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Abstract

Background: Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to
detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their
suitability for applications where there is a lack of a sufficient data set for the other classes. Infection incidence often brings
prolonged hyperglycemiaand frequent insulin injectionsin people with type 1 diabetes, which are significant anomalies. Despite
these potentials, there have been very few studiesthat focused on detecting infection incidencesin individualswith type 1 diabetes
using a dedicated personalized health model.

Objective: This study aims to develop a personalized health model that can automatically detect the incidence of infection in
peoplewith type 1 diabetes using blood glucose level s and insulin-to-carbohydrate ratio asinput variables. The model is expected
to detect deviations from the norm because of infection incidences considering elevated blood glucose level s coupled with unusual
changes in the insulin-to-carbohydrate ratio.

Methods: Three groups of one-class classifiers were trained on target data sets (regular days) and tested on adata set containing
both the target and the nontarget (infection days). For comparison, two unsupervised models were also tested. The data set consists
of high-precision self-recorded data collected from three real subjects with type 1 diabetes incorporating blood glucose, insulin,
diet, and events of infection. The models were evaluated on two groups of data: raw and filtered data and compared based on
their performance, computational time, and number of samples required.

Results: The one-class classifiers achieved excellent performance. In comparison, the unsupervised models suffered from
performance degradation mainly because of the atypical nature of the data. Among the one-class classifiers, the boundary and
domain-based method produced a better description of the data. Regarding the computational time, nearest neighbor, support
vector data description, and self-organizing map took considerable training time, which typically increased as the sample size
increased, and only local outlier factor and connectivity-based outlier factor took considerable testing time.

Conclusions: We demonstrated the applicability of one-class classifiers and unsupervised models for the detection of infection
incidence in people with type 1 diabetes. In this patient group, detecting infection can provide an opportunity to devise tailored
services and also to detect potential public health threats. The proposed approaches achieved excellent performance; in particular,
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the boundary and domain-based method performed better. Among the respective groups, particular models such as one-class
support vector machine, K-nearest neighbor, and K-means achieved excellent performance in all the sample sizes and infection
cases. Overall, we foresee that the results could encourage researchers to examine beyond the presented features into other
additional features of the self-recorded data, for example, continuous glucose monitoring features and physical activity data, on

alarge scale.

(J Med Internet Res 2020;22(8):€18912) doi: 10.2196/18912

KEYWORDS

type 1 diabetes; self-recorded health data; infection detection; decision support techniques; outbreak detection system; syndromic

surveillance

Introduction

Anomaly or novelty detection problem involvesidentifying the
anomalous or novel instances, which exhibit different
characteristics, from therest of the data set and has been widely
used in various applicationsincluding machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnosticsand monitoring, cyber-intrusion
detection, and others [1-7]. The term anomaly was precisely
coined by Hawkins[8] as* observationsthat deviate much from
the other observations so as to arouse suspicions that it could
be generated by adifferent process” Anomalousnessis usually
described as point, contextual, and collective, depending on
how the degree of anomaly is computed [1,7,9]. On the basis
of the necessity of having labeled data instances for the
respective class, the anomaly detection problem can be
approached as supervised, semisupervised, and unsupervised
[3,7,9-11]. Supervised anomaly detection, for example,
multiclass classification, requires|abeled datainstancesfor both
the target and the nontarget (anomaly) classes. This
characteristic makes it impractical for tasks where there is
difficulty in either finding enough samples for the anomaly
class, that is, poorly sampled and unbalanced data, or
demarcating boundaries of the anomaly class [7,10,12].
Moreover, anomalies could also evolve over time, and what is
known today might not be valid through time, making the
characterization of anomalies class more challenging. In this
case, semisupervised anomaly detection, that is, one-class
classification, is preferred given that it only requires
characterizing what is believed to be normal (target data
instances) to detect the abnormal (nontarget datainstances) [7].
Under certain circumstances, for example, medical domain,
obtaining and demarcating the anomalous (nontarget) data
instances can become very difficult, expensive, and time
consuming, if not impossible [7,13]. For instance, assume a
health diagnostic and monitoring system that detects health
changes in an individual by tracking the individua’s
physiological parameters, where the current health status is
examined based on a set of parameters, and raisesanotification
alarm when the individual health deteriorates [12]. In such a
system, it becomes feasible to rely on a method that can be
trained using only the regular or norma day measurements
(target days) so as to detect deviation from normality [12,14].
This is because demarcating the exact boundaries between
normal and abnormal health conditionsisvery challenging given
that each pathogen has a different effect on the individual
physiology. The one-class classifiers-based anomaly detection
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methods can be roughly grouped into 3 main groups: boundary
and domain-based, density-based, and reconstruction-based
methods based on how their internal function is defined and the
approach used for minimization [3,10,12,13,15,16]. These
models take into account different characteristics of the data
set, and depending on the data set under consideration, these
models could achieve different generalization performance,
overfitting, and bias[12]. Unlike supervised and semisupervised
anomaly detection methods, unsupervised methods do not
require labeled instances to detect the anomaly (nontarget)
instances because they rely on the entire data set to determine
the anomalies and can be another possible alternative to
semisupervised anomaly detection methods [7,10,12]. One of
the drawbacks of unsupervised methods is that they require
significant amount of data to achieve comparable performance.
Both semisupervised and unsupervised methods have been used
in various applicationsto detect anomalousinstances[1,7,10,16].
In particular, these methods have been popular in the medical
domain owing to their suitability for such applications, where
thereislack of a sufficient data set for the other classes [13].
Accordingly, considering the difficulty and expense of obtaining
enough sample data setsfor theinfection daysfrom peoplewith
type 1 diabetes, a one-class classifier and unsupervised models
are proposed for detecting infection incidence in people with
type 1 diabetes.

Type 1 diabetes, also known as insulin-dependent diabetes, is
achronic disease of blood glucose regulation (hemostasis), and
is caused by the lack of insulin secretion from pancreatic cells
[17,18]. In peoplewith type 1 diabetes, theincidence of infection
often results in hyperglycemia and frequent insulin injection
[19-26]. Infection-induced anomalies are characterized by
violation of the norm of blood glucose dynamics, where blood
glucose remains elevated despite taking a higher amount of
insulin injection with less carbohydrate consumption [19].
Despite these potentials, there have been very few studies that
focused on detecting infection incidence in individuals with
type 1 diabetes using a dedicated personalized health model.
Therefore, the objective of this study was to develop an
algorithm, that is, a personalized health model that can
automatically detect the incidence of infection in people with
type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. For this, a
one-classclassifier and unsupervised modelsare proposed. The
model is expected to detect any deviations from the norm
because of infection incidences considering elevated blood
glucoselevel (hyperglycemiaincidences) coupled with unusual
changes in the insulin-to-carbohydrate ratio, that is, frequent
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insulin injections and unusual reduction in the amount of
carbohydrate intake [19]. Three groups of one-class classifiers
and two unsupervised density-based models were explored. A
detailed theoretical description of the proposed modelsisgiven
in Multimedia Appendix 1 [1,7-16,27-37]. The anomaly
detection problem studied in this paper can be regarded as a
contextual anomaly, where the ratio of insulin-to-carbohydrate
is the context and the average blood glucose level is the
behavioral attribute. This is mainly because of the fact that
elevated blood glucose levels do not always signify being
anomalies without looking at the context of the ratio of
insulin-to-carbohydrate in this case. Throughout the paper, the
term object is used to describe a feature vector incorporating
the number of parameters under consideration. For example, an
object X can define a specific event of an individual blood
glucose dynamics at aspecified timeindex k and is represented
by afeature vector X, =(x, 1, X 2), Wherex, | representstheratio
of total insulin-to-total carbohydrate and x, , represents the
average blood glucose level in a specific time-bin (interval)
around k.

Methods

A group of one-class classifiers and unsupervised models were
tested and compared. The one-class classifier incorporates 3
groups. boundary and domain-based, density-based, and
reconstruction-based methods. The boundary and domain-based
method contains support vector data description (SVDD) [27],
one-class support vector machine (V-SVM) [28], incremental
support vector machine [29], nearest neighbor (NN) [12], and
minimum spanning tree (MST) [15]. Density-based method
includes normal Gaussian [32], minimum covariance Gaussian
[38], mixture of Gaussian (MOG) [32], Parzen [39], naive
Parzen [32], K-nearest neighbor (KNN) [12,30], and local outlier
factor (LOF) [31]. The reconstruction-based method includes
principal component analysis (PCA) [12,32], K-means [32],
self-organizing maps (SOM) [12,32], and auto-encoder networks
[12]. In addition, the unsupervised models were also tested,
including the LOF [31,33] and the connectivity-based outlier
factor (COF) [33,34]. Theinput variables, average blood glucose
levels and ratio of total insulin (bolus) to total carbohydrate,
used in training and testing of the models were selected in
accordance with the description provided by Woldaregay et al
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[19], and the ratio was calculated by dividing the total insulin
with thetotal carbohydrate within aspecified time-bin. The data
set consists of high-precision self-recorded data collected from
3real subjects (2 malesand 1 female; average age 34 [SD 13.2]
years) with type 1 diabetes. It incorporates blood glucose levels,
insulin, carbohydrate information, and self-reported infections
cases of influenza (flu) and, mild and light common cold without
fever, asshownin Table 1. Exemplar datadepicting the model’s
input features for 2 specific patient years with and without
infection are shown in Figures 1-4, and a more detailed
description of the input features for 10-patient years with and
without infection incidences can be found in Multimedia
Appendix 2 [12,19]. The data were resampled and imputed in
accordance with the description provided by Woldaregay et al
[19], and the preprocessed data were smoothed using amoving
average filter of 2 days (48 hours) window size to remove
short-term and small-scale features [19,40,41]. Feature scaling
was carried out using min-max scaling [42] to normalize the
data between 0 and 1, which isimportant to ensure that larger
parameters do not dominate the smaller ones. The data sets are
labeled as target and nontarget data sets, where the target data
setsinclude al the self-recorded normal period of the year and
the nontarget data set includes only the self-reported infection
periodswhen theindividua wassick. Accordingly, the one-class
classifiersweretrained using only thetarget data sets containing
the regular or normal period of the year and tested using both
the target and the nontarget (infection period) data sets. For the
unsupervised models, all the data sets containing both the target
and the nontarget data sets were presented during testing. The
hyperparameters of most of the one-class classifiers were
optimized using a consistency approach [43]. Models such as
naive Parzen and Parzen were optimized using the leave-one-out
method. For MST, the entire MST was used. For PCA, the
fraction of variance retained from the training data set was set
to be 0.67. The models were evaluated based on different
characteristics including data nature (with and without filter),
data granularity (hourly and daily), data sample size, and
required computational time. All the experiments were
conducted using MATLAB 2018b (Mathworks, Inc). Most of
the models were implemented using ddtools, prtools, and
anomaly detection toolbox, which are MATLAB toolboxes
[32,33,35].
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Table 1. Equipments used in the self-management of diabetes.

Patients Self-management

BG? Insulin administration Diet Body weight (kg) HbA1¢° (%)

Subject 1 Finger pricksrecordedin  Insulin Pen (multiple bolus and 1- Carbohydrate in gramsrecord- 83 6.0
the Diabetes Diary mobile time basal in the morning) recorded  edinthe Diabetes Diary mobile
app and Dexcom CGM® in the Diabetes Diary mobile app app; level 3 (advanced carb

counting)
Subject 2 Finger pricksrecordedin  Insulin Pen (multiple bolus[Huma-  Carbohydrate in gramsrecord- 77 7.3
the Spike mobile app and  log] and 1-timebasal [Toujeo] before ed in the Spike mobile app;
Dexcom G4 CGM® bed) recorded in the Spike mobileapp level 3 (advanced carb count-
ing)
Subject 3 Enlite (Medtronic) cGMS  Medtronic MinMed G640 insulin Carbohydratein gramsrecord- 70 6.2
and Dexcom G4 pump (basal rates profile [Fiasp] and  ed in pump information; level
multiple bolus [Fiasp]) 3 (advanced carb counting)
3BG: blood glucose.
PHbA ¢ hemoglobin A .
€CGM: continuous glucose monitoring.
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Figurel. Daily scatter plot of average blood glucose levelsversustotal insulin (bolus) to total carbohydrate ratio for a specific regular or normal patient
year without any infection incidences.
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Figure 2. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific regular or normal
patient year without any infection incidences.
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Figure 3. Daily scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific patient year with an

infection incidence (flu).
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Figure 4. Hourly scatter plot of average blood glucose levels versus total insulin (bolus) to total carbohydrate ratio for a specific patient year with an

infection incidence (flu).
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Model Evaluation

The performance of the one-class classifierswas evaluated using
20 times 5-fold stratified cross-validation. For both daily and
hourly cases, the user-specified outlier fraction threshold 3 was
set to 0.01 such that 1% of the training target data are allowed
to be classified as outlier or get rejected [12]. Class imbalance
was mitigated by oversampling of the nontarget data setsthrough
random sampling [44]. Performance was measured using the
area under the receiver operating characteristic (ROC) curve
(AUC), specificity, and F1-score [45-48]. The AUC, specificity,
and F1-score were reported asthe average (SD) of twenty times
five-fold stratified cross-validation rounds. AUC is the result
of integration (summation) of the ROC curve over a range of
possible classification thresholds [49]. It is regarded as robust
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(insensitive) when it comes to the presence of dataimbalance;
however, itisimpractica for real-world implementation because
it isindependent of asinglethreshold [48]. Specificity measures
the ratio of correctly classified negative samples from the total
number of available negative samples[50]. Thus, it depictsthe
proportion of infection days (nontarget samples) that are
correctly classified as such to the total number of infection days
(period). It isonly used to examine how the model performsin
regard to the nontarget class (infection days). F1-score is the
harmonic mean of precision and recall, where the value ranges
from 0 to 1, and high F1 scores depict high classification
performance [45]. F1-score is considered appropriate when
evaluating model performance with regard to one target class
and in the presence of unbalanced data sets [10,46-48]. The
models were further compared based on various criteria, which
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can contribute to the implementation of the modelsin real-world
settings, including computation time, sample size, number of
user-defined parameters, and senditivity to outliersinthetraining
data sets:

- Computation time: this characteristic defines the amount
of timetakento train and test the model . Regarding personal
use, response timeis crucial for acceptance of the services
by awide range of users. Furthermore, with regard to the
outbreak detection settings, thisis an important parameter
given that a system that uses data from many participants
needs to have an acceptable response time. However, in
real-world applications, the training phase can be performed
in an offline mode, which makes the testing response time
very crucial.

- Sample size: this characteristic specifies the minimum
amount of training data required to generate an acceptable
performance. This is an important factor given that the
system relies on self-recorded data; it is difficult to
accumulate a large set of datafor anindividua initially.

« Number of user-defined parameters: this characteristic
defines the complexity of the model. It is simpler and less
dataare required to estimate amodel with fewer parameters.
This is an important factor because it is easier for an
individual to implement the ssmple model compared with
the complex model.

« Senditivity to outliers in the training data sets. this
characteristic defines how the model estimation is affected
by outliersin thetraining set. Thisisacrucial characteristic
because the model training depends on self-reported data,
which are highly dependent on the accuracy of the user data
registration. It is possible that the user might forget to report
some infection incidence and hence might be considered
as target data sets and be used as a training data set.
Furthermore, errorsincurred during manual registration of
data can also affect model generalization.

Data Collection and Ethical Declaration

The study protocol has been submitted to the Norwegian
Regional Committees for Medical Heath Research Ethics
Northern Norway for eval uation and was found exempted from
regional ethicsreview becauseit is outside the scope of medical
research (reference number: 108435). Written consent was
obtained, and the participants donated the data sets. All data
from the participants were anonymized.

Results

The models were evaluated based on two different versions of
the same data set: raw and filtered. The input variables to the
models were the average blood glucose levels and the ratio of
total insulin (bolus)-to-total carbohydrate. The necessary
computational time for both training and testing of the models
was also estimated. A comparison of the classifierswas carried
out taking into account their performance, necessary sample
size for producing acceptabl e performance, and computational
time. These models were further compared based on their
theoretical guarantee provided for robustness to outliersin the
target data set and based on their complexity. In addition, these
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classifiers were compared with the unsupervised version of
some selected models.

M odel Evaluation

Model training and eval uationswere carried out on anindividual
basis taking into account different characteristics of the data,
specified time window or resolution (hourly and daily), and
nature of the data (raw dataand its smoothed version). For daily
evaluation, we compared the performance of the modelson raw
data and its smoothed version with a 2-day moving average
filter. For hourly evaluation, we compared the performance of
the model on a smoothed version of the data set. The purpose
of the comparison was to study the performance gain achieved
by removing short-time noises from the data set through
smoothing. The average and SD of AUC, specificity, and
F1-score are computed and reported for each model. The top
performing modelsfrom each category are highlightedinitalics
within each tables.

Semisupervised Models

Theregular or normal dayswere labeled asthetarget classdata
set and the infection period asthe nontarget class data set. Three
groups of one-class classifiers were trained on the target class
and tested on a data set containing both the target and the
nontarget classes. In addition to the data characteristics stated
above, resolution and data nature, the one-class classifier
performance was al so assessed taking into account the required
sample aobject size to produce acceptable data description. In
thisdirection, we consider four groups of samplesize: 1 month,
2 months, 3 months, and 4 months data sets. In the model
evaluation, the data set containing the infection period was
presented during testing. The evaluation was carried out based
on 20 times 5-fold stratified cross-validation. The performance
of the model was reported as the average and SD of AUC,
specificity, and F1-score of the rounds. A score plot of each
model for both the hourly and the daily scenarios using the
smoothed version of the data can be found in Multimedia
Appendix 3, where the models were trained on random 120
regular or normal days of the patient year and tested over the
whole year.

Daily

As can be seen in Tables 2 and 3 below (see also Multimedia
Appendix 4), the performance of the models generally improves
asthe size of the sampleincreases. The models performed well
with respect to the raw data sets; however, the performance
significantly improved with the smoothed version of the data.
Theresultsindicate that the sample size greatly affectsthe model
performance and that there is alarger variation in performance
when the training data set is small. Generally, it can be seen
that the models generalize well with the 3-month data set (90
sampl e objects) and further improve after 3 months. In general,
on average, with both the raw and smoothed data sets, the
boundary and domain-based method performed better with a
small sample size. As the sample size increased, al the three
groups produced comparable descriptions of the data. From
each respective category, models such as V-SVM, K-NN, and
K-means performed well across all the sample sizes.
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First Case of Infection (Flu)

The boundary and domain-based method achieved a better
description of the datawith asmall sample sizewhen compared
with the other two groups. However, as the sample size
increased, all the three groups achieved relatively comparable
descriptions of the data. Specific modelssuchasV-SVM, K-NN,
and K-means performed better from their respective group.
Regarding the raw data, asseenin Table 2, al the modelsfailed
to generalize from the 1-month data set as compared with the
large sample objects, that is, 3 months, which was expected:

1. From the boundary and domain-based method, V-SVM
performed better in al the sample sizes and achieved
comparabl e performance even with 60 objects and improved
significantly afterward. SVDD produced a comparable
description with higher sasmple sizes, that is, 3 months and
later.

2. From the density-based method, K-NN performed better
in al the sample sizes and achieved better performance
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even with 60 objects. Naive Parzen produced comparable
performance with higher sample sizes, that is, 3 months
and later.

From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data, as shown in Table 3, improved the model
performance even with 30 sample objects:

1

From the boundary and domain-based method, V-SVM
achieved better performancein all sample sizes.

From the density-based method, K-NN achieved better
performance for al sample sizes, minimum covariance
determinant (MCD) Gaussian produced a comparable
description with 30 and 60 sample objects, and naive Parzen
achieved comparable description of the data with 4-month
sample objects.

Regarding the reconstruction-based method, PCA achieved
good performance with 30 and 60 sample objects, whereas
K-means performed better with larger sample objects.
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Table 2. Average (SD) of area under the receiver operating characteristic curve, specificity, F1-score for the raw data set (without smoothing), and
different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months

AUC3 Specifici- F1, AUC, Specifici- F1, AUC, Specifici- F1, AUC, Specifici- F1,
mean ty, mean mean mean ty, mean mean mean ty, mean mean mean ty, mean mean
(SD) (SD) (SD)  (SD) (SD) (SD)  (SD) (SD) (SD)  (SD) (SD) (SD)

Boundary and domain—based method
svDDP 90.7(8.8) 71.7(7.7) 736 934(6.2) 8L7(5.00 874 96.4(29 87.8(33) 913 946(3.7) 8L7(5.00 900

(5.5) (8.1) (6.0) (4.6)
IncSvDDS 904(8.9) 66.7(7.5) 727  91.8(59) 66.7(7.5 844 958(29) 700(7.1) 854 937(36) 55(10.7) 8LO
(4.9) (32 (12 (2.7
v.symd  931(60) 63(106) 789 965(23) 8L9(47) 907 97.9(15) 889(0.0) 941 96.2(23) 83.3(0.0) 917
6.2 ¢ (34) (2.0) (1.4)
NN 742(9.3) 383(7.7) 610 895(9.3) 200(67) 700 90.1(6.6) 11.1(18) 692 928(33) 33.3(0.0) 75.1
4.7 (4.6) (3.8) (0.4)
MSTY 89.4(81) 50.0(0.0) 627 954(56) 61.7(7.7) 823 96.6(27) 689(45 836 941(28) 550(7.7) 80.6
(6.6) (5.9) (4.7) (2.3)

Density-based method
Gaussian  90.6(7.1) 60.0(82) 688 954(4.6) 70.0(6.7) 853 97.3(25) 80.0(45) 892 955(3.2) 66.7(0.0) 845

(8.4) (4.6) (3.3 (2.6)
mogh 88.1(9.9) 80.1 67.8 93.1(7.1) 75.8 825 95.6(3.4) 80.2(7.5) 86.0 93.7(3.9) 68.7 84.2
(17.3) (16.4) (14.8) (10.1) (6.7) (11.6) (5.7)
MCD' 89.0(8.5) 55.0(7.7) 66.4 94.0(4.6) 68.3(5.0) 84.6 97.0(2.7) 80.0(4.5) 89.9 945(3.2) 65.0(5.00 84.0
Gaussian (9.0) (6.3) (2.4 3.2
Parzen 89.0(9.2) 70.0(6.7) 70.7 94.6(4.9) 83.3(0.0) 87.9 97.2(2.4) 88.9(0.0) 90.5 95.2(2.9) 83.3(0.0) 889
(5.9) (6.3) (5.9 (3.3
Naive 90.1(7.6) 55(10.7) 65.0 95.7(39) 76.7(8.2) 87.2 98.3(1.4) 88.9(0.0) 93.6 96.8(2.1) 83.3(0.0) 90.7
Parzen (5.0) (3.5) 2.9 (2.0)
K-NNJ 91.8(6.9) 50.0(0.0) 66.0 95.6(3.1) 81.7(5.0) 90.9 97.9(1.6) 889(0.0) 935 97.0(2.2) 83.3(0.00 92.0
(2.0) 3.2 3.7 (2.0)
LOFX 885(6.1) 66.7(7.5) 727 97.0(1.9 717(7.7) 86.1 96.8(2.8) 78.9(3.3) 88.7 92.6(4.8) 50.0(0.0) 79.3
(4.9) (2.4) (2.8) (2.6)

Reconstruction-based method
pca! 87.8 50.0(7.5) 624 935(6.2) 51.7(5.0) 78.2 93.6(4.7) 60(10.2) 818 91.3(5.2) 46.7(6.7) 78.7
(11.9) (8.5) (4.1) (4.9 (2.3)
Auto-en- 822 57.9 647 88.2(95) 616 814 934(57) 744(11) 864 88.4(88) 613 82.7
coder (12.0) (15.3) (12.0) (14.0) (7.1) (5.9 (14.3) (5.7)
som™ 86.9(9.4) 783 66.7 92.8(7.3) 64.2 80.9 95.8(3.7) 80.1(6.3) 86.9 92.2(4.1) 76.5(9.0) 875
(13.3) (16.9) (12.4) (7.0) (5.5 (4.5)
K-means 91.8(6.9) 65.0(9.0) 718 96.0(24) 83.3(0.0) 915 97.6(1.6) 88.9(0.0) 935 96.2(2.2) 83.3(0.0) 915
(5.1) (2.8) 3.7 (1.6)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.

https://www.jmir.org/2020/8/e18912 JMed Internet Res 2020 | vol. 22 | iss. 8 | 18912 | p. 10
(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Woldaregay et a

IPca: principal component analysis.
MSOM: self-organizing maps.
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Table 3. Average of area under the receiver operating characteristic curve, specificity, and F1-score for smoothed version of the data with a 2-day
moving average filter and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, SpeCIfICI- F1 AUCa, SpeCIfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpeCIfICI- F1
mean ty mean ty mean ty mean ty
(SD) (SD) (SD) (SD)

Boundary and domain—based method
svDDpP 99.6(1.3) 100(0.0) 936 100(0.0) 100(0.0) 948 100(0.0) 100(0.0) 97.0 100(0.0) 100(0.0) 96.9

(15.2) (10.2) (4.1 (4.0)

IncSvDDS 996(1.3) 100(0.0) 936  100(0.0) 100(0.0) 971 100(0.0) 100(0.0) 976 100(0.0) 100(0.0) 983
(15.2) (6.3) (4.1 (2.8)

v.symd 100(0.0) 995(29) 989 100(00) 100(0.0) 991  100(0.0) 100(0.0) 994  100(0.0) 100(0.0) 99.6
(32)° (26) ) 12

NN 98.1(3.9) 583 723 86.9 16.7 705 881(6.5) 54.4 800 924(5.3) 83(17.1) 69.0
(154) (99 (125  (224) (53 (225)  (86) (4.8)

MSTd  985(24) 850(50) 855 99.7(0.8) 100(00) 97.1 99.9(04) 97.8(45) 972 99.7(0.8) 100(0.0) 97.0
2.1) (6.3) (4.0) (7.9)

Density-based method
Gaussian 100(0.0) 98.3(5.0) 921  100(0.0) 100(0.0) 971  99.8(0.7) 100(0.0) 976  99.4(1.7) 100(0.0) 97.0

(15.2) (6.3) (4.1) (7.9)

mogh 98.6(3.2) 99.8(1.7) 885 99.6(1.2) 100(0.0) 92.2 99.7(0.7) 99.8(14) 9% 99.3(20) 99.9(1.2) 944
(16.8) (11.1) (10.3) (11.8)

MCD' 98.9(22) 91.7(8.4) 90.9 100(0.0) 100(0.0) 98.0 995(1.1) 96.7(5.1) 96.6 99.4(1.7) 88.3(7.7) 920

Gaussian (7.7) (6.0) (5.9 (6.8)

Parzen 99.6(1.3) 100(0.0) 87.7 100(0.0) 100(0.0) 95.1 100(0.0) 100(0.0) 94.6 99.9(0.4) 100(0.0) 94.6
(17.0) (8.0 (9.8) (12.3)

Naive 99.2(25) 100(0.0) 94.7 100(0.0) 100(0.0) 93.8 99.6(1.1) 100(0.0) 97.5 100 (0.0) 100(0.0) 98.7

Parzen (11.2) (11.0) (5.0) 2.7

K-NNJ 98.1(3.9) 68.3(5.0) 75.2 100(0.0) 100(0.0) 98.0 100(0.0) 100(0.0) 98.8 100 (0.0) 100(0.0) 97.7

(4.3) (6.0 (3.8) 4.7

LOFX 98.6(29) 75.0 80.2 100(0.0) 100(0.0) 98.0 100(0.0) 100(0.0) 96.9 99.7(0.8) 100(0.0) 97.4

(13.5) (20.8) (6.0 (5.0) (7.9)

Reconstruction-based method

pca! 98.9(2.2) 85.0(5.0) 855 99.2(1.3) 85.0(5.00 914 98.6(1.9) 88.9(0.0) 92.2 97.8(2.2) 83.3(0.0) 89.1

(2.1) 2.7 (6.0) 9.7)

Auto-en- 97.4(6.0) 89.1 86.0 985(3.2) 94.5(9.6) 918 99.2(2.4) 937 93.7 98.6(3.8) 94.4(9.5) 937

coder (13.0 (14.2) (9.4 (10.2) (8.3) 9.7)

som™ 99.3(1.9) 99.9(1.2) 84.7 99.8(0.7) 100(0.0) 914 99.9(0.3) 100(0.0) 95.2 99.6(1.3) 100(0.0) 934
(19.8) (9.6) (7.9) (12.1)

K-means 99.2(25) 85.0 87.0 100(0.0) 100(0.0) 97.1 100(0.0) 100(0.0) 98.8 100 (0.0) 100(0.0) 99.2

(11.7) (10.4) (6.3) (3.8) (2.5)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.
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IPca: principal component analysis.
MSOM: self-organizing maps.

Second Case of I nfection (Flu)

The boundary and domain-based method achieved better
performance with asmall sample size compared with the density
and reconstruction-based methods. However, asthe samplesize
increased, al the three groups achieved comparable
performance. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, K-NN, and K-means performed better from their
respective group. Regarding the raw data, al the models failed
to generalize from the 1-month data set as compared with the
higher sample objects, that is, 3 months (M ultimedia A ppendix
4):

1. From the boundary and domain-based method, SVDD,
MST, and incremental support vector data description
(incSVDD) performed better with a larger sample object,
and V-SVM achieved better description with 30 sample
objects.

2. From the density-based method, all the models exhibited
similar performance. Naive Parzen and K-NN, with only
60 sampl e objects, achieved comparabl e performance with
the higher sample objects.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Smoothing the data significantly improved the performance of
the model even with 30 objects, compared with the raw data
(Multimedia Appendix 4):

1. Fromthe boundary and domain-based method, the V-SVM
achieved higher performance in all the sample sizes.

2. From the density-based method, LOF achieved better
description with small sample objects, and K-NN produced
better description with al the sample sizes. Gaussian
families achieved improved and comparable performance
with increased sample objects. Among them, K-NN with
only 60 objects achieved comparable performance with
larger sample objects.

3. Regarding the reconstruction-based method, K-means and
SOM achieved better performance, whereas K-means
performed better in al the sample sizes.

Third Case of Infection (Flu)

The boundary and domain-based method achieved better
performancewith asmall sample size compared with the density
and reconstruction-based methods. However, asthe sample size
increased, al the three groups produced comparable
descriptions. The detailed numerical values of comparison are
given in Multimedia Appendix 4. Specific models such as
V-SVM, MST, LOF, and PCA performed better from their
respective group. Regarding the raw data, surprisingly, in
contrast to the previous two infection cases, al the models
achieved higher generalization from the 1-month data set
(Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, MST, and incSVDD performed better in all the
cases, with MST achieving better performance.

https://www.jmir.org/2020/8/€18912
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2. Fromthe density-based method, normal and MCD Gaussian
achieved better description of the datawith 1-month sample
objects. K-NN and L OF performed better with sample sizes
larger than 1-month sampl e objects, and L OF outperformed
all sample sizes. The LOF with only 60 objects achieved
comparable performance with the higher sample objects.

3. From the reconstruction-based method, PCA produced
better description for al sample sizes, whereas K-means
and SOM achieved comparable performance with sample
size larger than 1-month sample objects.

Smoothing the data allowed the models to generalize well and
significantly improved the performance of the model even with
30 objects, compared with the raw data (M ultimedia Appendix
4):

1. Fromthe boundary and domain-based method, the V-SVM
and MST achieved higher performance in all the sample
sizes, whereas V-SVM outperformed all the models.

2. From the density-based method, the Gaussian families,
L OF, and K-NN achieved better performance, whereas L OF
achieved better performance in all sample sizes.

3. Regarding the reconstruction-based method, K-means and
PCA achieved better performance, whereas PCA performed
better in al the sample sizes.

Fourth Case of Infection (Flu)

The boundary and domain-based method achieved better
performance with small sample sizes compared with the density
and reconstruction-based methods. All the three groups
improved with increasing sample size. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific modelssuch asV-SVM, LOF, and K-means performed
better from their respective group. Regarding the raw data,
surprisingly, in contrast to all the previousthreeinfection cases,
all the model s achieved higher generalization from the 1-month
data set (Multimedia Appendix 4):

1. From the boundary and domain-based method, SVDD,
V-SVM, and incSV DD performed better for all the sample
sizes.

2. Fromthedensity-based method, MCD Gaussian performed
better with a 1-month sample size, and al the models
produced comparable descriptions as the sample size
increased, whereas the LOF performed better for all the
sample sizes.

3. From the reconstruction-based method, PCA performed
relatively better for all the sample sizes, and K-means and
SOM achieved comparable performance with a larger
sample size.

Smoothing the data significantly improved the model
performance even with 30 objects compared with the raw data
(Multimedia Appendix 4):

1. Fromthe boundary and domain-based method, the V-SVM
achieved higher performancein all the sample sizes. Asthe
sample size increased, the incSYDD and MST achieved
comparable performance.
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2. From the density-based method, K-NN and L OF produced
better descriptions with a 1-month sample size. K-NN
performed better in amost al sample sizes.

3. From the reconstruction-based method, K-means achieved
better performance for all sample sizes.

Hourly

As can be seen in Table 4 (see also Multimedia Appendix 4),
the performance of the model generally improved as more
training sample data were presented. The models produced
comparable performance even with the 1-month data set
compared with the daily scenario. Thisismainly because of the
presence of more samples per day (24 samples per day), which
enables the models to reach a better generalization. Generally,
the results indicate that the models generalize well after 2
months. Both the boundary and domain-based method and
reconstruction-based method achieved better performance even
with a 1-month sample size. However, the density-based method
suffers from large variation with 1-month training samples. In
general, the boundary and domain-based method performed
better in al the infection cases compared with the other two

https://www.jmir.org/2020/8/€18912

Woldaregay et a

methods. In addition, specific models such as V-SVM, K-NN,
and K-means performed well from their respective groups.

First Case of Infection (Flu)

The boundary and domain-based method achieved better
performance  compared with the density and
reconstruction-based methods. As can be seen in Table 4, the
boundary and domain-based method achieved better
generalization from the 1-month data set. Specific models such
as V-SVM, K-NN, and K-means performed better from their
respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description in all sample sizes, whereas
SVvDD, incSVDD, and V-SVM achieved comparable
performance with alarger sample size.

2. From the density-based method, Gaussian families and
naive Parzen performed better at large sample sizes, whereas
K-NN and LOF achieved better performance in al the
sample sizes. K-NN outperformed all the models.

3. Fromthereconstruction-based method, K-means performed
better in all the sample sizes, and al the other models
performed better with larger sample sizes.
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Table4. Average (SD) of areaunder the receiver operating characteristic curve, specificity, F1-score for the smoothed version of the datawith a48-hour
moving average filter and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, SpG)IfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpECIfICI- F1 AUCa, SpeCIfICI- F1
mean (SD) mean ty mean ty mean (SD)
(SD) (SD)

Boundary and domain—based method
svDDP 97.6(19) 832(34) 858 97.8(1.2) 857(5.00 905 97.7(12) 90.4(51) 942 981(09) 91.0(3.7) 96.8

1.7) (9.6) 2.9) (0.9)
IncSvDD® 97.4(19) 845(28) 868 97.7(L2) 867(20) 939 97.5(12) 835(L5) 9.0 97.9(0.9) 889(12) 97.1
(1.9) (1.0) (1.1) 0.7)
v.symd  981(21) 845(L1) 905 990(L1) 926(0.0) 961 995(06) 938(0.5 969 994(04) 942(0.0) 97.1
(11)® (1.3) (1.4) (1.3)
NN 84.8(60) 759(45) 748 893(22) 765(41) 871 89.0(40) 77.5(39) 89.3 90.2(47) 77.5(38) 914
(6.0) (3.3) (4.4) (6.4)
MST9 905(3.1) 854(39) 676 944(20) 857(40) 851 94.7(24) 888(35) 878 958(22) 88.8(3.0) 90.9
(14.5) (7.0) (8.5) (5.9)

Density—based method
Gaussian  98.1(22) 79.8(49 839 995(0.9) 90.1(1.7) 952 99.6(0.7) 929(1.3) 97.1 995(05) 922(1.0) 97.7

2.7 (1.8) (2.5) 1.1
mogh 95.8(3.6) 82.7(4.3) 837 98.3(1.5) 86.2(27) 923 98.7(1.4) 88.7(4.6) 94.7 98.6(1.6) 88.2(3.1) 953
(5.0 2.7) (3.5) 3.2
MCD' 98.6(21) 75.3(6.9) 813 99.6(0.9) 89.6(1.9) 95.0 99.6(0.7) 925(1.8) 97.0 99.6(0.4) 92.0(L2) 977
Gaussian (2.5 (1.8) (2.3) 1.1
Parzen 91.9(29) 93.6(2.0) 634 96.2(2.3) 94.4(2.0) 81.6 96.6(2.6) 94.8(1.7) 842 974(22) 956(1.2) 879
(16.5) (10.2) (9.5) (7.1)
Naive 94.8(3.7) 76.4(5.6) 77.6 98.7(1.2) 85.2(3.3) 91.8 99.1(1.1) 89.1(3.8) 94.8 989(0.9) 89.7(24) 96.2
Parzen (7.9 (2.9) (2.5) (1.6)
K-NNJ 97.1(34) 78.8(20) 842 99.1(1.0) 929(0.7) 96.0 99.6(0.4) 93.8(0.7) 97.3 99.5(0.3) 94.0(0.6) 982
(2.1) (1.8) (2.9 (0.9
LOFX 96.9(3.5) 78.3(3.0) 84.2 99.2(1.1) 91.9(0.9) 96.0 99.6(0.5) 93.7(0.8) 97.3 995(0.4) 93.1(04) 97.8
(2.9 (1.8) (2.1) 1.2
Reconstruction—-based method
pca! 97.1(34) 639(88) 754 994(12) 76.4(66) 902 99.1(13) 75.1(6.8) 924 989(12 69.1(41) 93.1
0.3 (1.1) (1.1) (0.8)
Auto-en- 92.0(4.8) 79.5(7.6) 78.9 96.2(2.6) 83.1(7.2) 91.1 96.3(3.2) 84.3(7.7) 927 96.7(3.0) 84.0(8.0) 946
coder (8.3 (3.9 (5.0) (4.9
som™ 94.1(23) 822(3.3) 826 95.6(1.1) 829(3.1) 916 94.8(2.3) 83.4(58) 923 955(1.9) 84.1(3.8) 943
4.9 (1.9 (4.1) (3.8
K-means 97.3(3.2) 80.9(25) 855 989(1.1) 92.6(0.7) 95.8 99.3(0.6) 929(0.7) 97.3 99.4(04) 94.1(0.2) 981
(2.5 (1.8) (1.4) 1.1

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.
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IPca: principal component analysis.
MSOM: self-organizing maps.

Second Case of I nfection (Flu)

The boundary and domain-based method and
reconstruction-based method achieved better performance for
all sample sizes compared with the density-based method.
Specifically, the boundary and domain-based method achieved
better generalization from the 1-month data set. The detailed
numerical values of comparison are given in Multimedia
Appendix 4. Specific models such as V-SVM, K-NN, and
K-means performed better from their respective group:

1. From the boundary and domain-based method, V-SVM
achieved better description for all the sample sizes, and
SVDD, NN, and incSVDD improved with larger training
samplesize; however, V-SVM outperformed all themodels
for al the sample sizes.

2. Fromthe density-based method, normal and MCD Gaussian
performed better with the 1- and 2-month sample sizes, and
models such as K-NN performed better on all the sample
sizes, whereas naive Parzen outperformed al the models
with the 3- and 4-month data sets.

3. Fromthereconstruction-based method, K-means produced
better description for all the sample sizes and the
auto-encoder and SOM performed better with larger sample
sizes.

Third Case of Infection (Flu)

Generally, in comparison, al the groups performed better at
large training sample sizes, however, the boundary and
domain-based method achieved better performance with small
training sample sizes. It achieved comparable generalization
from the 1-month data set. The detailed numerical values of
comparison are given in Multimedia Appendix 4. Specific
models such as V-SVM, families that utilize nearest neighbor
distance (K-NN and LOF), and PCA performed better from
their respective group:

1. Fromthe boundary and domain-based method, SV DD, NN,
MST, incSVDD, and V-SVM achieved better performance
at larger training sample sizes, whereas V-SVM
outperformed all the models for all the sample sizes.

2. From the density-based method, the Gaussian families,
K-NN, LOF, and naive Parzen achieved better performance
at larger training sample sizes, whereas K-NN and LOF
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, PCA,
auto-encoder, and SOM achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.
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Fourth Case of Infection (Flu)

Generaly, in comparison, all the group performed better at large
training sample size; however, the boundary and domain-based
method achieved better performance with small training sample
sizes, for example, 1-month data set. It achieved comparable
generalization from the 1-month data set. The detailed numerical
values of comparison are given in Multimedia Appendix 4.
Specific models such as V-SVM, Gaussian families (Gaussian,
MOG, and MCD Gaussian), and PCA performed better from
their respective groups:

1 From the boundary and domain-based method, NN,
incSVDD, and V-SVM achieved better performance at
larger training sample sizes, whereas V-SVM outperformed
all the modelsfor all the sample sizes.

2. From the density-based method, Gaussian families, K-NN,
LOF, and naive Parzen achieved better performance at
larger training sample sizes, whereas Gaussian families
outperformed all the models for all the sample sizes.

3. From the reconstruction-based method, K-means, SOM,
auto-encoder, and PCA achieved better performance at
larger training sample sizes, whereas PCA performed better
for all sample sizes.

Aver age Performance Across all the I nfection Cases

The average performances of the modelsacrossall theinfection
cases for different sample sizes, levels of data granularity
(hourly and daily), and nature of data (raw and smoothed) are
shownin Tables5-7. In general, the boundary and domain-based
method performed better than the other two groupsin both daily
and hourly smoothed data sets; however, all the groups achieved
comparable performance with respect to the daily raw data set.
Specific models such as V-SVM, K-NN, and K-means
performed better in all these circumstances.

Daily Raw Data Set

Regarding the daily raw data set, as shown in Table 5, specific
models such as V-SVM, MCD Gaussian, K-NN, and K-means
produced relatively better descriptions of the 1-month data. For
the 2-month sample size, models such as incSVDD, K-NN,
LOF, and K-means achieved better performance. For the
3-month sample size, SYDD, incSVDD, V-SVM, Gaussian,
MCD Gaussian, K-NN, LOF, and K-means produced
comparable descriptions. As expected, SVDD and most of the
density-based method improved with larger training sizes. For
the 4-month sample size, almost all the model s produced much
improved performance. In the group comparison, al three
groups produced comparable descriptionsin al the sample sizes.
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Table 5. Average performance of each model across all the infection cases for the daily raw data set (without smoothing) and different sample sizes.

Fraction=0.01.
Models 1 month 2 months 3 months 4 months
AUCa, SpG)IfICI- F1 AUCa, SpG)IfICI- F1 AUCa, SpeC|f|C|— F1 AUCa, SpeCIfICI- F1
mean (SD) mean (SD) & mean (SD) ¥ mean ty
(SD)
Boundary and domain-based method
svDDP 87.1(11) 66.0 74.8 91.7(7.3) 617 84.1 933(46) 673 86.2 91.4(4.3) 617 85.7
(13.5) (9.5 (10.6) (5.5) (20.5) (4.4) (10.6) 4.1
Cc
Incsvppd 852(11) 63.0(46) 747 90.5(85) 579(11) 838 928(51 628 849 90.8(4.4) 550 835
(10.4) (3.6) (10.9) 3.2 (11.7) 3.7
V-SVME 91.5(8.0) 55.7(7.0) 774 922(5.1) 60.6(5.0)0 828 94.2(38) 66.9(6.1) 866 938(41 631 84.5
(6.4) (4.5) (3.5) (11.9 (5.1
NNF 734(12) 31.3(6.5) 650 72.1(119) 25.0(9.6) 757 70.8(11.2) 86(17.6) 720 70.0(9.0) 16.0 75.7
(5.9 (3.7) 4.7) (14.4) (3.4
MSsT? 824(8.7) 521(0.0) 712 826(9.1) 504(9.00 820 84.0(63) 56.2(9.3) 829 842(6.6) 50.0 82.6
(6.1) (5.1) (3.5) (11.4) 2.7
Density-based method
Gaussian  91.5(9.9) 56.9(7.7) 729 93.6(6.1) 588 840 951(43) 653 86.3 95.0(35) 579 84.6
(7.8) (10.9) (4.0 (10.6) 3.2 (10.3) 3.2
Mogh 89.9(12) 69.2 713 91.7(6.1) 641 838 94.0(44) 670 85.0 945(3.7) 616 84.9
(11.9) (14.3) (14.0) (6.8 (11.4) (5.6) (12.6) (5.1
McD! 90.8(9.1) 54.0(55) 720 93.1(6.00 58.0(81) 841 953(42 653 86.4 94.8(3.5) 579 84.9
Gaussian (6.8 4.3 (20.6) (3.0 (10.6) (3.0
Parzen 89.7(10) 59.6(8.3) 70.6 91.7(6.5) 621 839 939(50 687 85.6 94.3(3.8) 66.1 86.1
(9.9 (10.3) (5.3) (11.2) (5.4) (12.7) (3.8
Naive 88.1(8.7) 54.2(6.5) 69.1 90.2(7.1) 604 837 919(55 665 86.6 92.8(4.7) 64.6 86.9
Parzen (9.6) (11.2) (4.9) (12.8) (4.4) (10.0) (3.4
K-NNJ 91.1(7.8) 529(51) 716 91.6(5.00 611 859 94.8(48 66.9 87.1 95.0(3.8) 621 86.5
(7.9 (11.3) (3.1) (11.2) 3.2 (10.3) (33
)
LOFX 89.2(8.9) 56.3(3.9) 730 92.4(6.0) 59.2 849 94.0(48 644 86.2 93.7(4.3) 538 83.8
(8.6) (11.2) (2.8 (11.4) (2.8) (10.3) (2.5)
Reconstruction-based method
pca! 87.6(8.8) 58.8(4.6) 737 90.2(6.4) 55.0(6.8) 827 914(49 59.7(6.2) 841 905(45) 53.8(7.2) 83.6
(8.3 (4.5) 3.2 (2.9
Auto-en- 836(14) 583 710 84.6(125) 531 821 88.4(10.0) 57.7 83.3 885 52.3 83.2
coder 7.7) (12.5) (20.0) (7.0) (21.5) (6.8) (10.6) (21.0) (5.8
som™ 85.6(12) 634 727 876(7.2) 571 816 935(54) 644(85 848 947(40) 59.0(5.8) 85.0
(10.3) (11.7) (10.2) (5.8) (4.0) (3.1
K-means 94.2(7.6) 57.2(76) 731 937(6.2) 622 854 96.0(44) 676 87.4 958(3.9) 621 86.5
(7.1 (10.5) (4.2) (10.3) 3.1) (10.3) (2.9

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

Cltalicized values indicates the top performing models.
dincSvDD: incremental support vector data description.
&/-SVM: one-class support vector machine.

NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.
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KLOF: local outlier factor.
Ipca: principa component analysis.
MSOM: self-organizing maps.

Daily Smoothed Data Set

Regarding the daily smoothed data set, as shown in Table 6,
almost all models achieved excellent performance and much
improved data description compared with the daily raw data
set. As shown in Table 6, specific models such as V-SVM,

https://www.jmir.org/2020/8/€18912
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K-NN, and K-means produced excellent descriptions of the data
for al the sample sizes;, however, V-SVM achieved superior
performance compared with these models. In the group
comparison, the boundary and domain-based method produced
excellent description of the data for all sample sizes.
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Table 6. Average performance of each model across all the infection cases for the daily smoothed data set (with filter) and different sample size.

Fraction=0.01.
Models 1 month 2 months 3 months 4 months
AUCa, Specm ci- F1 AUCa, Specm ci- F1 AUCa, SpeCIfICI - R AUCa, Speufl ci- F1
mean y mean ty mean ty mean ty
(SD) (SD) (SD) (SD)
Boundary and domain-based method
svDDP 99.9 100 (0.0) 94.1 100 100 (0.0) 96.1 100 100 (0.0) 96.5 100 100 (0.0) 97.9
(0.7) (14.2) (0.0) (7.6) (0.0) (6.5) (0.0) (3.9)
IncSvDDE  99.9 100 (0.0) 94.1 100 100 (0.0) 96.9 100 100 (0.0) 97.3 100 100 (0.0) 98.6
(0.7) (14.2) (0.0) (6.5) (0.0) (5.9) (0.0) (2.9)
V-svmd 100 100 (0.0) 99.1 100 100 (0.0) 99.1 100 100 (0.0) 99.4 100 100 (0.0) 99.5
(0.0) (32)¢ (0.0) (2.9) (0.0) (2.9 (0.0) (1.5)
NNf 90.1 40.0 69.5 88.9 33.1 78.4 89.2 33.6 7.7 90.5 235 77.1
(14.5) (30.5) (13.2) (9.9 (22.6) (6.8) (7.9 (14.6) (5.3 (6.8) (18.6) (5.7)
MSTY 98.9 85(6.1) 86.7 99.8 96.7(3.4) 95.1 99.9 98.9(4.1) 98.0 99.9 100(0.0) 98.0
(3.6) (9.4) (0.7) (6.2) 0.2 (35 (0.5 (5.4)

Density-based method
Gaussian 99.2 92.6(9.0) 87.2 99.5 96.7(7.5) 94.8 99.9 100 (0.0) 981 99.8 100 (0.0) 98.3

(5.1) (15.2) (2.5) (16.4) (0.4) (4.9 (0.8 (5.9)
mogh 98.8 929(8.6) 85.2 99.4 97.0(5.4) 921 99.9 99.9(0.7) 954 99.8 99.9(0.6) 96.4
(5.4) (17.1) (2.6) (11.6) (0.4) (7.8) (1.0 (7.7)
MCD' Gaus- 984 86.6(8.8) 86.6 99.3 90.0(8.7) 934 99.8 99.2(2.6) 98.0 99.8 97.1(39 970
san (5.6) (11.9) 2.7) (8.1) (0.5 (5.3 0.9 (5.5)
Parzen 99.2 100(0.0) 90.8 99.9 100 (0.0) 937 100 100(0.0) 93.6 99.9 100(0.0) 95.8
(3.5) (16.4) (0.4) (9.8) (0.0 (8.9 0.3 (8.2
Naive 99.8 100(0.0) 944 100 100 (0.0) 96.1 99.9 100(0.0) 974 100 100(0.0) 98.2
Parzen (1.2 (14.6) (0.0) (7.9 (0.5 (5.6) (0.0 4.2
K-NNJ 99.5 91.6(3.6) 90.7 99.9 100 (0.0) 98.3 100 100(0.0) 984 100 100(0.0) 98.8
(2.0) (9.6) (0.4) (4.9 (0.0 (5.1 (0.0 (3.6)
LOFX 99.6 93.3(7.3) 924 99.9 99.2(34) 97.1 99.9 98.6(2.8) 974 99.9 100(0.0) 98.2
(1.5) (10.6) (0.5) (7.3) 0.2 (4.5 0.9 (5.9)
Reconstruction-based method
pca! 93.8 82.0(7.3) 838 91.3 779(7.3) 89.3 88.7 76.3(8.6) 89.5 90.7 76.2(8.6) 89.0
(6.7) (10.4) (4.3) (8.7) (5.9 (5.3 (3.6) (6.9)
Auto-en- 97.0 91.6 87.7 98.1 92.6 92.0 98.6 92.8 94.0 98.7 92.7 94.9
coder (8.1) (14.6) (16.0) (5.4) (15.3) (10.7) (4.6) (14.8) (8.3 (4.0 (15.8) (7.7)
som™ 99.1 99.9(0.6) 85.2 99.8 100(0.0) 88.9 99.9 100(0.0) 94.6 99.8 100(0.0) 95.9
(3.2 (20.5) (0.7) (16.1) (0.2 (8.0 (0.6) (8.1)
K-means 99.8 96.2(6.0) 93.2 100 100(0.0) 97.8 100 100(0.0) 98.0 100 100(0.0) 99.0
(1.2 12.7) (0.0) (5.6) (0.0 (5.6) (0.0 (2.9)

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

%IncSVDD: incremental support vector data description.
dV-SVM: one-class support vector machine.

Cltalicized values indicates the top performing models.
NN: nearest nei ghbor.

IMST: minimum spanning tree.

PMOG: mixture of Gaussian.

IMCD: minimum covariance determinant.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.
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IPca: principal component analysis.
MSOM: self-organizing maps.

Hourly Smoothed Data Set

Regarding the hourly smoothed data set, as shown in Table 7,
amost all the models failled to produce acceptable data
description from the 1-month sample size except V-SVM, which
achieved the best description. The high variability between the
performance of the models with the 1-month hourly data set
could be associated with the high data granularity, and, in fact,
the model s require more data setsto capture the high variability

https://www.jmir.org/2020/8/€18912
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among the data objects. Models such as V-SVM, MCD
Gaussian, and K-means achieved superior performance from
their respective groups. In general, V-SVM outperformed in all
the sample sizes. The density and reconstruction-based models
improved with larger sample size. In the group comparison, the
boundary and domain-based method produced better description
in all the sample sizes, and the density and reconstruction-based
method achieved equivalent performance with larger sample
sizes.
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Table7. Average performance of each model acrossall theinfection casesfor the hourly data set with smoothing and different sample size. Fraction=0.01.

Models 1 month 2 months 3 months 4 months
AUCa, Specifici- F1 AUCa, Specifici- F1 AUCa, Specifici- F1 AUCa, Specifici- F1
mean ty mean ty mean ty mean ty
(SD) (SD) (SD) (SD)

Boundary and domain-based method
svDDP 974 89.0(34) 894 97.4 86.7(44) 915 97.2 80.1(5.5) 935 97.6 81.8(5.3) 94.6

(2.9) (71  (18) (109 (26 (B4 @7 (6.0)
InesvDD® 971  877(27) 895 972  864(28) 936 970  762(63) 932 974  790(48) 954
(2.9) (59 (18 @8 (27 26 (@17 (191
V.SyMe 981  855(06) 923 989  898(02) 954 987  864(04) 944 990  89.2(03) 954
(2.0) 13 (14) 16)  (L4) (20) (09 2.2)
NN 932  920(24) 839 944  884(34) 909 933  830(37) 920 940  829(36) 940
(7.9) (120) (25 (53 (28 42 (28 (4.0)
MSTY 9.1  944(22) 729 973  942(21) 8.1 9.1  935(19 902 970  936(L7) 926
(2.6) (185)  (L1.4) 1100 (21 (73 (14 (5.0)

Density-based method
Gaussian  98.4 91.2(2.6) 89.6 99.3 92.3(17) 95.7 98.8 88.1(4.0) 95.9 99.2 89.8(31) 97.2

(2.6) (12.5) (0.9 (4.9 1.3 2.7) (0.7) (1.8)
Mogh 975 91.7(32) 878 98.9 90.9(27) 94.0 98.2 85.4(6.6) 94.2 98.5 88.0(4.9) 96.0
(3.0 (13.3) 1.2 (6.3 (2.0 4.1 (1.5) 3.1)
McD! 98.5 89.9(37) 89.1 99.5 92.2 95.8 98.9 87.9(3.3) 96.0 99.2 90.4(3.4) 974
Gaussan (1.5 (11.8) (0.9 (92.2) (4.5 (1.1 (2.5) (0.7) 2.7)
Parzen 96.4 97.8(1.1) 59.9 98.0 97.7(1.1) 795 97.2 96.4(1.2) 851 98.1 96.7(1.1) 886
(2.6) (18.9) (1.6) (14.5) (2.3 (10) (1.6) (7.1)
Naive 96.4 875(35 85.1 98.7 89.2(2.8) 928 96.0 90.8(2.6) 95.0 98.2 90.0(1.8) 96.2
Parzen (3.0 (10.9) (1.5 (7.5) (2.3 (4.1) (1.6) (2.8)
K-NNJ 97.6 91.1(1.6) 876 99.0 924(24) 945 98.4 92.6(1.4) 957 98.7 93.3(1.3) 97.3
(2.9) (13.6) 1.4 (6.6) 1.4 (4.8) (1.1) (2.8)
LOFX 96.9 91.2(1.6) 86.2 97.4 89.8(4.8) 93.1 95.0 85.2(4.6) 929 95.8 85.3(4.7) 94.7
(2.9) (13.0 (1.8) (4.9 (3.0 (4.8) 1.7) 3.2
Reconstruction-based method
pcal 97.4 782(6.1) 825 94.8 77.6(4.5) 90.9 92.6 72.4(3.8) 925 934 71.1(25) 939
3.2 (20.9) (3.8 (3.6) 4.2 (1.9 3.2 (1.3)
Auto-en- 95.4 88.7(9.5 86.1 96.9 87.1(9.90 928 95.0 79.3 93.1 95.9 80.3 95.0
coder (5.3) (13.1) 32 (6.4) (5.3 (14.5) (4.8) (4.3) (14.4) (3.6)
soM™ 95.9 91.6(26) 86.1 95.7 87.6(4.1) 927 93.9 79.1 92.3 96.0 87.5(7.0) 96.1
(2.9) (144 @7 (5.7) (35) (10.9) (45) (25) 32
K-means  97.1 89.7(6.7) 88.7 98.6 91.1(4.2) 95.2 98.5 92.3(29) 96.9 98.9 93.9(1.3) 97.9
(3.9 (121 (@7 (4.4 (1.5) (33) (1.0 (2.2

8AUC: area under the receiver operating characteristic curve.
bsvDD: support vector data description.

IncSVDD: incremental support vector data description.
Yitalicized valuesindicates the top performing models.
&/-SVM: one-class support vector machine.

NN: nearest nei ghbor.

9MST: minimum spanning tree.

PMOG: mixture of Gaussian.

'MCD: minimum covariance determinart.

JK-NN: K-nearest neighbor.

KLOF: local outlier factor.

IPCA: principal component analysis.
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MSOM: self-organizing maps.

Unsupervised M ethods

Two density-based unsupervised models were tested and
evauated on the same set of data as used in the one-class
classifiers: LOF and COF. The average AUC, specificity, and
F1-score were computed after 20 runs. The best performing
thresholds for al the infection cases along with the optimal
value of k (number of neighbors) are given in Table 8. As can
be seen from the table, both the LOF and the COF achieved
better performance on the smoothed data set as compared with
itsraw version. In all theinfection cases, L OF performed better
than COF. Thisis mainly because of the characteristics of the
datasets, which fulfill the LOF spherical assumption of neighbor
distribution. Considering the average F1-score across al the
infection cases, LOF achieved 74.7% on the raw daily data,
91.1% on the smoothed daily data, and 72.7% on the hourly

https://www.jmir.org/2020/8/€18912
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data, whereas COF achieved 71.9% on theraw daily data, 85.8%
on the smoothed daily data, and 68.9% on the hourly data.
However, compared with the one-class classifier, it suffersfrom
performance degradation mainly because the data are not
distributed uniformly, where some regions may contain high
density and others might be sparse. However, the region of
sparse density does not always signify anomalies (infection
incidence). For example, an individual patient on certain days
might prefer to take little insulin compared with most of the
daysand perform heavy physical activity to replacetheir insulin
needs. This scenario could generate an outlier, a small ratio of
insulin-to-carbohydrate, which will be considered and detected
as outliers by unsupervised models. A detailed score plot of
each model for the different infection cases can be found in
Multimedia Appendix 3.
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Table 8. Average area under the receiver operating characteristic curve, specificity, and F1-score for both with and without smoothed versions of the
data. The parameters kd and kh represent the optimal number of nearest neighbors for the daily and hourly cases, respectively.

Frequencies, density-based methods

Models
(threshold)

Pre-pro

k;=240) kn=240)

AUC? AUC?

Specific F1

1st case of infection (kg=30, 2nd case of infection (kq=30, 3rd case of infection (k4q=30,

Specific F1

4th case of infection

kn=240) (kg=30, ky=240)

AUC?*  Specific F1 AUC?  Specific F1

Daily

Without | opb 750 500 856 900 100

filter (T1=2.4,
To=1.2,
T3=1.45,
T,=1.8)°

821 66.7 72.6 97.4 100

cord

(T=14,
T,=13,
Ta=14,
T,=1.4)

Withfil-
ter

99.0 100 99.2 100

LOF?
(T1=17,
T,=16,
T4=1.95,
T4=2.2)

coFd =13,
T,=13,
T4=18,
T,=18)

97.6 100 76.6 97.9 100

Hourly

980 86.0 74.6 95.5 100

LOF?
(T=14,
T,=13,
T4=1.35,
T4=15)

924 884 74.6 77.0 66.0

cor
(T1:1.2,
Tzzl.l, T3=,
T,=11)

67.4 921 66.7 70.1 98.2 100 75.8

75.8 75.2 66.7 67.6 96.7 100 71.8

85.4 100 100 100 99.9 100 94.7

77.6 99.5 100 88.8 100 100 100

70.2 91.4 75.0 85.2 72.6 711

62.5 90.3 82.7 74.6 826 822 63.7

8AUC: area under the receiver operating characteristic curve.
BLOF: local outlier factor.
T\: threshold for the kth month.

dcor: connectivity-based outlier factor.

Computational Time

Computational time is the amount of time a particular model
needs to learn and execute a given task [12]. It can be regarded
asone of the best performanceindicatorsfor real-time systems.
For a real-time application, an optimal model is the one that
achieves superior detection performance with small training
and testing time. Depending on the application, sometimes
models can be trained offline, which makes the training time
less important [12]. In this regard, the computational times of
all the models were estimated and compared with each other.
The computational timewas measured for different sample sizes

https://www.jmir.org/2020/8/€18912

RenderX

of the training and testing data sets. The sample size of the
training and testing data includes 240, 480, 720, 960, 1200,
1440, 1680, 1920, 2160, 2400, 2640, and 2880 sample objects
(data points) each. The required computational time for both
training and testing each model is depicted in Figures 5 and 6.
Thefigures demonstrate arough estimation of the computational
time, where each model learns the data set and classifies the
sample objects. During the training phase, NN, SVDD, and
SOM took considerabletime. For atraining sample size of 2880
objects, NN requires 296 times, SVDD requires 206 times, and
SOM requires 42 times the time taken by K-NN on the same
sample size. Generaly, as the number of sample objects
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increases, these models require much more time. However, increased. During the testing phase, only the LOF took
K-means, Gaussian families, LOF, MST, K-NN, V-SVM, PCA, considerable time compared with the other models, as can be
auto-encoder, and incSVDD took lesstime. These modelstook  seenin Figure 6.

amost constant time even when the number of samples

Figure5. Plot of models’ average computational time for the training phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss: Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of Gaussian; MST: minimum
spanning tree; NN: nearest neighbor; NParzen: naive Parzen; PCA: principal component analysis, SOM: self-organizing maps, SVDD: support vector
data description; V-SVM: one-class support vector machine.
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Figure 6. Plot of models’ average computational time for the testing phase. The x-axis depicts the sample size, and each label stands for total sample
size divided by 24. The y-axis depicts the computational time required by each model. Gauss: Gaussian; IncSVDD: incremental support vector data
description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD Gauss. Gaussian: SOM: self-organizing maps, MOG: mixture of Gaussian;
MST: minimum spanning tree; NN: nearest neighbor; NParzen: naive Parzen; PCA: principal component analysis; SVDD: support vector datadescription;

V-SVM: one-class support vector machine.

Discussion

Principal Findings

Anomaly or novelty detection problem has been widely used
in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnosticsand monitoring, cyber-intrusion
detection, and others[1-3]. In applicationsrelated to health and
medical diagnostics and monitoring, the anomaly detection
problem has been used to detect and identify the abnormal health
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RenderX

state of anindividual, for example, detecting abnormal patterns
of heartbeat recorded using an electrocardiogram [1,51-54]. The
omnipresence of various physiological sensors has facilitated
circumstancesfor individual sto easily self-record health-related
events and data for the purpose of sdf-informatics and
management [55]. Currently, people are generating huge
amounts of data on a daily basis that can contribute to both
individual and public health purposes [54]. To this end, people
with diabetes are not an exception, generating rich datain both
quality and quantity, which is expected to further improve with
advances in diabetes technologies. These data can provide
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valuable information if processed with the right tools and
methodology, and in this regard, particular instance includes
detecting novel or anomalous data points for various purposes.
Theavailability of |abeled data constrainsthe choice of methods
inthe anomaly detection problem [3,9-11]. Supervised anomaly
detection methods are impractical for applications such as
detecting infection incidences in people with type 1 diabetes
for a number of reasons [10,12]. Blood glucose dynamics are
affected by various other factors apart from infection incidences
[19,56,57], and characterization of infection-induced anomalies
(abnormal class) from the normal class [13] is a challenging
task because of the following reasons:

1 There are no well-defined boundaries regarding how
different pathogens affect various key parameters of blood
glucose dynamics, including blood glucose levels, insulin
injections, carbohydrate ingestions, physical activity or
exercise load, and others. This results in poor boundary
demarcation between the normal and abnormal classes.

2. Class boundaries defined for a single pathogen might not
work for the other pathogens because the effect of different
pathogens on the blood glucose dynamics could be different.

3. It is expensive and time consuming to collect
infection-related data to explore and characterize
pathogen-specific class boundaries. This results in
ill-defined class boundaries even for an infection related to
asingle pathogen.

4. The degree of effect of the same pathogens on the blood
glucose dynamics could differ between different individuals
because of the difference in individual immunity, which
further complicates the characterization task.

5. Lack of sufficient sample size for both the abnormal and
the normal classes resultsin poor training and testing data
sample size or imbalanced class problems.

Given these challenges, the best possible approach isto identify
methods that can learn from the normal health state of an
individual and classify abnormalitiesrelying on the boundaries
learnt from the normal health state, which is a one-class
classifier approach. This definitely reduces the challenge
becauseit only requiresthe characterization of what isbelieved
to be a normal health state. For instance, assume a health
diagnostic and monitoring system that detects health changes
in an individual by tracking the individual’s physiological
parameters, where the current health status is examined based
on set of parameters, and raises a notification alarm when the
individual health deteriorates[12]. In such asystem, it becomes
feasible to rely on a method that can be trained using only the
regular or normal day measurements (target days) so asto detect
deviation from normality [12,14]. Another possible aternative
approach is to identify a method that does not require any
characterization and labeling of classes, which is unsupervised
methods|[7]. Accordingly, considering the previously mentioned
challenges, one-class classifiers and unsupervised modelswere
proposed for detecting infection incidence in people with type
1 diabetes. The objective was to develop a personalized health
model that can automatically detect the incidence of infection
in people with type 1 diabetes using blood glucose levels and
insulin-to-carbohydrate ratio as input variables. The model is
expected to detect any deviations from the norm as a result of
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infection incidences considering blood glucose level
(hyperglycemia incidences) coupled with unusual changes in
the insulin-to-carbohydrate ratio, that is, frequent insulin
injections and unusual reduction in the amount of carbohydrate
intake [19]. A personalized health model based on one-class
classifiers and unsupervised methods was tested using blood
glucoselevelsand theinsulin-to-carbohydrateratio asabivariate
input. The result demonstrated the potential of the proposed
approach, which achieved excellent performance in describing
the data set, that is, detecting infection days from the regular or
normal days, and, in particular, the boundary and domain-based
method performed better. Among the respective group, particular
modelssuch asV-SVM, K-NN, and K-means achieved excellent
performance in al the sample sizes and infection cases.
However, the unsupervised approaches suffer performance
degradation compared with the one-class classifier mainly
because of the atypica nature of the data, which are not
distributed uniformly, where some regions may contain high
density and others might be sparse (Multimedia Appendix 2).
Therearerare events (sparse region) of blood glucose dynamics
that are anormal response; however, the unsupervised methods
can till detect and flag false alarms including the following:

1. Carbohydrate action: a situation in which the ratio of
insulin-to-carbohydrateis small and the blood glucose levels
are high (hyperglycemia), Carb Action-Quadrant 1 in
Figure 7. This is a normal response to blood glucose
dynamics as consumption of more carbohydrates and less
insulin intake can derive blood glucose dynamics into the
hyperglycemia region (high blood glucose levels) if there
is no physical activity session. A typical example of this
particular situation is holiday seasons, where people
consume too many carbohydrates.

2. Physical activity action: despite a smal ratio of
insulin-to-carbohydrate, the blood glucose levels still drop
to low levels (hypoglycemia), PA Action-Quadrant 2 in
Figure 7. Normally, asmall ratio of insulin-to-carbohydrate
signifiesthat the patient consumed more carbohydrates and
injected less insulin, which normally derives the blood
glucose dynamicsinto the hyperglycemiaregion. However,
despite taking more carbohydrates and less insulin, a
rigorous physical exercise can till derive the blood glucose
dynamics into the hypoglycemia region. Therefore, thisis
anormal response of blood glucose dynamics asthe action
of physical activity or exercise can derive the patient into
hypoglycemic regions even if the patient consumes more
carbohydrates. For example, anindividual patient on certain
days might prefer to take little insulin as compared with
most of the days and perform heavy physical activity to
replace their insulin needs. This scenario could generate an
outlier, asmall ratio of insulin-to-carbohydrate, which will
be considered and detected as anomalies by the
unsupervised models. However, this could be mitigated by
incorporating physical activity data as an input variable.

3. Insulin action: theratio of insulin-to-carbohydrate islarge,
that is, high insulin intake and low carbohydrate
consumption, and blood glucose levels are low
(hypoglycemia), Insulin Action-Quadrant 3 in Figure 7.
This is a normal response to blood glucose dynamics as
administration of high insulin with little carbohydrate

JMed Internet Res 2020 | vol. 22 | iss. 8| €18912 | p. 26
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

consumption can derive the blood glucose dynamics into
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the hypoglycemic region.

Figure7. Quadrants of wellnessin people with type 1 diabetes. The figure depicts the 4 possible scenarios of different parameters: carbohydrate action,
insulin action, physical activity action, and abnormality because of metabolic change such as infection and stress. BG: blood glucose; PA: physical

activity.

Quadrants of wellness in Type 1 Diabetes

Quadrant 4

“BG Average *

a 0.08

Thedrawback of unsupervised methods s that they do not have
any mechanism to handle rare events even if the events are
normal. Thisis mainly because unsupervised methods define
an anomaly on the basis of the entire data set. However, the
one-class classifier can learn and handle such scenarios
appropriately if presented during the training phase. This is
mainly because one-class classifiers produce a reference
description based on the available normal (target) data set,
including therare events. With regard to the one-class classifiers,
the boundary and domain-based method achieved a better
description of the data set compared with the density and
reconstruction-based methods, mainly because of the ability of
such models to handle the atypical nature of the data [12].
Detectahility of theinfection incidenceisdirectly related to the
extent and degree of the effect it induces on the blood glucose
dynamics. The type of pathogen, individual’s immunity, and
hormones involved could play arolein determining the degree
of severity in thisregard [19,24,58-62]. To this end, the results
demonstrated that the models were capable of detecting all the
infection incidencesthat can significantly alter the blood glucose
dynamics, such asinfluenza. Moreover, infection incidence that
had a moderate effect on the blood glucose dynamics, such as
mild common cold without fever, was also detected. However,
as expected, infection incidences that had almost little effect on
the blood glucose dynamics, such aslight common cold without
fever, as reported by the individual patient, were not detected.
Regarding the computational time, NN, SVDD, and SOM took
considerable training time, which typically increased as the
number of sample objectsincreased. Moreover, compared with
the other models, only L OF and COF took considerabletesting
time.

Compar ative Analysis of the Methods

Selecting the proper model for implementation in a real-world
setting requires considering different characteristics of the
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model. This includes typical model characteristics such as
performance in limited training sample size, robustness to
outliersin the training data, required training and testing time,
and complexity of the model (in terms of the number of model
parameters).

Performance and Sample Size

Thesamplesize, N, isthe number of sample objects used during
the training phase and highly affects the generalization power
of the model [12,13]. Models trained with small sample sizes
oftenfail to produce satisfactory descriptions mainly associated
with the presence of large variance in the sample objects
[3,12,13,63]. To this end, the results indicate that most of the
models fail to make good descriptions with a 1-month (30
objects) data set, mainly with the daily raw data set, as shown
in Figure 8. Thefigure depicts the average performance of each
model across all the infection cases over the 1- and 4-month
sample sizes. Specificaly, MST, Gaussian families, SOM, and
auto-encoders require aconsiderable amount of training sample
objectsto better describe the data. There is some exception, for
instance V-SVM, which produces a satisfactory description of
the 1-month data sets in al the infection cases and data
granularity. Models such as NN and PCA produced the worst
description in most cases. As the number of training sample
objects increased, al the models improved and produced a
comparable description of the data. Asarule of thumb, for the
daily scenario, a 3-month training sample (90 sample objects)
produces agood description of the data, which can be considered
for rea-world applications. Moreover, if smoothing is
considered, a 1-month sample size produces better description
than the 4-month sample size without smoothing, as shown in
Figure 8. However, for the hourly scenario, a 1-month training
sample object produces acomparable description and anything
more than this size will be enough.
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Figure 8. Average performance (F1-score) of each model across al the infection cases. AE: auto-encoder; Gauss: Gaussian; IncSVDD: incremental
support vector data description; K-NN: K-nearest neighbor; LOF: local outlier factor; MCD: minimum covariance determinant; MOG: mixture of
Gaussian; MST: minimum spanning tree; NN: nearest neighbor; NP: naive Parzen; PCA: principal component analysis, SOM: self-organizing maps;
SVDD: support vector data description; V-SVM: one-class support vector machine.
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Computational Time

For real-time applications, the time a model takesto learn and
classify the sample object is essential in model selection. Table
9 depicts the rough estimation of average training and testing
time required by different classifiers, both the one-class
classifiersand the unsupervised model s, based on 2880 training
and testing sampl e objects each. Most of the models, as shown
in Figures 5 and 6 and Table 9, require reasonable training and
testing time, except NN, SVDD, and SOM, which took a
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considerably longer time. However, it is possible that in some
cases models can be trained offline, which makes the training
timelessimportant. With regard to the testing time, most of the
models executed the classification task in a reasonable time
except COF and one class classifier version of LOF, which
consume considerable time to classify the 2880 objects. The
computational time in these particular models grows
exponentially as the sample size increases, which makes them
resource demanding in a big data setting.
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Table 9. Rough estimation of average training and testing time required by the different classifiers.

Methods

Training time, mean (SD)

Testing time, mean (SD)

One-classclassifiers

SVDD? 105.2 (2.03)
IncSvDDP 0.05 (0.16)
K-means 0.0047 (0.0014)
Gaussian 0.0055 (0.0032)
MOGE 0.076 (0.018)
McDY Gaussian 0.27 (0.075)
SoMm® 21.62 (5.91)
K-NN' 0,51 (0.11)
Parzen 2.02(0.41)
Naive Parzen 4,02 (0.82)
LOEY 1.15 (0.28)
NNP 151.34 (22.52)
msT' 2.39(0.31)
PCA 0.046 (0.20)
Auto-encoder 0.65 (0.094)
v-svmK 0.32 (0.024)
Unsupervised
LOF N/AT
COF" N/A

0.008 (0.002)
2.41(0.83)

0.0032 (0.0010)
0.0032 (0.0012)
0.0036 (0.0011)

0.0034 (0.0015)
0.0033 (0.00087)
0.52(0.12)

0.21 (0.052)
0.40 (0.10)
1198.05 (323.07)

0.18 (0.024)
1.24.(0.19)
0.0031 (0.00086)

0.017 (0.0034)
0.035 (0.0066)

0.2 (0.0)

82.8 (1.5)

83V DD: support vector data description.
BIncSVDD: incremental support vector data description.
°MOG: mixture of Gaussian.

dMCD: minimum covariance determinant.
€SOM: self-organizing maps.

K-NN: K-nearest neighbor.

91 OF: local outlier factor.

PNN: nearest neighbor.

IMST: minimum spanning tree.

IpcA: principal component analysis.
KV-SVM: one-class support vector machine.
ILOF: local outlier factor.

MN/A: not applicable.

NCOF: connectivity-based outlier factor.

Robustnessto Outliersin the Training Data Set

The presence of outliers in the training data set could
significantly affect the model’s generalization ability. Outlier
objects are samples that exhibit different characteristics
compared with the rest of the objectsin the data set [8,63]. For
instance, anindividual might forget apreviousinfection incident
and could label these days asaregular or normal period during
self-reporting, which could end up being used astarget data sets
for training. Another important example could be error recorded
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RenderX

during data registration, that is, carbohydrate, blood glucose
levels, and insulin registration. Such errors could occur during
the manual registration of carbohydrates, associated with
infusion set failures and other similar situations. In this scenario,
an individual could record lower or higher values incorrectly
affecting the input features, for example, ratio of
insulin-to-carbohydrate and blood glucose levels, resulting in
an outlier that could greatly affect the model’s generalization
ability. In thistype of situation, amodel’s sensitivity to outliers
in the training data is crucial to curb the influence of outliers
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on the accuracy of the description generated. To some extent,
a user-specified empirical rejection rate is incorporated in the
models to reduce the effect of outliers in the training data by
rejecting the most dissimilar objects from the description
generated. For example, argection rate of 1% on training data
sets implies that 1% of outliers in the training data set are
rejected. Nevertheless, the sensitivity of models to outliersin
the training data sets differs greatly between models. Among
the models, NN is regarded as the most sensitive model to
outliersin thetraining data set [12]. The presence of outliersin
the training data changes the shape of the description generated
by the model, forcing alarger portion of the feature spaceto be
accepted as the target class [10,12]. Furthermore, models that
rely on an estimation of the covariance matrix, for example,
Gaussian families, also suffer from the presence of outliersin
the training data sets [12,36]. However, when equipped with
regularization, Gaussian models can withstand such outliers.
Local density estimators such as Parzen can withstand outliers,
considering the fact that only the local density is affected [12].
Models that rely on prototype estimation, such as SOM and
K-means, are highly affected by the presence of outliersin the
training data set, which could force the estimated prototype to
be placed near or at the nontarget data set [2,12,13].
Nevertheless, boundary and domain-based method such as
SVDD and V-SVM and reconstruction-based method such as
auto-encoders are more or less insensitive to outliers and can
generate acceptable solutions [3,12,64].

Model Parameters and Associated Complexity

The parameters of a model can be either free or user defined.
These two parameters, free and user defined, provide insight
into how flexible the model is, how sensitive the model is to
overtraining, and how easy the modéd isto configure (ssimplicity)
[12,16]. Considering the number of these parameters, there exist
large variations among the models. For instance, NN does not
possess any free parameters; therefore, its performance
completely relies on the training data set [12]. This constraint
has limitations, mainly becausetraining datathat contain outliers
could ruin the model’s performance [12,15,16]. A model that
possess |arge number of free and user defined parametersistoo
flexible and complex [12]. Regarding the user-defined
parameters, al so known as hyper-parameters, amodel equipped
with small number of parameters and preferably with intuitive
meaning are easy to configure. Setting up the user defined
parameters incorrectly can degrade the model’s performance
and selecting the proper val ues (optimization) becomes complex
and vague asthe number of model parametersbecometoo large.
One of the simplest models is Parzen density and NN, which
do not require the user to specify any parameters [3,12,13].
Some models, such as support vector families, require the user
to specify parameters that have intuitive meaning, for example,
the ratio of training objects to be rejected by the description
[12,65]. There are also models that are complex enough given
that the user is expected to specify many parameters, which are
not intuitive and require careful choice. Examples of such
models include SOM and auto-encoders, where the user is
expected to supply the number of neuron, hidden units, and
learning rate [10,12,37,66].
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Practical Illustration and Area of Applications

For areal-world application, apart from the performance of the
model, it isimportant to consider two important aspects of the
data set, the time window of detection (data granularity) and
the required sample size. The time window or data granularity,
that is, hourly and daily, defines the frequency (continuity) of
computation one needs to conduct throughout the day to screen
the health status of the individual with type 1 diabetes. In an
hourly time window, one is expected to carry out the
computation at the end of each hour throughout the day.
However, in the daily time window, one needs to carry out one
aggregate computation at the end of the day. Decreasing the
time window (increasing the granularity of the data) enhances
early detections; however, at the coast of accuracy, for example,
more unwanted features (noise) in the data. The results
demonstrated that amost al the models produced fairly
comparable detection performances in both time windows.
Moreover, the required sample size determines the necessary
amount of data an individual with type 1 diabetes needs to
collect in advance before joining such an infection detection
system. Models that could generalize well with small sample
sizes could be preferred in a real-world application to enable
more people to join the system with ease. Generally, the results
demonstrated that the models require at least a sample size of
3-month data for the daily case and 2-month data for hourly
case to perform better. Automating the detection of infection
incidences among people with type 1 diabetes can deliver a
means to provide personalized decision support and learning
platformsfor theindividuals and, at the same time, can be used
to detect infectious disease outbreaks on alarge scale through
spatio-temporal  cluster detection [19,67,68]. Detailed
descriptions of these instances are given below:

1. A personalized decision support system and learning
platform relies on an individual’s self-recorded data to
providerelevant information in relation to decision making
toassist theindividuals during crises[19,67,68]. Moreover,
it can aso provide alearning platform concerning the extent
to which infection incidence affects the key parameters of
the blood glucose dynamics. Information regarding what
to expect at each stage of the course of infection could be
very important to the individuals [19]. During infection
incidences, various kinds of information could be vital for
an individual to properly manage blood glucose levels,
including time in range (blood glucose), to what extent is
the evolution of blood glucose affected during the course
of infection, to what extent doesinsulin sensitivity change,
and how much does theinsulin-to-carbohydrate ratio shift,
that is, changes in insulin requirements for each gram of
carbohydrate intake.

2. A population-based early outbreak detection system relies
on self-recorded information from an individual with type
1 diabetesto detect individuals' infection casesand, thereby,
detect agroup of infected individuals on a spatio-temporal
basis. Such asystem should collect individuals' self-recoded
datato acentra server, anayzeindividuals dataon atimely
basis, identify and locate acluster of people based on space
and time, and notify the responsible bodies if there is an
ongoing outbreak [19,67-71].
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Conclusions

Anomaly or novelty detection problem has been widely used
in various applications including machine fault and sensor
failure detection, prevention of credit card or identity fraud,
health and medical diagnosticsand monitoring, cyber-intrusion
detection, and others. In this study, we demonstrated the
applicability of one-class classifiersand unsupervised anomaly
detection methods for the purpose of detecting infection
incidences in people with type 1 diabetes. In general, the
proposed methods produced excellent performancein describing
the data set, and particularly the boundary and domain-based
method performed better. In contrast to the specific models,
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V-SVM, K-NN, and K-means achieved better generalizationin
describing the data set in al infection cases. Detecting the
incidence of infection in peoplewith type 1 diabetes can provide
an opportunity to devise tailored services, that is, personalized
decision support and a learning platform for the individuals,
and can simultaneously be used for detecting potential public
health threats, that is, infectious disease outbreaks, on a
large-scale basis through a spatio-temporal cluster detection.
Generaly, weforeseethat the results presented could encourage
researchersto further examine the presented features along with
other additional features of self-recorded data, for example,
various CGM featuresand physical activity data, onalarge-scale
basis.
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