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Abstract

Background: Word embeddings are dense numeric vectors used to represent language in neural networks. Until recently, there
had been no publicly released embeddings trained on clinical data. Our work is the first to study the privacy implications of
releasing these models.

Objective: This paper aims to demonstrate that traditional word embeddings created on clinical corpora that have been deidentified
by removing personal health information (PHI) can nonetheless be exploited to reveal sensitive patient information.

Methods: We used embeddings created from 400,000 doctor-written consultation notes and experimented with 3 common word
embedding methods to explore the privacy-preserving properties of each.

Results: We found that if publicly released embeddings are trained from a corpus anonymized by PHI removal, it is possible
to reconstruct up to 68.5% (n=411/600) of the full names that remain in the deidentified corpus and associated sensitive information
to specific patients in the corpus from which the embeddings were created. We also found that the distance between the word
vector representation of a patient’s name and a diagnostic billing code is informative and differs significantly from the distance
between the name and a code not billed for that patient.

Conclusions: Special care must be taken when sharing word embeddings created from clinical texts, as current approaches may
compromise patient privacy. If PHI removal is used for anonymization before traditional word embeddings are trained, it is
possible to attribute sensitive information to patients who have not been fully deidentified by the (necessarily imperfect) removal
algorithms. A promising alternative (ie, anonymization by PHI replacement) may avoid these flaws. Our results are timely and
critical, as an increasing number of researchers are pushing for publicly available health data.

(J Med Internet Res 2020;22(7):e18055) doi: 10.2196/18055
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Introduction

Motivation
Natural language processing (NLP) is increasingly used to assist
medical practitioners with various tasks, ranging from patient
phenotyping to unplanned hospital readmission prediction [1-3].
Although a diverse range of approaches are used, a large number
of NLP applications use algorithms, such as Continuous Bag
of Words (CBOW), Skipgram, and Global Vectors (GloVe)
[4,5], which represent tokens as dense numeric vectors termed
as word embeddings. Most of these representations are computed
from large corpora of text, such as clinical notes or narratives
from health records, made available by health care providers
(HCPs). Usually, before these data are provided to researchers,
the HCPs apply anonymization algorithms to deidentify the
personal health information (PHI) in the data. In this work, we
adopted the terminology of the US Health Insurance Portability
and Accountability Act (HIPAA), where PHI refers to
individually identifiable health information, which includes
personal identifiers ranging from names and phone numbers to
fingerprints.

There is a wide variety of techniques to locate and deidentify
PHI in clinical text, ranging from dictionaries [6] to recurrent
neural networks [7]. Once the sensitive information is located
within a record, anonymization can employ either removal or
replacement, that is, the sensitive information is either simply
deleted, changed to a data-type identification tag such as
*NAME*, or replaced with another randomly chosen PHI of the
same type. Many publicly available resources use PHI removal,
for example, the Multiparameter Intelligence Monitoring in
Intensive Care (MIMIC-III) dataset [8] used informative
deidentification tags. However, in this paper, we showed that
as no perfect PHI search algorithm exists, data secured this way
can be exploited because traces of identities remain in the text
and are detectable even in embeddings that are generated from
it.

Specifically, we discussed the privacy concerns that arise from
publicly releasing word embeddings that have been trained on
clinical notes secured using the PHI removal paradigm. At first
glance, it may seem that releasing word embeddings has low
risk because of the unordered nature of these models; all that is
released is a list of words, arbitrarily ordered, with dense
numeric vectors associated with each word. However, through
our experiments with three of the most popular embedding
techniques, we showed that they can be leveraged to learn
information presumed to be removed.

Our work relies on the assumption that some name tokens will
inevitably be missed by the deidentification process. This is a
realistic assumption as, to date, there is no deidentification
algorithm that has perfect recall (ie, captures all PHI). This
necessarily means that the word list of the embedding model
will contain names that are not properly protected. We also
assume that malicious actors will be able to successfully identify
these tokens from a very large wordlist. Given these two
assumptions, a publicly released traditional word embedding
model then presents a small, but nontrivial, risk of patient
identities being attacked. This risk is relative to the number of

patients in the data set and the particular deidentification and
embedding algorithms used. Up to 0.6% of all patients may be
at risk of having their full names detected in a data set (built
from individual name tokens), and as many as 0.02% to 0.15%
may have their full name associated with a diagnosis. Although
these risks appear small, with the growing number of publicly
available embeddings trained on clinical data, we aimed to draw
attention to the possible critical mass of potential privacy
exposure.

Specifically, we showed that (1) it is possible to associate name
tokens together to form true name pairs, (2) there is a significant
difference between the distances of diagnoses that have been
associated with a patient and those of diagnoses not associated,
and this is true both at the population level and at the patient
level, and (3) it is possible for a malicious actor to determine
diagnoses assigned to multiple patients, using only precomputed
embeddings. In this work, we will refer to diagnostic codes and
diagnoses interchangeably, although this is not, of course, a
general equivalence. Here, we take the diagnostic code simply
as an indication of the condition that the patient is suspected of
having, which is sensitive information that must be protected.
Finally, we replicate these results and perform further
experiments with a synthetic data set that we make publicly
available.

Our work is the first to study the privacy implications of
releasing word embeddings. This demonstrates how
anonymizing clinical notes using PHI removal is likely to leave
sensitive patient information vulnerable. By methodically
exploring a variety of algorithms and hyperparameters, we
showed that our observation holds in the general case.
Furthermore, we demonstrated that it is easier to reassociate
sensitive information with rare names compared with common
ones. Finally, we argue that, given our results, data holders and
providers should explore whether other paradigms, such as PHI
replacement, are more successful in securing sensitive
information when compared with PHI removal.

Background

Clinical Word Embeddings
Word embeddings (ie, word vectors or distributed
representations) are dense numeric vectors used to represent
words. Many word embedding techniques fall into one of two
categories: low-rank approximations of co-occurrence matrices
[4,9] and those created using shallow neural networks using
contextual information [10]. There is also a recent and growing
body of embedding models employing deeper neural networks
to create contextual word embeddings, which vary depending
on the surrounding context [11,12].

Inspired by the distributional hypothesis [13], word embeddings
trained on health care data are strongly correlated with
human-annotated word similarity metrics for medical terms [2],
although their performance on clinical classification tasks is
strongly dependent on the quality, size, and type of data from
which they are created [14]. In fact, embeddings created from
clinically related data (eg, clinical notes and biomedical text,
such as a collection of all PubMed Central articles and PubMed
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abstracts), often performed better than, and never performed
worse than, unspecialized corpora [2].

Until recently, there had been no publicly released embeddings
trained on clinical data [15-18]. However, some newly released
embeddings [15-18] are trained using contextual word
embedding models on MIMIC, which itself uses PHI removal
to abide by HIPAA regulations. Our work demonstrates how,
if no additional security measures are taken, then traditional
(noncontextual) models may be compromised. More work is
required to assess whether our findings hold for the four new
models as well (ie, contextual word embeddings) [15-18].

Privacy of Clinical Notes
There are 3 main approaches to protect the privacy of patients:
dictionary-based, statistical, and hybrid approaches.
Dictionary-based methods often use large wordlists or
predefined regular expressions to locate private information in
the text [6,19]. Statistical methods, often more robust than
dictionary-based approaches [20], use models such as recurrent
neural networks [7] to automatically detect private information.
Hybrid methods combine the two approaches to compensate
for their respective weaknesses [21]. No matter the method used
to detect PHI, once it is detected, there are two ways to secure
the data: PHI removal and PHI replacement.

Personal Health Information Removal
In PHI removal, sensitive information is located in text via a
specialized search algorithm and then is either deleted or
replaced with an informative deidentification tag (eg, all names
are replaced with [*NAME*]). Although simple and common,
this approach is not secure and can be easily exploited. Given
that no PHI search algorithm is perfect, as a data set increases
in size, it becomes increasingly certain that some PHI will be
missed. Thus, if clinical notes are shared in a text format after
this technique is used for deidentification, a malicious party can
uncover names missed by the algorithm by manually inspecting
the data. We demonstrate later that word embeddings created
from such data are also vulnerable to similar exploits.

Personal Health Information Replacement
In PHI replacement, sensitive information, once located within
the text by the search algorithm, is replaced with other
information of the same type; for example, names can be
randomly replaced with other names. This approach is more
secure than PHI removal as it obscures instances where the PHI
detection algorithm has failed and thus provides the data-curator
with plausible deniability for any specific record.

We advocate that HCPs and data providers employ this paradigm
because, if done correctly, it is much harder to exploit and thus
reduces the risk to patient privacy. It is also a simple and

effective way to protect against the exploitation of word
embeddings that we demonstrated in this work.

Methods

Data
In our experiments, we used consultation notes. In Multimedia
Appendix 1, we demonstrate how these findings are reproducible
with an experiment performed with a selected subset of
Wikipedia pages. We made the latter publicly available
alongside the code. For all texts, we removed all punctuation
and numeric characters, and we lowercased all text but
performed no lemmatization, tokenization, or any other
preprocessing.

We used consultation notes provided to the authors by ICES
(formerly known as the Institute for Clinical Evaluative
Sciences) under data sharing agreements with physicians for
the purposes of evaluation and research. Consultation notes are
written by specialist physicians and other health care consultants
to a patient’s family physician. They describe the tests
performed, results observed, and other details that the specialist
physician or health care consultant considers relevant. We
compiled patients' consultation notes and all their prescribed
diagnostic codes that are indicative of suspected diagnoses and
ordered tests, and are therefore sensitive health information that
must not be connected to patient identities. The billing codes
table includes text fields describing each code in 1 to 3 words,
for example, colon screening. These data sets are linked using
unique encoded identifiers and analyzed using ICES.

Although this work is conducted at ICES, ICES does not grant
its research affiliates (including the authors of this paper) access
to true patient names, but replaces them in the manner described
earlier (PHI replacement), using a semimanual, dictionary-based
masking process to consistently replace each true name with a
randomly chosen fake name. We used heuristics to detect names
in the notes. More concretely, we looked for semistructured
notes that have Name: str1, …, strN (representing a series of
alphabetical tokens separated by commas followed by a
semicolon) to indicate the presence of a name. The heuristic is
not 100% accurate, which is why, in Multimedia Appendix 2,
we can provide only an estimate of how many true names exist
by manually analyzing a randomly sampled set.

We perform our experiments on clinical consultation notes for
which we can locate the associated fake patient name. For our
experiments, we treat the fake names as if they were the true
names and removed 99% of them, thus emulating current PHI
removal algorithms [7]. This protected data set is then used as
the first step of our experiments, as shown in Figure 1. Detailed
information regarding the data is provided in Multimedia
Appendix 2.
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Figure 1. Process flow for gathering and preparing the clinical notes for embedding generation and experimentation.

Experiments

Experimental Hypothesis
The intuition behind reidentifying patient information solely
from word embeddings stems from the distributional hypothesis
[13]—that words appearing in similar contexts tend to have
similar meanings and therefore have closer vector
representations than other words. Knowing this, we expect
differences between both:

1. The average distance between the tokens that make up a
person’s name, compared with tokens from different names.

2. The average distance in vector space between a person's
name and their diagnoses (referred to as the in-group),

compared with the average distance between their name
and those diagnoses with which they are not associated
(referred to as the out-group.

If there is a large enough distance between a person's in-group
and out-group, then this observation could be used to extract
sensitive information thought to have been hidden by the
unordered nature of embeddings. In the following sections, we
validated this hypothesis empirically.

Experiment 1: Name Reconstruction Experiment
In the first experiment, we tested whether it is possible to
reconstruct true name pairs simply from a list of individual
name tokens. Figure 2 presents the steps of this experiment,
picking up from the last step of Figure 1.

Figure 2. Process flow for generating word embeddings and performing the name reconstruction experiment.

A list of individual name tokens, corresponding to the fifth step
in Figure 2, is easily generated by manual exploration of the
words. However, as we left 1% of the names, to emulate the
imperfect deidentification algorithms, we knew all the tokens
(ie, the 1% of name tokens purposefully left in place).

We performed this experiment on our consultation notes data
set, where over 99% of names were removed to emulate a PHI

removal approach and only 1054 unique name tokens (from
650 full names) remained in the text.

We performed our experiment with 3 commonly used traditional
word embedding algorithms (CBOW, Skipgram, and GloVe)
for clinical prediction and modeling tasks. For each, we tested
a variety of hyperparameters. Where a specific hyperparameter
is not explicitly mentioned, we used the default hyperparameter
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of the training model, which can be found in Multimedia
Appendix 2.

However, for the sixth step, an attacker would not know how
many full names were in the data set. If we assume that each
name is composed of 2 tokens and none of the names share any
name tokens; we would expect the number of complete names
to be half the number of name tokens (ie, 1052/2 complete
names). Relaxing both assumptions increases the expected
names. Given name tokens A and B, we considered a name to
exist if either 〈A,B〉 or 〈B,A〉 exist as names (ie, ignoring
ordering). On this data set, we created many word embedding
models (n=88) with a wide set of hyperparameters (ie, model
specifications) that included variations in the distance metric
(cosine or cityblock) and context window size.

Experiment 2: Name-Diagnostic Code Association
Experiment
In this section, we explored the second part of our hypothesis:
is there a difference between the average distance in vector
space between a person's name and their diagnoses (their
in-group) compared with the average distance between their
name and those diagnoses with which they are not associated
(their out-group)?

For this experiment, we used the same data and tested the
properties of the same word embedding algorithms for various
hyperparameters, as in the last experiment. We first define a
patient's name vector as the average of the vectors of its
components (ie, first, last, and possibly middle names). Here,
numtoken is the number of space-separated tokens in a string
and is the vector representation of the ith token of the name:

Second, we defined the in-group din as the set of diagnoses for
name and the out-group dout, as all other diagnoses, with di

representing any individual diagnosis. The average distance for
each of these groups from their respective names are referred
to as in_group and out_group, respectively:

We presented the results using the cityblock distance (ie, the
Manhattan distance) instead of the cosine distance because it
performs better at this task (by uncovering more information),
and past work has shown that the vector magnitude (ie, the sum
of all dimensions) is affected by the number of times that the
word occurs in the corpus [22]. However, our experiments were
performed using the cosine distance metric as well, and complete
results can be found in Multimedia Appendix 2.

Initially, we explored the raw data (ie, without any
deidentification algorithm) by plotting the difference between
the in- and out-groups for names that occur below different
frequency thresholds. A name is below the threshold if the
average counts of its components are below that threshold. For
example, if “James” occurs 201 times in the corpus and
“Qwerty” appears twice, then “James Qwerty” is below an
arbitrary threshold of 200 (101.5<200).

Figure 3 shows that the more frequently a name occurs, the
smaller the difference between the in-groups and out-groups.
Nonetheless, the difference is still pronounced when all names
are considered, with the lowest value being just under 5.
Surprisingly, against our intuition, the in-group is larger than
the out-group. We saw this result consistently throughout our
testing described in the following sections.
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Figure 3. Relationship between frequency of name occurrence and the average difference between the in-group and out-group for patients. This graph
is generated from an experiment run on a GloVe model with a dimension of 100, window of 10, learning rate of 0.05, minimum occurrence of 1, and
alpha of .75.

Statistical Testing
Given our initial observation that, on raw data, there is a
difference between in- and out-groups on the population level
on raw data, we now examine if the observed differences are

statistically significant at both the population and patient levels
for various embedding algorithms and hyperparameters on the
deidentified data set (ie, 99% of names have been removed to
emulate an optimum real-life data sharing scenario). A diagram
of the experimental process is shown in Figure 4.

Figure 4. Process flow for generating word embeddings and performing statistical testing. For population-level statistical testing, we performed a
Wilcoxon signed-rank test, and for patient-level statistical testing, we calculated empirical P values using 1000 randomly generated permutations.

Experiment 2a: Population-Level Statistical Testing
In this experiment, we aimed to determine whether the
difference between the in- and out-groups on the population
level is statistically significant.

Here, as with all the clinical text experiments, the embedding
model is trained using all consultation notes after 99% of the
names have been removed. Using the same setup as in the
previous section to obtain distances between in- and out-groups,
we used the Wilcoxon signed-rank test to compare the pairings

of in- and out-groups for each name on the population level.
The Wilcoxon signed-rank test is nonparametric and, unlike the
paired Student two-tailed t test, makes no assumptions regarding
normality.

This experiment is performed for various embedding algorithms,
distance metrics, and hyperparameter ranges.

Experiment 2b: Patient-Level Statistical Testing
Here, we explored whether there is a statistically significant
difference between the in- and out-groups for each patient,
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which would indicate that an individual patient is at risk of
having their diagnostic code uncovered.

In this experiment, we compared the average difference between
a patient’s in-group and the out-group. Although each
comparison will result in a P value for each patient, for brevity
and privacy, we do not report the per patient analysis of the
ICES data, but instead report the number of patients for which
the difference is significant after correcting for multiple
comparisons. To determine statistical significance at the patient
level, we calculated empirical P values by randomly sampling
in- and out-groups generated using 1000 permutations of the
same size from the same data set.

We experimented with various embedding algorithms, distance
metrics, and hyperparameter ranges.

Experiment 3: Scenario Simulation
In this experiment, we performed a hypothetical attack to
examine whether the results of the previous 2 experiments
demonstrate an actionable level of risk. Assuming the role of
an attacker who has access only to released embeddings built
from doctor-patient consultation notes that have been secured
by using PHI removal, we showed how we are able to associate
name tokens that were missed by PHI removal to arrive at a list
of complete patient names and that we are able to associate
these names with some target diagnoses.

For this hypothetical scenario, we used the same data and tested
the properties of the same word embedding algorithms for
various hyperparameters as in the last experiment.

The attack is as follows:

1. Identify a list of target diagnoses that we wish to attribute
to patients. As an example, we considered the following

set of diagnoses: constipation, diarrhea, vaginitis, sexual
dysfunction, urinary infection, herpes genitalis, dementia,
anorexia, alcoholism, threatened abortion, and AIDS.

2. For each name, calculate the 5 diagnoses that are farthest
from the name.

3. Using these 5 diagnoses as the basis for prediction, we
calculated Top-1 (A@1) and Top-5 (A@5) accuracy.

To ensure that our results are not an artifact of the selected
diagnoses, we repeated the above experiment 1000 times for
each tested hyperparameter, randomly selecting 30 target
diagnoses. To be as stringent as possible, we chose from
diagnoses that appeared at least 10 times in the data (which
likely will result in a pessimistic bias, as demonstrated in
Multimedia Appendix 2).

Results

Experiment 1: Name Reconstruction Experiment
The results of this experiment demonstrate that it is possible to
reconstruct true name pairs simply from a list of individual
name tokens and their respective embeddings.

In this section, we present the results for various context window
sizes, an expected name list of size 600, and a cosine distance
metric. We observed that up to 68.5% (411/600) of the paired
tokens come from true names, as shown in Table 1 and Figure
5. As there are over 170,000 name-pair combinations, these
embeddings clearly carry patient information that can be
identified, thus affirming our hypothesis. The complete results
for other hyperparameters, the number of names expected, and
the cityblock distance metric are presented in Multimedia
Appendix 2.

Table 1. The number and percentage of paired tokens that are part of true names as a function of context window size, using the cosine distance metric
of the first 600 paired tokens sorted in ascending order.

GLoVeb names, n (%)CBOWa names, n (%)Skipgram names, n (%)Context window size

8 (1.3)c17 (2.8)51 (8.5)1

158 (26.3)265 (44.2)369 (61.5)3

278 (46.3)323 (53.8)393 (65.6)5

317 (52.8)331 (55.2)410 (68.3)7

323 (53.8)340 (56.7)411 (68.5)9

aCBOW: Continuous Bag of Words.
bGLoVe: Global Vectors.
cResult not significant after correcting for multiple comparisons using the Holm-Bonferroni correction.
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Figure 5. Visual representation of the percentage of paired names belonging to true names from the first 600 paired tokens when sorted in ascending
order.

Experiment 2: Name-Diagnostic Code Association
Experiment

Experiment 2a: Population-Level Statistical Testing
The results of this experiment indicate that, at the population
level, the average difference between the in- and out-groups per

patient is statistically significant. Table 2 and Figure 6 show
the results for various embedding algorithms, varying context
window sizes, and a cityblock distance metric. The complete
results for other hyperparameters, other distance measures, and
absolute distances are shown in Multimedia Appendix 2.

Table 2. Difference between the in-group and out-group as a function of context window size for various word embedding algorithms using the cityblock
distance metric. The differences are relative distances between word embedding vectors in an n-dimensional space.

GLoVec differenceCBOWb differenceSkipgram differenceContext window sizea

4.857.593.911

5.6928.532.883

5.4539.552.335

5.1247.101.847

5.5451.611.519

aAll differences were statistically significant after correcting for multiple comparisons.
bCBOW: Continuous Bag of Words.
cGLoVe: Global Vectors.
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Figure 6. Visualization of the difference between the in-group and the out-group as a function of context window size for various word embedding
algorithms using the cityblock distance metric.

Given our selected hyperparameters, we observed that for all
sizes tested and for all embedding techniques, the difference
between the in- and out-groups on the population level was
statistically significant with P<.001 calculated using the
Wilcoxon test, after correcting for multiple comparisons using
the Holm-Bonferroni correction [23]. The Holm-Bonferroni
correction is a sequentially rejective procedure for correcting
multiple comparisons that keeps the family-wise type I error
bounded. Figure 6 shows that the difference between the
in-group and out-group decreases for embeddings created with
the Skipgram algorithm as the context window increases.
Conversely, the difference grows for CBOW, while it remains
relatively stable for all GloVe models.

Experiment 2b: Patient-Level Statistical Testing
Building on our previous observations, the results of this
experiment indicate that, at the patient level, for a percentage
of examined patients (up to 449/638, 70.4%), the average
difference between in- and out-groups per patient is statistically
significant.

Table 3 and Figure 7 show the results for various embedding
algorithms, varying context window sizes, and a cityblock
distance metric. The complete results for other hyperparameters,
other distance measures, and absolute distances are shown in
Multimedia Appendix 2.

Table 3. The percentage of patients whose diagnoses are identifiable due to a statistically significant difference between the in-group and out-group
as a function of context window size for various word embedding algorithms using the cityblock distance metric.

GLoVeb patients, %CBOWa patients, %Skipgram patients, %Size

400 (62.7)77 (12.1)49 (7.7)1

401 (62.8)149 (23.4)41 (6.4)3

403 (63.2)152 (23.8)33 (5.2)5

380 (59.6)153 (24.0)16 (2.5)7

449 (70.4)153 (24.0)12 (1.9)9

aCBOW: Continuous Bag of Words.
bGLoVe: Global Vectors.
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Figure 7. Visualization of the percentage of patients who have a significant difference between their in- and out-groups as a function of context window
size for multiple word embedding algorithms using the cityblock distance metric.

Table 3 presents the patient-level analysis for different context
window sizes. As shown in Figure 7, using the CBOW
algorithm, an increasing window size initially correlates
positively with the number of vulnerable patients, defined as
having a significant difference between the in-group and
out-group. The opposite trend is observed for the Skipgram
model. Context window size does not appear to have an effect
on word embeddings created using GloVe, as the number of
patients remains relatively stable.

Experiment 3: Scenario Simulation
Having demonstrated that the difference between in- and
out-groups is statistically significant, in this section, we showed
that our hypothetical attack results in an actionable level of risk,
that is, an attacker who has access only to released embeddings
built from doctor-patient consultation notes that have been
secured by using PHI removal may be able to arrive at a list of
complete patient names, and associate these names with target
diagnoses.

We observed that for our chosen target diagnoses (ie,
constipation, diarrhea, vaginitis, sexual dysfunction, urinary

infection, herpes genitalis, dementia, anorexia, alcoholism,
threatened abortion, and AIDS) our approach out performs the
majority baseline for both top 1 (A@1) and top 5 (A@5)
accuracy of 0.00 and 0.70, respectively, Multimedia Appendix
2 (top n rate is the fraction of examples for which the correct
label is among the n labels considered most probable by the
model). The complete results for all hyperparameters as well
as both distance metrics are presented in Multimedia Appendix
2.

We observed similar results when the above experiment was
repeated 1000 times for each tested hyperparameter, randomly
selecting 30 target diagnoses. Table 4 shows how often our
attacker’s approach surpasses the baseline of choosing the
majority diagnoses for both top-1 and top-5 accuracies. We
show that we can consistently beat strong baselines, although
the highest top-1 and top-5 accuracies are modest at 0.08 and
0.15, respectively. The complete results for all hyperparameters
as well as both distance metrics are presented in Multimedia
Appendix 2.
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Table 4. The percentage of times using a word embedding–based attack beats the majority baseline for A@1 and A@5 for various context window
sizes over 1000 random diagnosis selections.

GLoVec A@1, A@5CBOWb A@1, A@5Skipgram A@1, A@5Context window sizea

55.4, 56.961.8, 61.855.8, 56.71

60.5, 59.551.2, 52.655.6, 53.13

59.4, 57.253.6, 54.557.4, 55.65

55.9, 54.054.6, 53.957.4, 53.57

60.6, 56.753.7, 51.257.2, 53.29

aWe observed that the majority baseline is surpassed consistently and up to 60% of the time.
bCBOW: Continuous Bag of Words.
cGLoVe: Global Vectors.

Discussion

Principal Findings
In this work, we have shown the following:

• There is a statistically significant difference between the
distance of patients’ in- and out-groups at the population
level.

• For many individual patients, the difference between their
personal in-group and out-group is also statistically
significant.

• A malicious actor working only with word embeddings
may identify full names occurring in the training corpus of
the embeddings as well as sensitive attributes associated
with these names.

Limitations
We explored the induced privacy (or lack of privacy) of
embeddings created from medical notes. We empirically
highlighted the security risks of sharing clinically sourced word
embeddings. Although their nature does serve to obfuscate
information, we have shown that it is still possible to connect
PHI to names from word embeddings secured using PHI
removal. There is much variation in the risks observed in this
work, which are dependent on imperfect deidentification
algorithms and very skilled attackers. The actual risk to patient
information, while nonzero, remains small and dependent on
many variables such as the attack strategy, deidentification
method, and embedding algorithm. We therefore advocate for
more research to see whether the adoption of PHI replacement
would better secure released embeddings. In addition to
deidentification methods (where more research needs to be
done), appropriate controls on who can access the anonymized
data and oversight of these data are also recommended.

Conclusion
We have focused on the reidentification of names and their
association with diagnostic codes, although other sensitive PHIs
may also be vulnerable. We demonstrated how sharing word
embeddings trained on clinical notes that have been protected
using only PHI removal is not safe, as any PHI missed by the
algorithm will remain in its original context. The risk of
obtaining sensitive information from embeddings can be
diminished by applying the anonymization methods of PHI
replacement on the clinical notes before training the embedding,

that is, when all known PHIs have been randomly shuffled, it
becomes much more difficult (but not impossible) to determine
which names in the data set belong to true patients, as the names
that are shuffled together will behave in a manner similar to
true names that have been missed. Such embeddings can
theoretically still be at risk if an attacker is able to determine
how to differentiate between fake and true names. However,
this would mitigate the methods of attack described in this work,
thereby making the created embeddings more secure.
Alternatively, noise can be added to the generated embedding
model to induce privacy and reduce risk. This risk reduction is,
naturally, relative to the amount of noise added, and determining
the exact amount of noise without distorting the signal or
degrading performance is the subject of future research.

Regarding reassociating name tokens or associating names with
diagnostic codes, Skipgram is least effective at preserving
privacy, followed by CBOW and GloVe. However, when
examining the number of statistically significant differences,
we observe the opposite ranking. Although many sentence- and
text-classification tasks observe little difference in downstream
performance between these 3 algorithms, past work [5] has
demonstrated differences in the ability of these algorithms to
represent words. For example, Skipgram can perform better
than CBOW for more frequent words [5], possibly explaining
the difference in modeling names (which are infrequent in our
vocabulary).

As expected, tokens from the same complete name have closer
vector representations. However, despite our intuition, we find
that the in-group is surprisingly larger than the out-group. That
is, the average distance between a name and a diagnosis is larger
if the person with that name has a diagnosis. This was consistent
among all parameters tested, and among all 3 embedding
models. This was also observed in our novel data set. This was
perplexing because our expectation of word embeddings informs
us that words that occur in similar contexts should be closer
together, and in-group diagnoses are often in the same note as
the name, while out-group diagnoses are not in the note at all.
Even though the name and diagnosis tokens may not co-occur
directly, as they would gravitate to words that co-occur with
both, this would result in the names and in-group diagnoses
being closer. Although a deeper theoretical investigation remains
to be conducted, we hypothesize that this may be due to
interaction effects within the contexts; names are quite tightly
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clustered together, and they rarely occur in the same context
window of the diagnosis with which they are associated. It may
be that these other names draw the common diagnoses closer,

as they occur with more names, in turn leaving the less common,
but relevant, diagnoses further from the name cluster. This
requires further research.
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