to connect and communicate with other things via the
internet.

A crucial challenge for the advancement of digital health is
efficient and effective integration of incomplete or
heterogeneous information about COVID-19 from different
sources and different types, such as interoperability solutions,
insufficient availability, and existence of current information
silos. All this contradicting information is hindering the
development of effective applications. Different information
types must be integrated, such as clinical information (including
EHRs), information extracted from the biomedical literature by
text mining, and high-throughput information on how drugs or
chemicals interact in different circumstances [36].

Additionally, big data may be useful to optimize resource use
when making informed decisions based on the availability of
data related to COVID-19 cases. AI, machine learning, and the
internet of things (IoT) could contribute significantly to this
process [49-51].
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Big data analysis performed via AI can be interpreted as a means
of training computers to mimic thinking patterns and even
simulate human behaviors. It is assumed that the accuracy of
the achieved results will increase with increasing availability
of processing power and data because it is desirable to perform
machine learning using real-time data [52,53].

Intelligent computing systems can support decision-making
even when the problems are complex. A great deal of success
has been achieved in integrating expert systems into intelligent
systems. However, expert systems may face difficulties in
acquiring and processing COVID-19 knowledge. Thus, to
recognize the involved patterns and the knowledge gained from
different fields, it is vital to combine data mining with intelligent
computing systems to determine the information gathered and
the patterns involved, which may include clustering algorithms,
neural network algorithms, regression algorithms, and Bayesian
algorithms [54].

Numerous other challenges may also emerge, including privacy
breaches, ethical concerns, and lack of information security.
Thus, the ability to share, analyze, and gather information about
COVID-19 in real time with different devices may add to the
difficulty of maintaining patient privacy.

The mining of very large COVID-19 data sets may present
difficulties in terms of computation and storage. For example,
combining various types of information in heterogeneous
COVID-19 data sets with global information systems can be
complicated. Additionally, numerous COVID-19 experts are
needed to formulate the data mining process. Finally, the
accuracy of data mining results depends on the level of diversity
of the gathered COVID-19 data set.

Data mining can also provide many benefits. For example,
powerful high speed processes can be established to examine
the enormous amounts of information related to COVID-19 and
can provide a knowledge base for a specific area of COVID-19
information. Additionally, the diagnosis and prediction of
COVID-19 can be automated, and data mining can enhance
decision-making processes.

AI for Resource Allocation to Patients With COVID-19
As more countries are affected by COVID-19 worldwide, it is
increasingly necessary to prioritize allocation of resources to
patients with the disease [55].

If we attempt to calculate conservative estimates of the resources
that will be needed to fight COVID-19, we find that the
resources needed are beyond the available capacities of health
care facilities. To achieve an accurate estimation of these
resources, estimations should include human resources (such
as medical staff, including therapists and nurses) and other
facilities (including numbers of hospitals, emergency
departments, intensive care units, adult beds, neonatal beds,
pediatric beds, ventilators, oxygen concentrators, oxygen
cylinders, oxygen plants, liquid oxygen, medications, personal
protective equipment, critical medical supplies, and pulse
oximeters). It is very important to assess all these resources
before establishing any action plan for resource allocation.

Given these numbers, if the curve of infected individuals is not
reduced and flattened over a short period of time, the COVID-19
pandemic will likely result in a shortage of medical resources,
particularly ventilators and hospital beds. The number of medical
workers who will be affected should also be taken into
consideration, as these workers will commonly be quarantined.

In addition, even after a vaccine is developed, time will be
needed to produce, distribute, and administer it; shortages of
the vaccine will probably arise as well.

Supply limitations restrain the speed of producing more
resources, such as ventilators. Currently, manufacturers cannot
state with certainty how many ventilators they can produce
during a year.

Policy makers are facing decisions about which patients will
be provided with available resources while taking into
consideration that patients who do not receive these resources
will very likely die.

These decisions cannot be made based on age alone.
Professionals have indicated that prioritization should be based
on which patients are more likely to survive to save the
maximum possible number of lives [56].

To address the COVID-19 resource allocation problem, it is
necessary to understand complex data structures related to the
prioritization criteria and resources in question.

Applying big data analysis and data mining algorithms,
including unsupervised and supervised machine learning, to
optimize the prioritization process would be very helpful to
reduce harm as much as possible in emergency situations when
resources are scarce. With the use of a trained model, machine
learning can also minimize human effort while improving or
maintaining accurate prioritization.

Moreover, intelligent estimation of resource needs (especially
oxygen needs) is crucial to be as accurate as possible in addition
to deciding which source of oxygen would be better for a patient
by considering the total gross oxygen flow that would be needed
through anticipating the load of each patient based on severity
and number of patients.

Developing an expert system or framework for reasonable and
fair allocation of COVID-19 therapeutics and resources is very
complex and requires coordination of many variables and
estimations that must be guided by comprehensive and accurate
information based on IoT technology, which can provide
information about distributions, numbers, sizes, capacities, and
risks related to both resources and the affected populations
worldwide. The realization of such frameworks or expert
systems will mainly depend on sharing and collecting data; this
can be greatly facilitated by the IoT.

AI for COVID-19 Prediction

Transmission Rates
In the initial stages of the COVID-19 outbreak, it is critical to
analyze and understand the dynamics of transmission of the
virus. Changes in the estimations of transmission over time can
offer insights in epidemiological situations and demonstrate the
effectiveness of outbreak control measures [57].
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These analyses can also provide predictions of future growth,
assist risk estimation for countries, and guide strategy for
alternative interventions [58]. These analyses present many
challenges, especially in real time. Moreover, with COVID-19,
the appearance of symptoms may be delayed due to the period
of incubation; also, confirmation of cases may be delayed in
accordance with detection and testing capacity.

AI approaches can account for these delays as well as for
uncertainty by explicitly incorporating delays that result from
the natural history of virus infection or reporting processes. In
addition, individual data sources may be incomplete, be biased,
or only capture some aspects of the dynamics of the outbreak.
However, evidence synthesis approaches that fit with multiple
data sources can enable more robust estimations of the
transmission dynamics that can be gathered from noisy data
[58,59].

Many factors can affect the transmission dynamics of
COVID-19 throughout a country, such as outflow population
size from a certain place to affected provinces or cities,
geographic locations, interventions, social and economic
activities, health care facilities, and environmental heterogeneity.
The process of clustering temporal dynamics will provide
various insights into the patterns of COVID-19 propagation. In
addition, modified auto-encoders have been used to predict the
accumulative number of new confirmed cases of COVID-19.
By hypothesizing the initial amounts of the epidemical outbreak,
modified autoencoders can be used with known architectures
and parameters to predict the sizes of future outbreaks and
simulate the impact of interventions on the severity and size of
epidemics [43,57,60].

Data-driven AI-based methods offer real-time forecasting
techniques for estimating and tracking the severity of epidemics,
assessing their trajectory, predicting their length, and supporting
decision-making by health care workers and governments
[61,62].

Mutations
The prediction of genetic mutations in the SARS-CoV-2 genome
has attracted much attention. Rapid progress has been realized
to predict these mutations and analyze their effects. Tracing the
mutations of SARS-CoV-2 can provide comprehensive
understanding of the evolution dynamics of the virus.

In some studies, antigenic cartographies have been developed
for quantifying and visualizing site mutations and antigenic
differences [63]. Neural networks were applied in another study
to predict point mutations that may appear on structure
alignments of primary RNA sequences [64]. Network models
were also outlined to demonstrate the dynamics and evolutionary
patterns of a virus [65].

Many RNN-based neural networks have been developed for
predicting time series tasks [66]. K-means clustering can also
be used to find clusters of mutations of SARS-CoV-2, which
can provide insights into the nature of mutations and how they
can be addressed.

A model was proposed to forecast the properties of viruses that
are not characterized antigenically using phylogenetic trees.

Modeling sequential data dynamically is important. Recent
research has provided ways to embed biological sequences into
lower-dimensional vector spaces [67].

Severity and Mortality Rates
The assessment of COVID-19 severity by clinical presentation
can no longer meet urgent clinical needs. Thus, introducing a
deep learning–based model by quantitating clinical features to
predict the severity and mortality rates of COVID-19 will be
of significant value. Deep learning–based quantitative CT
measurements of the extent of lesions and clinical features on
initial admission can assist in predicting COVID-19 severity;
this will enable physicians to triage patients and design treatment
protocols and follow-up evaluations in advance.

Convolutional neural networks were introduced as a potential
solution to problems faced in automatic organ segmentation
[57,68].

In a recent study, a new model to forecast the prognosis of
COVID-19 was established. It has been reported that
parsimonious models, which contain five features (age, lactate

dehydrogenase, C-reactive protein, CD4+ T-cell counts, and
mass of infection), are an ideal measure for predicting
COVID-19 severity. This is a common regression method with
high-dimensional data (Cox proportion hazard regression model)
that has been extended to and broadly used in logistic regression
models for outcome forecasting and survival analysis. This
approach may be superior to conventional methods when
choosing predictors and may allow researchers to combine
selected particular features into single signatures [69,70].

Another study demonstrated that machine learning algorithms
are superior to traditional statistical modeling approaches for
predicting mortality in patients with pneumonia. However, it
was found that none of the samples or models assessed showed
overall precise predictions of patient mortality, and all the
samples revealed wide variations in performance based on the
measures used [71].

In a recent study, researchers suggested an algorithm that could
anticipate the mortality rate of patients with COVID-19 with
accuracy that reached 90%. In that study, machine learning
methods were used to establish a predictive model for early
recognition of critically sick patients based on clinical and
epidemiological data obtained from patients infected with
COVID-19. The working mechanism for this machine learning
model was based on quantitative sorting of the clinical features
according to their criticality. The revealed features were then
sorted, and an interpretable clinical route was obtained [23,72].

AI for COVID-19 Modeling and Simulation
Mathematical modeling of viruses and infections may help
simplify the process of understanding virus dynamics. Many
authors have used ordinary differential equations in virology
and epidemiology to model and simulate different scenarios
[73-75].

Viruses are believed to be among the most numerous and
divergent biological systems [76]. However, despite their
diversity, many shared events and common processes are found
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in most or possibly all viruses, such as viral replication cycles,
which are necessary for productive infection.

Disruption of one or more of these steps may impair or prevent
propagation of the virus. Similarly, destabilizing the infective
virions before they can attack host cells may be an effective
way to prevent propagation. From a therapeutic viewpoint, the
process of modeling and simulating the molecular-level
dynamics of SARS-CoV-2 in detail at every stage in addition
to the virions themselves is important and desirable in such
situations and can greatly aid understanding and management
of infection with the virus. This knowledge would also be
required to address emerging drug-resistant viral strains and
future outbreaks of novel pathogenic species similar to
COVID-19. In theory, developing therapeutics that can target
single or multiple steps in the viral replication cycle or critical
processes that have limited capacity for viable mutation can
reduce the opportunity for SARS-CoV-2 to develop resistance
to administered drugs. Likewise, if simulations aid
understanding of the dynamic and structural basis for COVID-19
drug resistance, antiviral drugs can be modified to account for
mutations [77].

As in numerous areas in biology, to obtain a comprehensive
understanding of virus operations, multidisciplinary approaches
are required. Supported by structural biology advancements,
AI and computational methods have emerged as very powerful
tools that can complement experimental techniques with the
use of mathematical modeling and simulations. In several cases,
AI and computational approaches can help bridge information
gaps among experiments through reporting in different temporal
and spatial domains in addition to their considerable predictive
powers.

AI Robotics for Medical Quarantine and Isolated
Patients With COVID-19
COVID-19 is a highly transmissible disease that poses a real
threat to health care workers. Transmission of this disease to
health care workers is highly likely, especially during pandemics
when hospitals are overloaded with infected patients.

AI can offer safe and efficient solutions, such as robots that
health care professionals can operate while teleconferencing
with patients. Teleoperated robots can accomplish common
nursing tasks in hazardous areas, such as delivering meals or
medications, collecting specimens, and transporting waste, with
high accuracy and efficiency [78]. An obvious advantage of
using these robots is that a single operator can control multiple
robots while rapidly switching between quarantine areas. Other
advantages include the ability to communicate with patients via
a virtual telepresence system 24 hours per day, 7 days per week.
Moreover, a robot called TRINA (Tele-Robotic Intelligent
Nursing Assistant) was used to perform error-prone nursing
jobs and showed promising results [79].

Toward Preventative Medicine Using AI and
Telemedicine
Several studies have specifically demonstrated the significance
of using telemedicine in public health emergencies and disasters.
Telemedicine programs take time to develop; however, health
systems that have already developed telemedical innovations

can leverage and modify them to rapidly manage COVID-19
outbreaks [80].

Forward triage is considered to be a central strategy of health
care surge control; it depends mainly on sorting patients prior
to their arrival at the emergency department. On-demand or
direct-to-consumer telemedicine is a forward triage method that
enables effective screening of patients. This screening protects
patients, health care workers, and the community from exposure;
additionally, it is both patient-centered and conducive to
self-quarantine. Telemedicine allows patients and physicians
to communicate at any time by using smartphones and
webcam-enabled computers [18,81].

At present, the main barrier to large-scale telemedicine screening
for COVID-19 is testing coordination. As the availability of
testing sites increases, development and integration of local
systems into telemedicine workflows is needed to test
appropriate patients while decreasing exposure using tents,
in-car testing, or dedicated office space. To keep pace with the
evolving recommendations regarding COVID-19, health systems
are employing bots or automated logic flows that can refer only
moderate- or high-risk patients to nurse triage lines and can also
allow patients to request video visits with on-demand providers
[7]. It is important that practices not routinely refer patients to
urgent care medical centers or emergency departments, as this
will create exposure risk for health care providers and overload
these centers with patients.

Before the outbreak of COVID-19, several emergency
departments adjusted their provider-in-triage models for rapid
initial testing and evaluation to allow remote providers to
perform intake [82]. In emergency situations, web conferencing
software with secured open lines from the triage room to a
provider can be rapidly implemented [83]. Employing a single
remote clinician to cover several sites can address workforce
challenges; however, this measure is difficult to implement if
the software lacks a queuing function. To avoid exposing staff,
telehealth visits can be conducted using paired tablets or
commercial systems that enable communication with providers
through dedicated connections. However, this system does not
fully eliminate exposure of health care providers to patients
who require certain manual procedures.

Electronic monitoring programs enable physicians and nurses
to remotely monitor patients’status in several hospitals. Through
mobile integrated medical programs or community
paramedicine, patients can be managed from their homes, with
medical support provided virtually. In Houston, the ETHAN
(Emergency Telehealth and Navigation) project uses telemedical
oversight to augment in-person care provided by nearly 1000
responders, decreasing the requirement for transportation to
emergency departments [84,85].

Telemedicine can offer rapid access to specialists who are not
instantly available in person. Barriers to implementing these
programs are largely related to credentialing, payment, and
specialist staffing [86]. COVID-19 has raised concerns regarding
workforce capacity. Telemedicine can enable quarantined
physicians to remotely manage and treat patients, freeing time
for other physicians to provide in-person care.
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In addition, remote training sessions and online training modules
can be made available to patients or clinicians who need
assistance or in-time training. Program implementation,
regulatory and payment structures, credentialing across
hospitals, and state licensing will all require time; however,
health systems that have already invested in telemedicine are
well positioned to ensure that the patients with COVID-19 obtain
the care they require. In this instance, telemedicine may be a
perfect virtual solution.

Discussion

AI can potentially provide novel and reliable paradigms for
health care services. Due to the nearly unlimited abilities of AI
that are gained from its numerous algorithms and approaches,
it can help address the virulent spread of the SARS-CoV-2 virus
worldwide. Proper application of AI through the use of both
existing and novel machine learning approaches may be pivotal
to eliminating COVID-19. Furthermore, there is a need for
major investment in this field to enable rapid response to the
dangers of this disease; this may be a major factor in saving
lives worldwide.
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