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Abstract

Background: Artificial intelligence (Al) and the Internet of Intelligent Things (110T) are promising technologies to prevent the
concerningly rapid spread of coronavirus disease (COV1D-19) and to maximize safety during the pandemic. With the exponential
increase in the number of COVID-19 patients, it is highly possible that physicians and health care workers will not be able to
treat all cases. Thus, computer scientists can contribute to the fight against COVID-19 by introducing more intelligent solutions
to achieve rapid control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease.

Objective: The objectives of this review were to analyze the current literature, discuss the applicability of reported ideas for
using Al to prevent and control COVID-19, and build a comprehensive view of how current systems may be useful in particular
areas. Thismay be of great help to many health care administrators, computer scientists, and policy makers worldwide.

Methods: We conducted an electronic search of articlesin the MEDLINE, Google Scholar, Embase, and Web of Knowledge
databases to formulate a comprehensive review that summarizes different categories of the most recently reported Al-based
approaches to prevent and control the spread of COVID-109.

Results: Our searchidentified the 10 most recent Al approachesthat were suggested to provide the best solutionsfor maximizing
safety and preventing the spread of COVID-19. These approaches included detection of suspected cases, large-scale screening,
monitoring, interactions with experimenta therapies, pneumonia screening, use of the [10T for data and information gathering
and integration, resource allocation, predictions, modeling and simulation, and robotics for medical quarantine.

Conclusions: We found few or almost no studies regarding the use of Al to examine COVID-19 interactions with experimental
therapies, the use of Al for resource allocation to COVID-19 patients, or the use of Al and the IloT for COVID-19 data and
information gathering/integration. Moreover, the adoption of other approaches, including use of Al for COVID-19 prediction,
use of Al for COVID-19 modeling and simulation, and use of Al robotics for medical quarantine, should be further emphasized
by researchers because these important approaches lack sufficient numbers of studies. Therefore, we recommend that computer
scientists focus on these approaches, which are still not being adequately addressed.
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Introduction

With the emergence of the novel coronavirus disease
(COVID-19) pandemic, many regions and countries have been
facing different risks at different times. Due to the high
infectivity and spread of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), thevirusthat causes COVID-19,
combined with its increased hospitalization rate, COVID-19 is
a serious public health threat worldwide [1,2]. Artificial
intelligence (Al) systems such as cognitive computing, deep
learning, convolutional neural networks, and machine learning
can play a critical role in detection, large-scale screening,
monitoring, reduction of caregiver workload, and prediction of
possibleinteractions with the new therapiesfor thisvirus[3-6].
In this review, we provide an analysis of Al applications that
may help limit the spread of or even help eradicate thisvirus if
properly adapted and applied by countries.

Methods

We conducted an electronic article search using the MEDLINE,
Google Scholar, Embase, and Web of Knowledge databases.
The search included only English-language publications, with
afocuson evidence-based research articles. The search focused
on both randomized and nonrandomized controlled trials,
longitudinal studies, cross-sectional studies, and retrospective
studies. A list of keywords were used with different
combinations, as follows: SARS-CoV-2, COVID-19, novel
coronavirus, artificial intelligence, internet of things,
telemedicine, machine learning, modeling, simulation, and
robotics.

Results

Figure 1 shows a summary of Al-based approaches to prevent
the spread of COVID-19.

https://www.jmir.org/2020/8/€19104

Al for Detection of Suspected COVID-19 Cases

A pandemic creates unique challenges to the delivery of health
care, and these challenges must be faced by alimited number
of health careworkers. Al can help address these problems; for
example, a smartphone app could be developed that collects
signs, symptoms, previouslocations of the patient, travel history,
and updated areas of the outbreak, then processes and filters
thisinformation using algorithms so that only suspected cases
are examined by physicians (Figure 2) [7].

On January 22, 2020, the Center for Systems Science and
Engineering at Johns Hopkins University launched a publicly
shared web-based interactive dashboard [8]. The aim of this
dashboard was to accurately visualize and track reported cases
of COVID-19 in rea time. This revolutionary idea has
contributed to the rapid identification of new outbreaks of the
disease. The information on this dashboard is updated twice
daily, which provides an added advantage. This has opened a
new spectrum of Al to predict and recommend quarantine in
areas where a threshold number of casesisreached. It can also
aid early diagnosis of patientsif they report travelling to these
areas. All these data are displayed freely through Google Sheets
and the ArcGIS Living Atlas[9].

Another important application of Al is remote monitoring of
home-quarantined patients and their families via smartphones
or smart bracelets. An automatic alarm will sound and provide
a warning message if the patient or family member breaks
quarantine.

All these contributions can significantly decrease the burden
on health care workers and enable them to work more efficiently
in asafe environment [7].
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Figure 1. Summary of Al approaches to address the COVID-19 pandemic. Al: artificia intelligence; CAD: computer-aided diagnosis, COVID-19:
novel coronavirus disease.
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Figure 2. Potentia artificial intelligence—based detection of suspected patients with coronavirus disease using a smartphone app.
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Al for Large-Scale COVID-19 Screening

Noncontact systemsthat use Al to measure signs and symptoms
of COVID-19 are extremely important for large-scal e screening
in asignificantly short period (Table 1). Rapid screening using
these systems not only enables remote detection of suspected
cases but can aso be performed by significantly fewer
personnel, which can reduce the work stain on areas such as
airports and supermarkets and further augment social distancing

[71-

Noncontact systems that can be used for large-scale screening
includeinfrared thermal imaging technology and camera-based
motion detection software to detect and analyze abnormal
respiratory patterns[10].

One of the diagnostic signsof COVID-19 isfever [10]. Infrared
thermal cameras enable real-time visualization of any transient

https://www.jmir.org/2020/8/€19104

RenderX

or constant changes in the energy radiating from individuals,
which enables estimation of surface temperature [11]. With the
aid of Al detection agorithms, suspected individuals with
COVID-19 can be automatically identified and tracked using
infrared thermal cameras with minima need for human
monitoring.

Respiratory pattern is another diagnostic sign of individuals
with COVID-19 [12,13]. The pattern of respiration in
COVID-19 is quite different from that in the common cold or
influenza [14,15]. Tachypnea, or abnormally rapid breathing,
may indicate infection with COVID-19. Using a depth camera
to conduct noncontact respiratory measurements of individuals
and analyzing these measurementsusing Al detection algorithms
was found to be apromising method for additional confirmation
of COVID-19 cases[12,13].
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Table 1. Comparison of the cost and efficiency of Al systems versus conventional human labor for large-scale screening of COVID-19.

Parameter

Al2 systems for COVID-19° screening

Conventional human labor for COVID-19 screening

Cost

Sensitivity (probability of detection)

Specificity (excluding negative condi-

tions) tions having similar signs.

Duration of screening Very short.

Number of working hours

will be able to work from home.

Possibility of COVID-19 infection
among examined subjectsand examin-

ers of COVID-19 infection.

May beinitialy high but significantly decrease with
time, leading to lower cumulative cost.

Very high if multiple confirmatory methods are used.

False positive results may occur due to other condi-

24 hours, 7 days aweek in addition to the working
hours of quarantined physicians and health care
workers who are suspected to have COVID-19, who

Very little or no contact between persons, which
significantly decreasesthe possibility of transmission

May be high or low according to country but will
generally have higher cumulative cost, including the
added cost of applying preventive measures for direct
contact.

Affected by distractors.

When screening is performed by expert health care
workers, specificity will be high.

Relatively long and may require additional employees
to shorten the duration.

No more than 48 hours of work per week and no more
than an average of 8 hours of nighttime work per 24
hours of total work [16].

Highrisk of transmission of COVID-19 infection even
if preventive measures are followed, as human error
may occur.

Al artificial intelligence.
bCoOVID-19: coronavirus disease.

Al for COVID-19 Monitoring

Large amounts of data from patients with COVID-19 are
routinely manually collected and interpreted in hospitals with
or without standalone monitoring devices. The processes of
collecting patients' monitor datain hospital wards are different
in many hospitals, as different approaches are used worldwide.
In some hospitals, data are only collected manually and then
recorded in spreadsheets, which are discarded after the patient
is discharged [17].

Al systems can collect monitor datafrom patients using personal
digital assistants (PDAS), tablets, and similar equipment; the
patients' datacan be stored in electronic health records (EHRS),
where they can be easily shared and rapidly transferred when
needed [18].

With different technologiesand Al, the collection, analysis, and
interpretation of patients’ monitor data can be fully or partially
automatized, which diminishes both infection risk and the
burdens imposed on medical staff to constantly gather, store,
analyze, and interpret these data [17].

Several intelligent and expert systems have been developed for
medical monitoring using wireless sensor networks. These
methods have been found to be efficient when signals are
continuous, however, the applicability of these expert systems
to incomplete data has not yet been established [19].

Thoracic computed tomography (CT) without contrast is
considered to be an effective method to detect, quantify, and
monitor symptoms of patients with COVID-19. Deep learning
algorithms could be developed to contribute to the analysis,
interpretation, and tracking of large numbers of thoracic CT
examinations [20].

Developing a video imaging—based high-speed medical
monitoring system that uses motion tracking monitoring
algorithmsfor patientswith COVID-19 can also provide alarge

https://www.jmir.org/2020/8/€19104

amount of factual information regarding vital signs (temperature,
heart rate, respiratory rate, blood pressure, oxygen saturation)
aswell as status, condition severity, existing comorbidities, and
patient discharge. Modal parameters can be subsequently
extracted to analyze the level of severity or damage from
COVID-19. Mation tracking monitoring has been investigated
in several studieswith very promising results [21,22].

It has been reported that patients with COVID-19 can be
discharged from the quarantine ward if they meet the following
criteria. being afebrile for a minimum duration of three days,
respiratory symptoms resolved, improvements in radiological
signsfor pulmonary infiltrates, at | east two consecutive negative
COVID-19 nucleic acid testswith sampling intervals of at least
24 hours[15].

Al-based automated analysis tools for tracking the discharge
criteria for patients with COVID-19 should be developed to
determine and differentiate treated patients from those who still
need to beisolated. In addition, Al-based automated CT image
analysis tools for tracking, quantification, and detection of
COVID-19 can assigt in differentiating patientswith COVID-19
from individuals who do not have the disease. Moreover,
artificial neural networks can be trained to infer qualitative
characteristics that are based on intensity as well as network
inferences, which can be correlated according to the patient’s
condition.

An exploratory study showed that Al can reliably and efficiently
contribute to accurate detection and tracking of the progression
or resolution of COVID-19. In this work, it was also reported
that the rapid developments in Al-based automated tools for
CT image analysis can achieve a high degree of accuracy in
detection of COVID-19—ositive patientsin addition to precise
assessment of the severity of the disease [23,24].

JMed Internet Res 2020 | vol. 22 | iss. 8| e19104 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Al for Analysisof Experimental Therapiesfor
COVID-19

Computer-aided drug design is highly efficient for rapidly
identifying drug repurposing candidates and should be further
investigated.

One example is the mechanism-based inhibitor N3, which was
identified using computer-aided drug design. N3 was found to
particularly inhibit the main protease of SARS-CoV-2 because
it can fit within a substrate-binding pocket [25].

A crucial application for computer-aided drug repurposing is
treating novel diseases such as COVID-19 by identifying drugs
that were developed to treat other diseases. Drug repurposing
can berealized by conducting systematic drug-drug interaction
analyses and studying drug-target interactions, which can be
performed using Al-based algorithms [26-28].

Al has been recognized to have a transformative influence on
drug devel opment. In accordance with arecent report, machine
learning and big data can have great effects on health care
systems and may have positive outcomesin the pharmaceutical
market, as it has been predicted by industry experts that
devel oping drugsthrough Al methodswill provide significantly
improved feedback. However, Al-based drug development may
be slower to launch in the long term. If applied correctly, these
methods can be highly competitive in the pharmaceutical
industry [29,30].

Natural language processing is another branch of Al that can
be applied in COVID-19 drug development. Its methods can
be beneficia for extracting meaning from text using machine
learning approaches and searching for external biomedical
content in drug discovery [31,32]. Another Al approach is
machine or computer vision, which is the use of algorithmsto
enable computers to comprehend the content of images. These
images can be used to understand cell anatomy and identify
novel treatments for COVID-19 [33].

The use of Al is prevaent in drug discovery, and many
pharmaceutical corporations have established in-house
partnerships or initiatives with Al companies. Some
organizations are currently using Al approaches to find novel
uses for late-stage drug candidates or repurpose existing drugs
[34,35]. However, data of sufficient quality are needed to train
systems for COVID-19 Al implementation. Data accessibility
is an additional challenge because the systems will be trained
viasupervised learning, which requires substantial amounts of
data on COVID-19 to accurately perform complex tasks.

Accessihility of data can also create costsif these data must be
accessed by corporate partners or technology providers.
Additionally, the data should be of high quality, as poor or
corrupt data can affect theresults. At present, although industry
standards for data have been established for many uses, they
currently may not apply in the case of COVID-19. Moreover,
a substantial amount of effort is required to integrate data on
COVID-19 into corporation systemsto useit for Al.

Al for Screening COVID-19 Pneumonia

COVID-19is spreading very rapidly worldwide; meanwhile, it
can be difficult to diagnose the disease. These limitations can

https://www.jmir.org/2020/8/€19104
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be partially accredited to the limited number of physicianswho
are capable of interpreting data and using identification methods
compared to the great increase in the number of cases[36].

It has been reported that radiol ogists can distinguish COVID-19
pneumoniafrom other types of pneumoniain chest CT images
with high specificity. Other reports have demonstrated that
reverse transcriptase—polymerase chain reaction (RT-PCR)
analysishasalow sensitivity of about 60% to 71% for detection
of COVID-19 [37]. This may be due to decreased viral load in
the test specimen or to laboratory error. The false negatives
produced by RT-PCR analysis can hinder quarantine efforts
and require tests to be repeated. On the other hand, the
sengitivity of chest CT has been established to be approximately
56% to 98% for COVID-19 detection at initial presentation,
and it may help rectify false negative results that are obtained
by RT-PCR analysis during the early stages of development of
the disease. Additionally, chest CT images can reveal disease
progression [33].

Compared to non—COVID-19 pneumonia, CT images of
COVID-19 pneumonia are more likely to show vascular
thickening, fine reticular opacity, ground-glass opacity,
peripheral distribution, and reverse halo sign in addition to
bilateral peripheral involvement of multiplelobes. The CT signs
may improve gradually approximately 14 days after the onset
of symptoms. On the other hand, CT images of COVID-19
pneumonia are unlikely to show both peripheral and central
distribution, pleural  effusion, pleural  thickening,
lymphadenopathy, or air bronchogram [38]. Thus, future
directions in chest CT may involve developing an Al-based
classifier that can further augment the performance of
radiol ogists when combined with clinical information.

Exploration of automated pneumoniaanalysisviadeep learning
is a very important issue for examination for many different
reasons. The most important reason isthat the chest radiographs
of COVID-19 patients must be reviewed by highly trained
specialists, which creates large amounts of work for those
specialists. Further, it is very difficult to read these images
because pneumoniaisnormally revealed over one or more areas
of increased opacity [39]. This increase may be due to a
reduction of the ratio of gas to soft tissue (lung parenchyma,
stroma, and blood) in the lungs. Thus, when an amplified
attenuation area (opacification) is reviewed on a CT or chest
radiograph, it iscrucial to define where the opacifications occur.
Diagnosis is very complicated because other conditions can
alter the appearance of aradiograph, such as bleeding, surgical
changes, post-radiation changes, pulmonary edema, lung cancer,
and volume loss due to collapse or atelectasis; aspects such as
inspiration depth and patient positioning may also affect the
radiograph. Due to these issues, interpreting chest images of
COVID-19 patients by the human eye alone is extremely
challenging [38].

Although thefields of machinelearning and pneumoniaresearch
areindividually well developed, very limited work is currently
available regarding the application of machine learning for
diagnosisof pneumonia, especially for patientswith COVID-19.
Research on deep learning a gorithms has recently shown rapid
progress. In general, pneumonia diagnosis for medical fieldsis
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abroadly known discipline. The combination of those two areas
would be novel and promising [40]. Previous research has been
performed to apply image processing techniques for
identification of cases with pneumonia. Other algorithms have
been developed to crop and extract the lung regions from
images. The Otsu thresholding method has been used to
segregate infected cloudy pneumonialung regions from healthy
regions. Another detection method has been proposed based on
cellular neural networks, the simulated results showed
remarkable performancein differentiating the lung region area
and normal areabased on changesin segmentation and grayscale
color [41].

It was also reported that machine learning has the important
advantage of increased capability to evaluate the effects of
interventions when studying subpopulations in clinical
pneumoniaresearch [40]. Another significant aspect of machine
learning for identifying COVID-19 infection is image
classification. This has resulted in the development of arange
of networks for image classification. These networks usually
employ backpropagation algorithms. Very large neural networks
are usually needed for deep learning architectures. Some
commonly used deep learning architecturesinclude GoogL eNet,
ResNet, and AlexNet [42].

Computational models for deep learning can discover intricate
structures in very large data sets by using backpropagation
algorithmsto indicate how amachine would modify theinternal
parametersit usesto compute representations of each layer from
representations of the previouslayer [43]. Training deep learning
networksthat can recogni ze symptoms of COV1D-19 pneumonia
would be very beneficial. These networks could facilitate
prescreening and automated diagnosis.

Research has provided insightsinto testing difficulties associated
with very large radiograph image data sets. Most research in
this area focuses on small and controlled data sets. For these
data sets, irregular features may not be an issue. However, as
the size of the data set increases, the number of irregular images
also increases. It is particularly important to overcome this
potential hurdle for COVID-19 diagnosis because amodel that
is used by medical industries must be capable of considering
all radiographic forms. However, the model will till berequired
to function at high levels regardless of whether these image
types are imputed [42].

Applying computer-aided detection to radiographs of patients
with pneumonia may provide a supplement or aternative to
human reading [44]. To develop an efficient Al agorithm that
uses chest radiographsto predict clinical outcomes, the clinical
settings and disease burden profiles of COVID-19 prevalence
should be considered.

Software should be trained to use selected chest radiographs of
patients with COVID-19 to automatically segment fields of the
lung in other radiographs. After the classifier is trained on
randomly selected chest radiographs, it can be applied to the
remaining chest radiographs.

Chest radiographs commonly demonstrate many categories of
abnormalities. Some disease processes may show acombination
of abnormal shapes where the disease process has atered the
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patient’s norma anatomy, such as cardiomegaly and focal
abnormalities. Thesefocal abnormalities may appear asisolated
density changes, such as pulmonary nodules and texture
abnormalities. Texture abnormalities are characterized by diffuse
changes[45]. In these situations, texture analysis may be useful
for assigning a probability to each location in the lung fields
[39].

In general, further developments and validation should be
performed in multicenter studies, which would be significant
for future research on Al and computer-aided diagnosis in
COVID-19 radiology.

Al and thelnternet of Inteligent Thingsfor COVID-19
Data and Information Gathering and I ntegration

Patients with COVID-19 can provide novel types of data that
are relevant to achieving medical goals. Self-tracking devices,
mobile health apps, and social media can provide patients with
information about COVID-19 and can enable them to monitor
their health or even achieve a certain goal. Incorporating Al
into devices offers tools and methods for designing and
analyzing therapies that can be made accessible to patients and
clinicians while supporting consistent integration into patients
lives and clinicians’ practices [17,46,47]. This field not only
offers promising challenges for patients with COVID-19 but
can also improve systematic data collection to determine
treatment effectiveness.

In the context of the Internet of Intelligent Things (1olT), a
“thing” isasystem or entity composed of subsystems, and every
subsystem is an indispensable component of the system [48].
Thus, if we divide COVID-19 medical and diagnostic devices
in health centers or hospitals into things and modulate these
things to be sufficiently intelligent to operate on their own, we
can establish a behavior for every subsystem. The challengeis
to understand each thing separately. Therefore, to understand
the behavior of things used to help control COVID-19, it is
necessary to understand the main subcomponents of each thing;
then, we must understand the behavior of each subsystem to
understand the behavior of the thing as a whole and how to
enableit to connect and communicate with other things viathe
internet.

A crucia challenge for the advancement of digital hedth is
efficient and effective integration of incomplete or
heterogeneous information about COVID-19 from different
sources and different types, such as interoperability solutions,
insufficient availability, and existence of current information
silos. All this contradicting information is hindering the
development of effective applications. Different information
types must beintegrated, such asclinical information (including
EHRYs), information extracted from the biomedical literature by
text mining, and high-throughput information on how drugs or
chemicalsinteract in different circumstances [36].

Additionally, big data may be useful to optimize resource use
when making informed decisions based on the availability of
datarelated to COVID-19 cases. Al, machine learning, and the
internet of things (1oT) could contribute significantly to this
process [49-51].
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Big dataanalysis performed viaAl can beinterpreted asameans
of training computers to mimic thinking patterns and even
simulate human behaviors. It is assumed that the accuracy of
the achieved results will increase with increasing availability
of processing power and data because it is desirable to perform
machine learning using real-time data[52,53].

Intelligent computing systems can support decision-making
even when the problems are complex. A great deal of success
has been achieved in integrating expert systems into intelligent
systems. However, expert systems may face difficulties in
acquiring and processing COVID-19 knowledge. Thus, to
recognize theinvolved patterns and the knowledge gained from
different fields, it isvital to combine datamining with intelligent
computing systems to determine the information gathered and
the patternsinvolved, which may include clustering algorithms,
neural network algorithms, regression algorithms, and Bayesian
algorithms [54].

Numerous other challenges may a so emerge, including privacy
breaches, ethical concerns, and lack of information security.
Thus, the ability to share, analyze, and gather information about
COVID-19 in real time with different devices may add to the
difficulty of maintaining patient privacy.

The mining of very large COVID-19 data sets may present
difficulties in terms of computation and storage. For example,
combining various types of information in heterogeneous
COVID-19 data sets with global information systems can be
complicated. Additionally, numerous COVID-19 experts are
needed to formulate the data mining process. Finaly, the
accuracy of datamining results dependsonthelevel of diversity
of the gathered COVID-19 data set.

Data mining can also provide many benefits. For example,
powerful high speed processes can be established to examine
the enormous amounts of information related to COVID-19 and
can provide a knowledge base for a specific area of COVID-19
information. Additionally, the diagnosis and prediction of
COVID-19 can be automated, and data mining can enhance
decision-making processes.

Al for ResourceAllocation to PatientsWith COVID-19

As more countries are affected by COVID-19 worldwide, it is
increasingly necessary to prioritize allocation of resources to
patients with the disease [55].

If we attempt to cal cul ate conservative estimates of the resources
that will be needed to fight COVID-19, we find that the
resources needed are beyond the available capacities of health
care facilities. To achieve an accurate estimation of these
resources, estimations should include human resources (such
as medical staff, including therapists and nurses) and other
facilities (including numbers of hospitals, emergency
departments, intensive care units, adult beds, neonatal beds,
pediatric beds, ventilators, oxygen concentrators, oxygen
cylinders, oxygen plants, liquid oxygen, medications, personal
protective equipment, critical medical supplies, and pulse
oximeters). It is very important to assess all these resources
before establishing any action plan for resource allocation.
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Given these numbers, if the curve of infected individualsis not
reduced and flattened over ashort period of time, the COVID-19
pandemic will likely result in a shortage of medical resources,
particularly ventilators and hospital beds. The number of medical
workers who will be affected should also be taken into
consideration, asthese workerswill commonly be quarantined.

In addition, even after a vaccine is developed, time will be
needed to produce, distribute, and administer it; shortages of
the vaccine will probably arise aswell.

Supply limitations restrain the speed of producing more
resources, such as ventilators. Currently, manufacturers cannot
state with certainty how many ventilators they can produce
during ayear.

Policy makers are facing decisions about which patients will
be provided with available resources while taking into
consideration that patients who do not receive these resources
will very likely die.

These decisions cannot be made based on age aone.
Professionals haveindicated that prioritization should be based
on which patients are more likely to survive to save the
maximum possible number of lives[56].

To address the COVID-19 resource allocation problem, it is
necessary to understand complex data structures related to the
prioritization criteria and resources in question.

Applying big data analysis and data mining algorithms,
including unsupervised and supervised machine learning, to
optimize the prioritization process would be very helpful to
reduce harm as much as possible in emergency situations when
resources are scarce. With the use of atrained model, machine
learning can also minimize human effort while improving or
maintaining accurate prioritization.

Moreover, intelligent estimation of resource needs (especially
oxygen needs) iscrucial to be asaccurate aspossiblein addition
to deciding which source of oxygen would be better for a patient
by considering thetotal gross oxygen flow that would be needed
through anticipating the load of each patient based on severity
and number of patients.

Developing an expert system or framework for reasonable and
fair allocation of COV1D-19 therapeutics and resourcesisvery
complex and requires coordination of many variables and
estimationsthat must be guided by comprehensive and accurate
information based on loT technology, which can provide
information about distributions, numbers, sizes, capacities, and
risks related to both resources and the affected populations
worldwide. The realization of such frameworks or expert
systemswill mainly depend on sharing and collecting data; this
can be greatly facilitated by the |oT.

Al for COVID-19 Prediction

Transmission Rates

In theinitial stages of the COVID-19 outbreak, it is critical to
analyze and understand the dynamics of transmission of the
virus. Changesin the estimations of transmission over time can
offer insightsin epidemiological situationsand demonstrate the
effectiveness of outbreak control measures [57].
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These analyses can also provide predictions of future growth,
assist risk estimation for countries, and guide strategy for
aternative interventions [58]. These analyses present many
challenges, especialy inreal time. Moreover, with COVID-19,
the appearance of symptoms may be delayed due to the period
of incubation; also, confirmation of cases may be delayed in
accordance with detection and testing capacity.

Al approaches can account for these delays as well as for
uncertainty by explicitly incorporating delays that result from
the natural history of virus infection or reporting processes. In
addition, individual data sources may beincomplete, be biased,
or only capture some aspects of the dynamics of the outbreak.
However, evidence synthesis approaches that fit with multiple
data sources can enable more robust estimations of the
transmission dynamics that can be gathered from noisy data
[58,59].

Many factors can affect the transmission dynamics of
COVID-19 throughout a country, such as outflow population
size from a certain place to affected provinces or cities,
geographic locations, interventions, social and economic
activities, health carefacilities, and environmental heterogeneity.
The process of clustering temporal dynamics will provide
various insightsinto the patterns of COVID-19 propagation. In
addition, modified auto-encoders have been used to predict the
accumulative number of new confirmed cases of COVID-19.
By hypothesizing theinitial amounts of the epidemical outbresk,
modified autoencoders can be used with known architectures
and parameters to predict the sizes of future outbreaks and
simulate the impact of interventions on the severity and size of
epidemics [43,57,60].

Data-driven Al-based methods offer real-time forecasting
techniquesfor estimating and tracking the severity of epidemics,
ng their trajectory, predicting their length, and supporting
decision-making by health care workers and governments
[61,62].

Mutations

The prediction of genetic mutationsin the SARS-CoV-2 genome
has attracted much attention. Rapid progress has been realized
to predict these mutations and analyze their effects. Tracing the
mutations of SARS-CoV-2 can provide comprehensive
understanding of the evolution dynamics of the virus.

In some studies, antigenic cartographies have been devel oped
for quantifying and visualizing site mutations and antigenic
differences[63]. Neural networkswere applied in another study
to predict point mutations that may appear on structure
alignments of primary RNA sequences [64]. Network models
wereal so outlined to demonstrate the dynamicsand evolutionary
patterns of avirus [65].

Many RNN-based neura networks have been developed for
predicting time series tasks [66]. K-means clustering can also
be used to find clusters of mutations of SARS-CoV-2, which
can provide insights into the nature of mutations and how they
can be addressed.

A model was proposed to forecast the properties of virusesthat
are not characterized antigenically using phylogenetic trees.
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Modeling sequential data dynamically is important. Recent
research has provided waysto embed biological sequencesinto
lower-dimensional vector spaces [67].

Severity and Mortality Rates

The assessment of COVID-19 severity by clinical presentation
can no longer meet urgent clinical needs. Thus, introducing a
deep learning—based model by quantitating clinical featuresto
predict the severity and mortality rates of COVID-19 will be
of significant value. Deep learning—based quantitative CT
measurements of the extent of lesions and clinical features on
initial admission can assist in predicting COVID-19 severity;
thiswill enable physiciansto triage patients and design treatment
protocols and follow-up evaluations in advance.

Convolutional neural networks were introduced as a potential
solution to problems faced in automatic organ segmentation
[57,68].

In a recent study, a new model to forecast the prognosis of
COVID-19 was established. It has been reported that
parsimonious models, which contain five features (age, lactate
dehydrogenase, C-reactive protein, CD4" T-cell counts, and
mass of infection), are an ideal measure for predicting
COVID-19 severity. Thisisacommon regression method with
high-dimensional data(Cox proportion hazard regression model)
that has been extended to and broadly used in logistic regression
models for outcome forecasting and survival analysis. This
approach may be superior to conventional methods when
choosing predictors and may allow researchers to combine
selected particular features into single signatures [69,70].

Another study demonstrated that machine learning algorithms
are superior to traditional statistical modeling approaches for
predicting mortality in patients with pneumonia. However, it
was found that none of the samples or models assessed showed
overall precise predictions of patient mortality, and al the
samples revealed wide variations in performance based on the
measures used [71].

In arecent study, researchers suggested an algorithm that could
anticipate the mortality rate of patients with COVID-19 with
accuracy that reached 90%. In that study, machine learning
methods were used to establish a predictive model for early
recognition of criticaly sick patients based on clinical and
epidemiological data obtained from patients infected with
COVID-19. The working mechanism for this machinelearning
model was based on quantitative sorting of the clinical features
according to their criticality. The revealed features were then
sorted, and an interpretable clinical route was obtained [23,72].

Al for COVID-19 Modeling and Simulation

Mathematical modeling of viruses and infections may help
simplify the process of understanding virus dynamics. Many
authors have used ordinary differential equations in virology
and epidemiology to model and simulate different scenarios
[73-75].

Viruses are believed to be among the most numerous and
divergent biological systems [76]. However, despite their
diversity, many shared events and common processes are found
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in most or possibly all viruses, such asviral replication cycles,
which are necessary for productive infection.

Disruption of one or more of these steps may impair or prevent
propagation of the virus. Similarly, destabilizing the infective
virions before they can attack host cells may be an effective
way to prevent propagation. From atherapeutic viewpoint, the
process of modeling and simulating the molecular-level
dynamics of SARS-CoV-2 in detail at every stage in addition
to the virions themselves is important and desirable in such
situations and can greatly aid understanding and management
of infection with the virus. This knowledge would also be
required to address emerging drug-resistant viral strains and
future outbreaks of novel pathogenic species similar to
COVID-19. In theory, developing therapeutics that can target
single or multiple steps in the viral replication cycle or critical
processes that have limited capacity for viable mutation can
reduce the opportunity for SARS-CoV-2 to develop resistance
to administered drugs. Likewise, if simulations ad
understanding of the dynamic and structural basisfor COVID-19
drug resistance, antiviral drugs can be modified to account for
mutations [77].

As in numerous areas in biology, to obtain a comprehensive
understanding of virus operations, multidisciplinary approaches
are required. Supported by structural biology advancements,
Al and computational methods have emerged as very powerful
tools that can complement experimental techniques with the
use of mathematical modeling and simulations. In several cases,
Al and computational approaches can help bridge information
gaps among experiments through reporting in different temporal
and spatial domainsin addition to their considerable predictive
powers.

Al Roboticsfor Medical Quarantine and | solated
Patients With COVID-19

COVID-19 is a highly transmissible disease that poses a real
threat to health care workers. Transmission of this disease to
health careworkersishighly likely, especially during pandemics
when hospitals are overloaded with infected patients.

Al can offer safe and efficient solutions, such as robots that
health care professionals can operate while teleconferencing
with patients. Teleoperated robots can accomplish common
nursing tasks in hazardous areas, such as delivering meals or
medications, collecting specimens, and transporting waste, with
high accuracy and efficiency [78]. An obvious advantage of
using these robotsis that asingle operator can control multiple
robotswhilerapidly switching between quarantine areas. Other
advantagesinclude the ability to communicate with patientsvia
avirtual telepresence system 24 hours per day, 7 days per week.
Moreover, a robot called TRINA (Tele-Robotic Intelligent
Nursing Assistant) was used to perform error-prone nursing
jobs and showed promising results[79].

Toward Preventative Medicine Using Al and
Telemedicine

Several studies have specifically demonstrated the significance
of using telemedicinein public health emergencies and disasters.

Telemedicine programs take time to develop; however, health
systems that have already developed telemedical innovations
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can leverage and modify them to rapidly manage COVID-19
outbreaks [80].

Forward triage is considered to be a central strategy of health
care surge control; it depends mainly on sorting patients prior
to their arrival at the emergency department. On-demand or
direct-to-consumer telemedicineisaforward triage method that
enables effective screening of patients. This screening protects
patients, health care workers, and the community from exposure;
additionally, it is both patient-centered and conducive to
self-quarantine. Telemedicine allows patients and physicians
to communicate at any time by using smartphones and
webcam-enabled computers [18,81].

At present, the main barrier to large-scal e tel emedicine screening
for COVID-19 is testing coordination. As the availability of
testing sites increases, development and integration of local
systems into telemedicine workflows is needed to test
appropriate patients while decreasing exposure using tents,
in-car testing, or dedicated office space. To keep pace with the
evolving recommendations regarding COV1D-19, health systems
are employing bots or automated logic flowsthat can refer only
moderate- or high-risk patientsto nursetriagelinesand can also
allow patientsto request video visitswith on-demand providers
[7]. It isimportant that practices not routinely refer patients to
urgent care medical centers or emergency departments, as this
will create exposure risk for health care providers and overload
these centers with patients.

Before the outbreak of COVID-19, several emergency
departments adjusted their provider-in-triage models for rapid
initial testing and evaluation to allow remote providers to
performintake [82]. In emergency situations, web conferencing
software with secured open lines from the triage room to a
provider can be rapidly implemented [83]. Employing asingle
remote clinician to cover several sites can address workforce
challenges; however, this measure is difficult to implement if
the software lacks a queuing function. To avoid exposing staff,
telehealth visits can be conducted using paired tablets or
commercia systemsthat enable communication with providers
through dedicated connections. However, this system does not
fully eliminate exposure of health care providers to patients
who require certain manual procedures.

Electronic monitoring programs enable physicians and nurses
to remotely monitor patients statusin several hospitals. Through
mobile integrated medical programs or community
paramedicine, patients can be managed from their homes, with
medical support provided virtually. In Houston, the ETHAN
(Emergency Telehealth and Navigation) project usestelemedical
oversight to augment in-person care provided by nearly 1000
responders, decreasing the requirement for transportation to
emergency departments [84,85].

Telemedicine can offer rapid access to specialists who are not
instantly available in person. Barriers to implementing these
programs are largely related to credentialing, payment, and
specidist staffing [86]. COVID-19 hasraised concernsregarding
workforce capacity. Telemedicine can enable quarantined
physicians to remotely manage and treat patients, freeing time
for other physicians to provide in-person care.
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In addition, remotetraining sessionsand onlinetraining modules
can be made available to patients or clinicians who need
assistance or in-time training. Program implementation,
regulatory and payment structures, credentialing across
hospitals, and state licensing will al require time; however,
health systems that have already invested in telemedicine are
well positioned to ensurethat the patientswith COVI1D-19 obtain
the care they require. In this instance, telemedicine may be a
perfect virtual solution.

Adly et a

Discussion

Al can potentially provide novel and reliable paradigms for
health care services. Dueto the nearly unlimited abilities of Al
that are gained from its numerous algorithms and approaches,
it can help addressthe virulent spread of the SARS-CoV-2 virus
worldwide. Proper application of Al through the use of both
existing and novel machine learning approaches may be pivotal
to eliminating COVID-19. Furthermore, there is a need for
major investment in this field to enable rapid response to the
dangers of this disease; this may be a major factor in saving
lives worldwide.
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RT-PCR: reverse transcriptase—polymerase chain reaction
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
TRINA: Tele-Robotic Intelligent Nursing Assistant
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