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Abstract

Background: Sleep apnea is a respiratory disorder characterized by an intermittent reduction (hypopnea) or cessation (apnea)
of breathing during sleep. Depending on the presence of a breathing effort, sleep apnea is divided into obstructive sleep apnea
(OSA) and central sleep apnea (CSA) based on the different pathologies involved. If the majority of apneas in a person are
obstructive, they will be diagnosed as OSA or otherwise as CSA. In addition, as it is challenging and highly controversial to
divide hypopneas into central or obstructive, the decision about sleep apnea type (OSA vs CSA) is made based on apneas only.
Choosing the appropriate treatment relies on distinguishing between obstructive apnea (OA) and central apnea (CA).

Objective: The objective of this study was to develop a noncontact method to distinguish between OAs and CAs.

Methods: Five different computer vision-based algorithms were used to process infrared (IR) video data to track and analyze
body movements to differentiate different types of apnea (OA vs CA). In the first two methods, supervised classifiers were trained
to process optical flow information. In the remaining three methods, a convolutional neural network (CNN) was designed to
extract distinctive features from optical flow and to distinguish OA from CA.

Results: Overnight sleeping data of 42 participants (mean age 53, SD 15 years; mean BMI 30, SD 7 kg/m2; 27 men and 15
women; mean number of OA 16, SD 30; mean number of CA 3, SD 7; mean apnea-hypopnea index 27, SD 31 events/hour; mean
sleep duration 5 hours, SD 1 hour) were collected for this study. The test and train data were recorded in two separate laboratory
rooms. The best-performing model (3D-CNN) obtained 95% accuracy and an F1 score of 89% in differentiating OA vs CA.

Conclusions: In this study, the first vision-based method was developed that differentiates apnea types (OA vs CA). The
developed algorithm tracks and analyses chest and abdominal movements captured via an IR video camera. Unlike previously
developed approaches, this method does not require any attachment to a user that could potentially alter the sleeping condition.
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Introduction

Background
Sleep apnea is a chronic respiratory disorder, caused by
intermittent reduction (hypopnea) or cessation (apnea) of
respiratory airflow during sleep. About 10% of the population
have this disorder [1], and it increases the risk of heart disease
by 3-fold, stroke by 4-fold, and car accidents by 7-fold [2-5].
The severity of sleep apnea is commonly measured via the
apnea-hypopnea index (AHI), which shows the number of
apneas and hypopneas per hour of sleep.

Depending on the presence of breathing effort, sleep apneas can
be divided into obstructive sleep apnea (OSA) or central sleep
apnea (CSA) by measuring the thoracoabdominal movement
and its contributions to the total respiratory volume [6]. The
majority of sleep apneas are obstructive [7], which is caused by
the full collapse of the pharyngeal airway that blocks the flow
of air into the lungs [8]. The rest of sleep apneas are central,
which happen due to a reduction in the respiratory drive from
the central nervous system [9].

During normal breathing, the chest and abdomen move in phase
due to interaction between the diaphragm and parasternal
intercostals during inhalation [10]. During obstructive apnea
(OA), airway obstruction leads to an out-of-phase motion of
the rib cage and the abdomen, causing a reduction in the sum
of chest and abdomen’s movement [6]. On the other hand,
during central apnea (CA), there is no movement in the rib cage
or the abdomen due to lack of brain signal for muscle
contraction. Figure 1 compares the movements in the chest and
the abdomen and the sum of them during OA, CA, and normal
breathing. If the majority of events in a person are obstructive,
they will be diagnosed as OSA and otherwise as CSA. In
addition, as it is challenging and highly controversial to divide
hypopneas into central or obstructive, the decision about sleep
apnea type (OSA vs CSA) is made based on apneas only.

The treatment of sleep apnea decreases patients’ health-related
costs by 25% [11]. A highly effective treatment for OSA is
continuous positive airway pressure (CPAP) therapy that
involves applying positive pressure of air to keep the airway
open during sleep. However, CPAP therapy leads to increase
mortality in patients with CSA [12]. Therefore, a crucial step
for proper treatment of sleep apnea is to differentiate OSA from
CSA [13].
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Figure 1. Difference between the movements of the chest and abdomen and the sum of the two movements during obstructive apnea (OA), central
apnea (CA), and normal breathing. During normal breathing, chest and abdomen movements are in phase. During OA, breathing effort and airway
blockage result in the out-of-phase movement of the chest and abdomen, and the sum of the two movement signals (respiratory sum) is close to zero.
During CA, there is no movement in the chest or the abdomen. CA: central apnea; OA: obstructive apnea; Resp sum: respiratory sum.

Problem Statement
The gold standard for differentiating OA from CA is the
evaluation of swings in esophageal pressure measured via an
esophageal catheter [14]. Measurement of esophageal pressure
is invasive, uncomfortable, and could disrupt sleep. Therefore,
esophageal pressure measurements are only used for

physiological research purposes [15,16]. The current clinical
approach to distinguish OA from CA based on the different
patterns of movement in the chest and abdomen is respiratory
inductance plethysmography (RIP). It measures
thoracoabdominal movements from two transducer bands over
the chest and the abdomen. RIP is a part of polysomnography
(PSG), which consists of connecting more than 20 sensors to
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patients. PSG is inconvenient during sleep, expensive (>US
$400 in Canada), has long waiting time (4-36 months in Canada
[17]), and requires a trained technician to manually analyze the
recorded signals, including RIP.

A promising approach to distinguish different types of sleep
apnea is using computer vision systems. The goal of computer
vision is to extract information from images or videos. In this
study, a noncontact approach was proposed to identify the types
of apneas (OA vs CA) using computer vision techniques. In
this approach, the upper body respiratory movements were
captured in infrared (IR, night vision) video frames and were
processed via computer vision algorithms.

Computer vision systems have been previously developed for
various applications in sleep monitoring, for example, to monitor
the breathing rate and pulse [18-20], to estimate the AHI [21],
to screen sleep quality and irregularities [22,23], and to monitor
sleep positions [24]. But the use of computer vision to
distinguish different types of apnea (OA vs CA) was unexplored
and was the main novel contribution of this study.

Methods

Data Collection
Adults aged 18 years or above who were referred to the sleep
laboratory of the Toronto Rehabilitations Institute-University
Health Network for sleep screening were recruited for this study.
The University Health Network Research Ethics Board approved
this study (Research Ethics Board approval number
13-7210-DE). Participants signed a written consent form before
taking part in the study.

Full overnight PSG was recorded for clinical diagnosis of sleep
apnea in two separate rooms. Additionally, an IR camera (Firefly
MV, 0.3 MP, FMVU- 03MTM, FLIR Systems) was mounted
about 1.4 m above the bed. The rooms were illuminated by IR
light (Raytec RM25-F-50). Simultaneous and synchronized
with PSG, IR videos were recorded from an overhead view with
the aforementioned camera at a resolution of 640×480 at 30
frames per second. The 680×480 resolution captured the upper
body part (the head, chest, and abdomen) with sufficient detail.

OA and CA were annotated by 3 trained individuals based on
the RIP signal of the chest, the abdomen, the sum of the
movement of the chest and the abdomen, nasal pressure, and
oxygen saturation, following the American Academy of Sleep
Medicine guideline [25,26]. The first 2 experts annotated all
data with the agreement of 80%. The third expert annotated the
discrepancies.

Data Analysis
Recorded IR videos were down-sampled from 30 Hz to 2 Hz
to decrease the computational cost. The breathing rate during
sleep is between 12 and 25 breaths per minute, that is, below
0.5 Hz. Therefore, the reduced sampling frequency of 2 Hz still
satisfied the Nyquist rate for the respiratory signal by a wide

margin. As each apnea lasts a minimum of 10 seconds, the
sampling rate of 2 frames per second translates to a minimum
of 20 image frames per event.

Frame-to-frame movements were tracked using dense optical
flow. FlowNet 2.0 [27], a convolutional neural network (CNN)
model, was used for this purpose. Optical flow generates a
2-channel image comprising the x (side to side) and the y (up
and down) movement vector of each pixel from one video frame
to the next. A 3D-CNN model was trained to analyze the
sequence of optical flow images during each apnea to distinguish
between OAs and CAs. This 3D-CNN model processed the
optical flow of the entire image without explicit knowledge of
where the person was at every frame of the video. For
comparison, another CNN architecture was used to analyze the
optical flow sequences in only the chest and abdomen regions.
This model was trained to distinguish OAs from CAs via a late
fusion of two 3D-CNN branches processing chest and abdominal
movements. Performance was evaluated when either manually
marked or automatically detected chest and abdomen regions
were used. The performance of these CNN architectures was
compared with three baseline models, including autocorrelation,
movement histograms, and 2-dimensional fast Fourier transform
(2DFFT)-CNN, which were chosen as commonly used
approaches for motion analysis. These models were not applied
previously for distinguishing OAs from CAs. The first two
baseline models (autocorrelation and movement histograms)
operate on the time-series data of optical flow movements,
whereas the third baseline model (2DFFT-CNN) first transforms
the signal into the frequency domain and then applies a CNN
model to the resulting 2DFFT images.

3D Convolutional Neural Network
Sleep apneas last a minimum of 10 seconds [28]. A 3D-CNN
model was trained on a sliding window of 10 seconds (20 frames
at 2 Hz), starting from 5 seconds before the start of the apnea
until 5 seconds after its ending. The size of the input tensor to
the 3D-CNN model is 640×480×2×20 (image size 640×480
pixels; number of channels: 2; number of frames: 20). The two
channels are outputs of the optical flow image, indicating the
changes in the x (side to side) and y (up and down) directions.
Details of the 3D-CNN model are shown in Table 1. RMSProp
was used to optimize a class-weighted cross-entropy loss. The
Matthews correlation coefficient was used for early stopping.
An initial value of 0.001 for the learning rate and 1000 epoch
with the batch size of 32 were used. The total number of
parameters in this network was 95,649 of which 95,393 were
trainable, and 256 were nontrainable.

OAs are more frequent than CAs; therefore, to achieve a more
balanced training set, different stride was using for the sliding
window in OAs and CAs (stride of 1 second for CA and stride
of 5 seconds for OA). In test time, a stride of 1 second was used,
and voting (overall strides within an event) determined the
estimated label (OA vs CA) for that event.
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Table 1. Architecture of a 3D convolutional neural network used to distinguish obstructive apnea from central apnea.

Output sizeActivation functionSize/strideNumber of filters, nLayer

480×640×20×2N/AN/AN/AaInput

23×31×20×2N/A25×25×1/20×20×1N/AAverage pool

22×30×20×8Linear2×2×1/1×1×18Convolutional

22×30×20×8N/AN/AN/ADropout

20×28×16×16N/A3×3×5/1×1×116Convolutional

7×11×16×16N/A8×8× /2×2×1N/AMax pool

7×11×16×16Leaky RelubN/AN/ABatch normalization

6×10×15×64N/A2×2×2/1×1×164Convolutional

6×10×15×64Leaky ReluN/AN/ABatch normalization

3×7×15×32N/A4×4×1/1×1×132Convolutional

3×7×15×32ReluN/AN/ABatch Normalization

3×7×15×32N/AN/AN/ADropout

2×6×15×16N/A2×2× /1×1×116Convolutional

2×6×15×16ReluN/AN/ABatch normalization

2880N/AN/AN/AFlatten

16N/A2880×1616Fully connected

4N/A16×44Fully connected

1Sigmoid4×1N/AOutput layer

aN/A: not applicable.
bReLu: rectified linear unit.

3D Convolutional Neural Network (Chest and Abdomen)
To investigate if knowledge about the location of the chest and
abdomen at each image frame improves performance, the frames
were manually marked as follows: for each person, at the first
video frame of their sleep. After each position shift, a human
annotator manually marked the locations of the chest and
abdomen via two rectangles on the image. If the participant was
covered by a blanket, the annotator used his/her best judgment
to mark these locations (based on the current image frame and
also by looking at previous and future image frames). Position
shifts were automatically detected based on the total amount of
movement in the scene, with a low threshold, so even small
position shifts were not missed.

As the annotation of the chest and abdomen regions is subjective
and time-consuming, we have also developed an algorithm to
automatically find the chest and abdomen regions. To develop
this model, as the chest and abdomen were often covered by a
blanket sheet, it was challenging to train an object-detection
CNN to detect them directly. Instead, a CNN model (YOLO
v3) [29] was used first to locate the head, and another model

was subsequently used to infer the position of the chest and
abdomen bounding boxes. Specifically, a random forest
regression model was trained based on the estimated head
location, BMI, weight, height, head position (supine vs lateral),
and body position (supine vs lateral) to estimate the bounding
box of the chest and abdomen. The head and body positions
were obtained automatically via a CNN-based model that was
previously developed and validated [24].

Two 100×100 images were cropped around the estimated center
of the chest and abdomen. Dense optical flow was computed
in cropped regions of both the chest and abdomen. A 3D-CNN
branch processed the sequence of chest movements, and another
branch processed the sequence of abdominal movements.
Outputs from both branches were concatenated into a fully
connected network. The network was trained end to end. The
architecture of the entire network is shown in Figure 2. The
architecture of the 3D-CNN model in each branch is identical
to the one shown in Table 1. The only difference is the first
average pooling layer, which has the size and stride of 10 x 10
and 5 x 5, because of the smaller image size.
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Figure 2. The Convolutional neural network architecture used to extract and combine information from movements of the chest and the abdomen.
3D-CNN: 3D convolutional neural network; CNN: convolutional neural network.

Baseline 1—Autocorrelation
This method uses autocorrelation to separate OAs from CAs
based on their periodicity. The magnitude of the movement

vector (d=√(x2+y2)) was calculated from the original 2-channel
optical flow image (640×480×2) to form a single-channel
movement magnitude image (640×480). Pixels with a large
movement magnitude (>0.5 pixel per second), likely caused by
large position shifts, were capped, that is, set to 0.5. The average
of the movement image was then calculated for each event,
leading to a 1-dimensional movement signal m(t). A Butterworth
band-pass filter with a lower cutoff frequency of 0.05 Hz and
an upper cutoff frequency of 0.5 Hz was applied to the
one-dimensional movement signal. Autocorrelation was
computed for the filtered signals, and its first 10 peaks (if peaks

did not exist, 0 was considered) were used to train three different
binary classifiers to distinguish between OA and CA. Classifiers
compared were linear support-vector machines, logistic
regression, and random forest. Sample autocorrelation signals
with their detected peaks are illustrated in Figure 3 for a CA
and an OA.

is autocorrelation, where mt is an event signal, is an average of
signal, and is a shifted event with a lag of L. Lag (L) was set
equal to the event duration. The summations are over all the
values of t.
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Figure 3. Autocorrelation signal of the movement in an obstructive apnea (OA) and central apnea (CA). OAs are more periodic due to the existence
of breathing effort as compared with CAs. Therefore, the OA autocorrelation signal has more peaks, as indicated by red stars. CA: central apnea; OA:
obstructive apnea.

Baseline 2—Movement Histograms
This method separates OAs from CAs based on their range of
motion. Histogram of the movement magnitude was constructed
for movements in the range of 0 to 0.5 pixels/second with a
constant number of 1000 bins. Sample histogram signals for

OA and CA are shown in Figure 4. The average of each bins
(features) of histogram across an event was computed. Principal
component analysis (PCA) was subsequently applied to reduce
the number of bins. A random forest classifier was trained on
the first 100 PCA components to distinguish OA from CA.

Figure 4. Histogram of movement magnitudes. Obstructive apneas have more range of motion as compared with central apneas because of the breathing
effort. CA: central apnea; OA: obstructive apnea.
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Baseline 3—2D Fast Fourier Transform-Convolutional
Neural Network
This method separates OAs from CAs based on the
frequency-domain representation of movement histograms. The
movement histograms of each event were concatenated together

over time to form an image and then transformed to the
frequency domain via 2DFFT with a constant size of 128×128.
A sample of 2DFFT signal is shown in Figure 5 for a CA and
an OA. A CNN (DarkNet19) [30] was trained on the obtained
2DFFT image to distinguish between OA and CA.

Figure 5. 2D fast Fourier transform (2DFFT) of movement histograms for OA and CA. 2DFFT images of OA have a wider frequency range as compared
with CA, as breathing effort during OA causes more fluctuation in the movement signal. 2DFTT: 2D fast Fourier transform; CA: central apnea; OA:
obstructive apnea.

Validation
The data were divided into training and validation and test sets
by the room in which the study was conducted to ensure the
setup camera placement did not affect the algorithm
performance. The recorded data of 21 participants (recorded in
laboratory room number 1) were used in the training and
validation sets. This set included 40 CAs and 313 OAs. The
remaining 21 (recorded in laboratory room number 2) comprised
the test set, which included 75 CAs and 299 OAs.

For the autocorrelation and movement histogram methods,
classifier hyperparameters were tuned via 3-fold cross-validation
on the training set. For the 3D-CNN (whole body) and 3D-CNN
(chest and abdomen) methods, early stopping was based on
performance on the validation set.

Performance of the head, chest, and abdomen bounding box
detection was evaluated based on accuracy at the intersection
over union values higher than 0.5 between predicted and
manually annotated regions.

Results

Data from 42 participants (27 men and 15 women) were
collected for this study. Participants’ demographic information
is shown in Table 2. None of the parameters were significantly
different between the groups, except BMI with a P value of .04.

Figure 6 shows a sample image frame, as well as the manually
marked and automatically detected bounding boxes, for the
chest and the abdomen. The performance of the head, chest,
and abdomen bounding box detection is quantified in Table 3.
The head detection model obtained 92% accuracy, which was
higher than the chest and abdomen detection models with
accuracies of 83% and 67%, respectively.

Results of distinguishing OAs from CAs are shown in Table 4.
Different classifiers obtained similar performance for the
movement histograms method. For the sake of space, only
results of the random forest classifier are shown in Table 4. The
3D-CNN model obtained the best performance with 95.4%
accuracy and an F1 score of 88.7%.
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Table 2. Participant demographics (N=42).

Room 2 (train set), mean (SD)Room 1 (test set), mean (SD)Characteristicsa

7 (14)8 (13)Male

55 (13)53 (15)Age (years)

32 (7)28 (6)BMIb (kg/m2)

75 (18)73 (18)Sleep efficiency (%)

15 (8)16 (6)REMc sleep percentage (%)

71 (15)66 (17)Mean wake heart rate (bpmd)

72 (12)63 (18)Mean REM heart rate (bpm)

81 (7)81 (9)Minimum SaO2
e

94 (3)94 (3)Mean SaO2

16 (23)16 (35)Number of OAsf (events)

2 (3)4 (10)Number of CAg (events)

29 (26)24 (35)AHIh (events/hour)

5 (1)5 (1)Sleep duration (hour)

aParticipants’ information calculated from the sleep reports of the overnight sleep study of participants annotated by sleep technicians.
bBMI: body mass index. BMI is different between the two rooms with a P value of .04.
cREM: rapid eye movement.
dbpm: beats per minute.
eSaO2: arterial oxygen saturation.
fOA: obstructive apnea.
gCA: central apnea.
hAHI: apnea-hypopnea index.

Figure 6. Sample chest, abdomen, and head detection results. Manually annotated and detected regions are shown in blue hashed line and orange solid
line, respectively.
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Table 3. Face, chest, and abdomen bounding box.

Accuracy (%, at IoUa >0.5), mean (SD)Detected object

92 (11)Head

83 (14)Chest

67 (15)Abdomen

aIoU: intersection over union.

Table 4. Obstructive apneas versus central apneas: prediction performance of different models.

F1 scorea (%)Recalla (%)Precisiona (%)Accuracya (%)Method

64.253.181.188.4Autocorrelation

61.948.286.788.5Histogram of movements

72.375.669.189.72DFFT-CNNb

88.789.388.295.43D-CNNc

76.181.871.190.93D-CNN chest and abdomen (annotated)

74.076.072.189.33D-CNN chest and abdomen (estimated)

aAccuracy, precision, recall, and F1 score indicate the ratio of correct prediction to the total number of data points, the ratio of correct positive prediction
to the total positive prediction, the ratio of correct positive prediction to the total positive data, and the harmonic mean of precision and recall.
b2DFFT-CNN: 2D fast Fourier transform-convolutional neural network
c3D-CNN: 3D convolutional neural network.

Discussion

Principal Findings
The proposed 3D-CNN model outperformed all three baseline
methods. We hypothesized that localizing the chest and abdomen
in the video will increase the signal-to-noise ratio to improve
performance. However, as shown in Table 4, applying 3D-CNN
on the whole image frame obtained the best performance. Figure
7 illustrates how the use of a blanket may explain these results.

The blanket propagates chest and abdominal movements outside
of their respective detected (or annotated) regions. As a result,
localizing the chest and abdomen locations removed part of the
respiratory-related movement signal. In addition, accurate
detection of abdomen location is challenging when the body is
covered by a blanket; however, increasing the number of data
points (>42) could potentially address this challenge. Attention
mechanisms could also potentially be used to automatically
identify image regions in which chest or abdomen movements
are prominent.
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Figure 7. Annotated chest and abdomen regions do not capture a large area where most of the respiratory-related movement is visible. Manually
annotated chest and abdomen regions are shown with blue boxes. Areas with large movement intensity (magnitude of the optical flow) are highlighted
in pink.

Limitations
The methods developed and evaluated in this study are the first
to use computer vision to differentiate between OAs and CAs.
Although the models were externally validated on data collected
in a different room, a limitation of this study was that the same
camera model and camera setup was used to collect data in both
rooms. Remedying this limitation will involve external
validation on a dataset that will be recorded under different
conditions, for example, use of another camera model, different
viewing angle, or a different camera distance from the bed. This
will evaluate how the models trained here generalize to potential
variations that might occur in real-life scenarios, for example,
in the home. Another limitation of the current system is that it
relies on the assumption that apneas were already segmented,
for example, using previously developed vision-based methods
[21]. Remedying this limitation will involve evaluation of how
the combination of such methods with the models developed
here will perform.

Comparison With Prior Work
To address the challenges associated with PSG, there have been
several investigations to develop convenient sleep apnea
screening devices that can also distinguish CA from OA
[14,15,28,31,32]. In a study proposed by Argod et al [15], pulse
transit time technique was used to measure the delay between
the R-wave on the electrocardiogram and a finger. They used
the delay to visually classify CA from OA [15]. In another study,
Park et al [31] designed an invasive implantable cardiac device
to differentiate between CA and OA based on oscillation
characteristics of the cardiac electrical activity. Luo et al [14]
used the diaphragm electromyogram to track the activity of
respiratory muscles to differentiate OA from CA. Thomas et al

[28] used a single-lead electrocardiogram to classify OA from
CA by measuring the elevated low-frequency coupling of heart
rate variability and the fluctuations in the amplitude of the
R-wave. These studies either are invasive or need the attachment
of sensors to the body, which could be inconvenient and
sensitive-to-motion artifacts and disrupt the user’s regular sleep
pattern. A noncontact method to distinguish CA from OA will
address these challenges.

In one attempt, Nandakumar et al [32] tracked body movements
via smartphones. They used frequency-modulated
continuous-wave transmissions to find the motion changes in
body. Although their model counted the number of CAs and
OAs, the performance of the model on localizing and
distinguishing of apneas was not reported. Moreover, this study
did not report cross-validation results.

Conclusions and Future Works
This research project is the first vision-based noncontact method
that differentiates sleep apneas by tracking body movements
using IR videos. The developed algorithm was validated on 42
participants with various levels of sleep apnea severity. The
algorithm performed well in distinguishing the OAs from the
CAs. In this study, it was assumed that apneas were given.
Future work can apply existing techniques [21] or novel
CNN-based methods to identify apneas. Similar approaches can
be used for noncontact assessment of respiration and respiratory
effort during exercise testing in individuals who are using
mechanical ventilators and infants with respiratory problems.
Future work also involves collecting more data to perform an
external validation of models developed here under varying
conditions, as well as to improve chest and abdominal detection
accuracy.
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