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Abstract

Background: Although some neuropsychological (NP) tests are considered more central for the diagnosis of Alzheimer disease
(AD), there is a lack of understanding about the interaction between different cognitive tests.

Objective: This study aimed to demonstrate a global view of hierarchical probabilistic dependencies between NP tests and the
likelihood of cognitive impairment to assist physicians in recognizing AD precursors.

Methods: Our study included 2091 participants from the Framingham Heart Study. These participants had undergone a variety
of NP tests, including Wechsler Memory Scale, Wechsler Adult Intelligence Scale, and Boston Naming Test. Heterogeneous
cognitive Bayesian networks were developed to understand the relationship between NP tests and the cognitive status. The
performance of probabilistic inference was evaluated by the 10-fold cross validation.

Results: A total of 4512 NP tests were used to build the Bayesian network for the dementia diagnosis. The network demonstrated
conditional dependency between different cognitive functions that precede the development of dementia. The prediction model
reached an accuracy of 82.24%, with sensitivity of 63.98% and specificity of 92.74%. This probabilistic diagnostic system can
also be applied to participants that exhibit more heterogeneous profiles or with missing responses for some NP tests.

Conclusions: We developed a probabilistic dependency network for AD diagnosis from 11 NP tests. Our study revealed important
psychological functional segregations and precursor evidence of AD development and heterogeneity.

(J Med Internet Res 2020;22(4):e15376) doi: 10.2196/15376
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Introduction

Background
Alzheimer disease (AD) is a chronic neurodegenerative disease
characterized by cognitive decline [1]. Neuropsychological (NP)
tests—a key measure of phenotypic expression of one’s
cognition state—are commonly used by practitioners to assess
cognitive dysfunction, especially in the memory, attention, and
executive domains [2,3]. However, given the extensive
variability in performance patterns across a standard
comprehensive protocol of NP tests, physicians often find
themselves making clinical decisions with certain degrees of
uncertainty, and the situation is compounded when patients are
unable to complete the tests because of a multitude of reasons.
Given the data heterogeneity within and across NP tests,
conventional qualitative classification is unable to accurately
portray the clinical manifestation of a spectrum disorder such
as AD. To date, many studies examined various cognitive
domains individually [4], as separate entities, when in fact
different regions of the brain work simultaneously and not in
silos [5]. Therefore, to better characterize the complexity of
AD, we need to identify and describe the hierarchical interaction
pattern among NP tests and their symbiotic relationship with
each other, to help illuminate the indices of neurodegenerative
processes. Some researchers have proposed to focus on AD
precursors of cognitive decline to reduce AD clinical trial
failures [1]. We contend that the relationship is bidirectional.
Different patterns of symptoms are indicative of cognitive
impairment, whereas the presence of cognitive impairment
impacts the symptoms associated with subsequent risk.
Furthermore, to enhance clinical utility, a full global use of
available observations will aid physicians with AD diagnosis,
particularly for those patients who exhibit more heterogeneous
NP profiles.

Many risk factors of AD have been identified in past decades
[6,7]. Apolipoprotein E4 (ApoE4) status has been demonstrated
to be a significant genetic risk factor for AD [8]. Although the
factors underlying the sex differences have generally been
weakly investigated, the difference indeed exhibits influence
on the development and progression of AD [9]. ApoE4 tended
to have different effects on AD between men and women [10].
In addition, education has been recognized as another potential
risk factor, where people with different levels of education
tended to show different risks of AD [11]. However, the

hierarchical interplay between different risk factors and their
effects on cognitive status are yet to be investigated.

Objective
The objective of this study was to represent the intricate
interplay of various NP tests with probabilistic graphical models
and provide a top-down theoretical view to demonstrate the
relationship between NP tests and cognitive status.

Methods

Study Population
The Framingham Heart Study (FHS) is a community-based
longitudinal observational study that began in 1948. Details of
FHS cohorts have been previously described [12]. Briefly, three
generations of participants have been enrolled since 1948. To
reflect the increasing ethnic diversity in Framingham, two
additional cohorts, Omni Study 1 and Omni Study, were enrolled
in 1994 and 2002, respectively. Every 2 to 8 years, each
participant is given a comprehensive physical examination and
queried for various lifestyles. NP tests have been administered
through ancillary studies using standardized testing protocols
and scoring procedures since 1981 [13]. Routine quality
assurance processes were performed to keep consistency of
these tests over time [14]. This study included all participants
with valid NP tests from the original cohort (Gen I), offspring
cohort (Gen II), multiethnic Omni 1 cohort, and new offspring
spouse cohort [15]. Given the fact that AD primarily affects
participants of advanced age, and the average age of dementia
onset among FHS participants is around 85 years, our study
was restricted to participants who were 70 years or older [16,17].

The dementia diagnosis was based on the Diagnostic and
Statistical Manual of Mental Disorders, fourth edition, whereas
AD diagnosis was based on the National Institute of
Neurological and Communicative Disorders and Stroke and the
Alzheimer disease and Related Disorders Association [18]. All
dementia diagnoses were adjudicated by an expert panel
consisting of at least one neurologist and one neuropsychologist,
using information from various sources such as NP assessments,
neurology examinations, family interviews, FHS health exams,
and external medical records [19]. According to their cognitive
status, participants were grouped as healthy control (HC), AD,
and non-Alzheimer dementia (NAD). Details of the dementia
surveillance have been published [20-22]. The process of sample
selection is shown in Figure 1.
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Figure 1. The process of sample selection. AD: Alzheimer disease; HC: healthy control; NAD: non-Alzheimer dementia; NOS: new offspring spouse.

Identification of Cognitive Function Clusters
We performed correlation analysis to explore the dependency
between NP tests. A cognitive function cluster is a set of NP
tests that have stronger correlation than those outside of the
cluster. The correlation between NP tests was assessed by
Pearson chi-square test. Given the limited number of NP tests
in our study, we used correlation coefficient 0.6 as the
correlation cut-off, similar to previous studies [23,24].
Correlations between NP tests and cognitive status were
evaluated by one-way analysis of variance [25].

Bayesian Network for Modeling Hierarchical
Probabilistic Dependencies
Bayesian network is a representative probabilistic machine
learning method [26], which explores the information contained
in experimental data to evaluate the probability of specific
hypotheses. It can summarize a complex system into a simplified
representation to capture the hierarchical interplay among
components and provide insights on how each component
influences others [27]. A Bayesian network is represented by a
directed acyclic graph composed of nodes and edges. In this
study, we used nodes to represent NP tests and cognitive status,
and edges to represent the influence between nodes. For
example, Test A–>Cognitive Status means that Test A is the
parent node of Cognitive Status, and Cognitive Status is the
child node of Test A. The edge direction suggests that Test A
has an influence on Cognitive Status, which is formulated as
the conditional probability of how the Cognitive Status depends
on Test A. In contrast, given that Test A has no incoming edges,
its probability does not depend on other factors. These
dependency relationships could propagate through the network
and influence downstream tests. It is worth to note that the
conditional probability depends only on parent nodes but not
grandparent nodes. For example, if we also observe Cognitive
Status–>Test B, it means that Test B is only directly dependent
on Cognitive Status but not grandparent node Test A, although
Cognitive Status is dependent on Test A.

Figure 2 shows the flowchart of building a Bayesian network.
Each observation includes 11 NP test scores and the cognitive
status. Each continuous variable was discretized by partitioning
around medoids method, which was used to find the intrinsic
structures in NP tests and assign observations into homogeneous
clusters [28,29]. The optimal number of clusters was determined
by the silhouette width [30].

A search-and-score strategy was then used to build Bayesian
networks from NP tests. The algorithm first assigned a
likelihood score to each candidate structure. The score
represented how well that structure fits the NP tests, which was
evaluated by the Bayesian Information Criterion [31].
Unnecessary complex structures could fit existing data well but
lack the generalizability to new data. Therefore, to recover the
underlying Bayesian network structures, we included a penalty
term equal to the Minimum Description Length score [32]. The
method was previously shown to outperform other scoring
functions such as Bayesian Dirichlet equivalence score, Akaike
information criterion, and factorized normalized maximum
likelihood [31,33]. Two searching methods were then used to
find the optimal structure. One was Heuristic Hill-Climbing
greedy search, which aims to optimize the local score [34] but
cannot apply any prior knowledge about the expected structure
of Bayesian network. The other one was Tabu search, which
was used for validation and could search the space of directed
graphs while escaping local optimum [35]. Bootstrap was
adopted to minimize the uncertainty of the model [36].

In Bayesian network parameter learning, two parametric
estimation methods were used, including maximum likelihood
estimation and Bayesian parameter estimation [37]. To further
validate the Bayesian network, logic sampling method [38] was
used to generate simulated data based on learned Bayesian
network and check whether it was consistent with prior
information about the correlation of NP tests. Details of the
learning process are provided in Multimedia Appendix 1,
Methods.
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Figure 2. The flowchart of building a Bayesian network. AD: Alzheimer disease.

Markov Blanket to Select Neuropsychological Tests
Following the principle of the filter-based feature selection, an
optimal subset of NP tests was derived from the data itself but
not the performance matrix [39]. One key feature is conditional
independence, which defines a sufficient subset S as follows
[40]: S∈G is a sufficient subset of NP tests if and only if
P(Status|G)=P(Status|S), where G is a set consisting of all 11
NP tests. Cognitive status is conditionally independent of other
NP tests given S. The set of locally affecting variables is called
the Markov blanket [41]. In Bayesian networks, the Markov
blanket of cognitive status is a set of NP tests that consists of
parent nodes, child nodes, and spouse nodes of cognitive status
[41]. NP test A is the spouse of NP test B because they have
common children. NP tests in Markov blanket are directly
connected to cognitive status, which, therefore, determined the
probability distribution of cognitive status. It provides a direction
for detecting the potential causal cognitive functions for AD
[42,43]. Pearson chi-square test was used to demonstrate the
conditional independence between NP tests and cognitive status
[44].

Probabilistic Inference
Once Bayesian networks were built, each participant’s cognitive
status was derived using an averaging likelihood weighting
simulation method, which is an approximating inference method
[34]. It calculated the posterior probabilities of cognitive status
from observed NP tests. The details are provided in Multimedia
Appendix 1, Methods.

To demonstrate heterogeneity of hierarchical influence of
cognitive functions and cognitive status, the analysis was
conducted for the full observations and also stratified by sex
(male or female), ApoE4 status (OMIM 107741), and education
level (beyond high school/high school graduate and below).
Participants with missing education information were excluded
from the education-stratified analyses (11 observations).
Similarly, for the ApoE-stratified analyses, participants who

did not consent to genetic analyses or without ApoE4
information were excluded (200 observations).

All participants had provided written informed consent. This
study was approved by the Institutional Review Board of Boston
University Medical Campus. The data collection was monitored
by a National Heart, Lung, and Blood Institute Observational
Study Monitoring Board and complied with the Strengthening
the Reporting of Observational Studies in Epidemiology
reporting guideline [45].

Results

Sample Characteristics
Our study included 4512 sets of NP tests from 2091 participants,
primarily of European ancestry (1166 females, mean age 79
[SD 6] years). On average, each participant underwent 2.2 NP
examinations. One examination of the participant is considered
as a study sample. Table 1 shows the clinical characteristics of
study samples.

Although 32 NP tests have been administered at the FHS
(Multimedia Appendix 1), this study was focused on 11 NP
tests that were administered to more than 85% of participants
between 1999 and 2016. These tests included the first version
of Wechsler Memory Scale Logical Memory Immediate Recall
(LMi) [46], Logical Memory Delayed Recall (LMd) [46], and
Logical Memory Recognition (LMr) [46]; Visual Reproductions
Immediate Recall (VRi) [46], Visual Reproductions Delayed
Recall (VRd) [46], and Visual Reproductions Recognition (VRr)
[46]; and Paired Associate Learning Immediate Recall (PASi)
[46], and the first version of Wechsler Adult Intelligence Scale
similarities test (SIM) [47]. Given the importance in the
measurement of confrontational word retrieval and verbal
memory, our study also included Boston Naming Test 30 item
Even Version (BNT30) and hard-pair scores from PASi and
PASd [46,48].
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Table 1. Clinical characteristics of study samples. A total of 4512 sets of neuropsychological tests from 2091 participants were included.

Non-Alzheimer dementia (n=443)Alzheimer disease (n=555)Healthy control (n=3514)Characteristics

Age at neuropsychological exam (years)

84 (6)85 (6)79 (6)Mean (SD)

70-9770-10370-101Range

220 (49.7)179 (32.3)1521 (43.3)Male, n (%)

Highest level of education attaineda

241 (54.5)358 (65.2)1491 (42.5)High school and below, n (%)b

201 (45.5)191 (34.8)2019 (57.5)Beyond high school, n (%)b

ApoE4c allele

327 (79.2)346 (65.3)2794 (82.9)ApoE4(−), n (%)b

86 (20.8)184 (34.7)575 (17.1)ApoE4(+), n (%)b

Neuropsychological test scores, mean (SD)

Verbal memory

7.9 (3.9)4.8 (3.8)11.2 (3.7)Logical Memory Immediate Recall

6.5 (4.1)3.0 (4.0)10.2 (3.9)Logical Memory Delayed Recall

8.5 (1.7)7.1 (2.3)9.4 (1.4)Logical Memory Recognition

Visual memory

4.0 (2.5)3.1 (2.3)7.1 (3.0)Visual Reproductions Immediate Recall

2.7 (2.4)1.6 (1.9)6.1 (3.1)Visual Reproductions Delayed Recall

1.7 (1.1)1.3 (1.1)2.6 (1.1)Visual Reproductions Recognition

New learning

9.9 (2.8)8.4 (2.9)12.8 (3.3)Paired Associate Learning Immediate Recall

1.0 (1.1)0.5 (0.9)2.0 (1.3)Hard score of Paired Associate Learning De-
layed Recall

2.0 (2.0)1.1 (1.7)4.4 (3.0)Hard Score of Paired Associate Learning Im-
mediate Recall

Abstract reasoning

11.6 (4.7)9.8 (5.0)15.5 (3.9)Similarities Test

Language and naming

22.3 (5.4)19.4 (5.9)26.1 (3.4)Boston Naming Test, 30-item Even Version

aValid education data (n): Healthy control (3510); Alzheimer disease (549); Non-Alzheimer dementia (442).
bValues were calculated based on the subset with valid data.
cApoE4: Apolipoprotein E4. Participants who did not consent to genetic analyses or with no ApoE4 information were excluded. Valid genetic data (n):
Healthy control (3369); Alzheimer disease (530); Non-Alzheimer dementia (413).

Correlation Clusters of Neuropsychological Tests
We performed unsupervised clustering to investigate the
correlation between NP tests. As shown in Figure 3, these NP
tests could be divided into five clusters, each representing a
distinct cognitive function. The intracluster correlation
coefficients between NP test pairs were all higher than 0.60,
which formed a clear cluster boundary to distinguish different
cognitive functions without overlapping. In contrast, the

intercluster correlation coefficients between NP test pairs were
mostly lower than 0.50. The correlation of NP tests in
subpopulations is shown in Multimedia Appendix 1.

As expected, three cognitive outcome groups had quite different
mean NP test scores (Tukey-Kramer test, P<.001), suggesting
a strong correlation between NP test and cognitive status
(Multimedia Appendix 1). The association remained significant
after Bonferroni correction for multiple testing.
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Figure 3. Correlation clusters between different neuropsychological tests. The red rectangles represent different clusters of tests. Bigger and redder
nodes represent higher correlation, whereas whiter and smaller nodes represent lower correlation. BNT30: Boston Naming Test 30 item Even Version;
LMd: Logical Memory Delayed Recall; LMi: Logical Memory Immediate Recall; LMr: Logical Memory Recognition; PASd_h: Hard score of Paired
Associate Learning Delayed Recall; PASi: Paired Associate Learning Immediate Recall; PASi_h: Hard Score of Paired Associate Learning Immediate
Recall; SIM: similarities test; VRd: Visual Reproductions Delayed Recall; VRi: Visual Reproductions Immediate Recall; VRr: Visual Reproductions
Recognition.

Bayesian Networks
Figure 4 shows the Bayesian network of hierarchical influence
between NP tests and cognitive status. The network consists of
nodes and edges, which represent the conditional dependence
between NP tests and cognitive status. The parent node has an
influence on the predictability of child nodes [49]. The first
precursor of dementia is SIM, following the sequence of
SIM–>BNT30–>VRi–>VRd, and eventually leading to
dementia. On the other hand, the cognitive status could also
influence visual memory indirectly via logical memory. Figure
5 shows Bayesian networks in subpopulations stratified by sex,
ApoE, and education. For males, LMd (eg, verbal memory)
directly influences the cognitive status, which then influences
other NP tests. In other words, changes in verbal memory
function are a precursor of dementia, which is consistent with
the focus on memory as the key cognitive symptom of dementia
[50]. The cognitive functions of visuospatial processing, visual
memory, language, and verbal reasoning could also influence
cognitive status. For females, the first precursor of dementia is
SIM, following the sequence of SIM–>BNT30–>VRi–>VRd
until the influencing cognitive status. Cognitive status also
influences verbal memory and visual memory. Cognitive status
influenced PASi indirectly via LMi. For participants carrying
ApoE4 alleles, VRd influences cognitive status, followed by
other NP tests. For participants without ApoE4 alleles, the
relationship of NP tests and cognitive status is similar to the
relationship among female only participants. For participants

with low degrees of education, LMd influences cognitive status,
which would then influence other NP tests. For participants
with advanced degrees of education, VRd influences cognitive
status and then LMi indirectly via PASi. VRr influences BNT30,
which then influences SIM. It is worth noting that similar
precursors of dementia were observed in females and
participants without ApoE4 alleles. Gender-stratified ApoE4+
models can be found in Multimedia Appendix 1.

Taking the Bayesian network of females as an example (Figure
5), information is transmitted in a sequence of
SIM–>BNT30–>VRi–>VRd–>Cognitive Status. If we have the
VRd score, cognitive status becomes independent of SIM,
BNT30, and VRi. Similarly, the block also exists in a diverging
connection (LMi<–Cognitive Status–>PASi). Two child nodes,
LMi and PASi, are related to each other by the Cognitive Status.
However, if the participant is diagnosed with AD, LMi and
PASi become conditionally independent. In other words, the
decline of verbal memory and visual memory function does not
influence each other. In the correlation network, all NP tests
are related to cognitive status, but the hierarchical influence
among NP tests and cognitive function cannot be distinguished.
Some NP tests’ predictability of cognitive status is influenced
by other NP tests.

The Markov blanket of cognitive status is the parent and child
of the cognitive status node in Figure 4. Seven NP tests were
included into Markov blankets of cognitive status for all
Bayesian networks (Figure 5). The most frequent ones were
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LMi and VRd, which were parents of the cognitive status node
in 4 and 5 Bayesian networks, respectively. The NP tests in
Markov blankets have a direct first-level influence on cognitive
status. As shown in Table 2, the degree of association between
NP tests and cognitive status is declining when conditioned on
the subset of Markov blanket. This reveals that the relationship
between specific NP test and cognitive status is influenced by
other tests. It provides a global and hierarchical view to
understanding the relationship between NP tests and cognitive
status. Future functional analyses can determine the specific
role of these cognitive functions in AD pathogenesis.

The scores of NP tests were parameterized using probability
tables as shown in Multimedia Appendix 1. The marginal
probability and the probability dependency between NP tests
were determined using the maximum likelihood estimation.
Once the network was constructed and the probability was
specified, Bayes theorem was used to propagate probability
through the network to infer cognitive status. The performance
of the model was evaluated using 10-fold cross validation. As
shown in Multimedia Appendix 1, the overall accuracy was
82.2%, with sensitivity of 64.0% and specificity of 92.7%. The
models stratified by sex, ApoE status, and education have similar
performances.

Figure 4. Bayesian network shows the hierarchical influence between neuropsychological tests and cognitive status. BNT30: Boston Naming Test 30
item Even Version; LMd: Logical Memory Delayed Recall; LMi: Logical Memory Immediate Recall; LMr: Logical Memory Recognition; PASd_h:
Hard score of Paired Associate Learning Delayed Recall; PASi: Paired Associate Learning Immediate Recall; PASi_h: Hard Score of Paired Associate
Learning Immediate Recall; SIM: similarities test; VRd: Visual Reproductions Delayed Recall; VRi: Visual Reproductions Immediate Recall; VRr:
Visual Reproductions Recognition. Nodes with the same color represent NP tests measuring the same cognitive function.
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Figure 5. Hierarchical influence of neuropsychological tests and cognitive status in subpopulations. BNT30: Boston Naming Test 30 item Even Version;
LMd: Logical Memory Delayed Recall; LMi: Logical Memory Immediate Recall; LMr: Logical Memory Recognition; PASd_h: Hard score of Paired
Associate Learning Delayed Recall; PASi: Paired Associate Learning Immediate Recall; PASi_h: Hard Score of Paired Associate Learning Immediate
Recall; SIM: similarities test; VRd: Visual Reproductions Delayed Recall; VRi: Visual Reproductions Immediate Recall; VRr: Visual Reproductions
Recognition. Nodes with the same color represent NP tests measuring the same cognitive function.
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Table 2. The P values of association between neuropsychological (NP) tests and cognitive status when conditioning on NP tests in Markov blanket.
The significant degree was computed using Pearson chi-square test with adjusted degrees of freedom.

VRd and LMi, P valueLMic, P valueVRdb, P valueφa, P valueNeuropsychological tests

>.99<.001<.001<.001Logical Memory Delayed Recall

>.99.62<.001<.001Logical Memory Recognition

>.99<.001.18<.001Visual Reproductions Immediate Recall

>.99<.001<.001<.001Visual Reproductions Recognition

>.99<.001<.001<.001Boston Naming Test 30 item Even Version

>.99<.001<.001<.001Similarities test

>.99<.001<.001<.001Paired Associate Learning Immediate Recall

>.99<.001<.001<.001Hard Score of Paired Associate Learning Immediate Recall

>.99<.001<.001<.001Hard score of Paired Associate Learning Delayed Recall

aφ represents empty condition set.
bVRd: Visual Reproductions Delayed Recall.
cLMi: Logical Memory Immediate Recall.

Alzheimer Disease Probabilistic Inference
We used Bayesian networks of total population to illustrate AD
inferences, in which test scores were modeled as discrete
intervals via clustering. Cognitive status was modeled by HC,
AD, and NAD. SIM had no parent nodes, and their probabilities
did not depend on other tests. Therefore, the probability for SIM
was characterized by its marginal probabilities. For the tests
influenced by others, conditional probabilities were used to
reflect that relationship. The probabilities of a test can only be
expressed by its immediate parent node. Although SIM
influences cognitive status, only VRd was used in cognitive
status’s conditional probability table (CPT). On the basis of the
CPT, the prior probability of each NP test can be calculated.
Influence between tests can also back-propagate along an edge.
Using the Bayes theorem, we can compute the posteriors to

infer cognitive status when NP tests are only partially available.
Missing data from NP tests occur for various reasons, some of
which are independent of cognitive status. This approach allows
us to use the available information to make the best probabilistic
inference, which does not depend on the same review sequence
of NP tests. To reduce sampling effects, the inference process
was repeated 100 times, and the mean of inference probability
was used as the final clinical decision (Multimedia Appendix
1). To further validate whether the network structure can reflect
the true relationship between NP tests and AD diagnosis, we
simulated 3000 participants with 11 NP tests and correlated
them with the cognitive status. As shown in Multimedia
Appendix 1, all the relationships of simulated NP tests data
were highly consistent with those derived from the original data.
The discretized intervals derived from different populations are
shown in Table 3 and Multimedia Appendix 1.

Table 3. Discretization of neuropsychological test scores.

Score intervalaNeuropsychological test

(0,3), (4,6), (7,8), (9,9), (10,10), (11,11), (12,12), (13,13), (14,16), (17,23)Logical Memory Immediate Recall

(0,0), (1,3), (4,6), (7,8), (9,9), (10,10), (11,11), (12,12), (13,15), (16,24)Logical Memory Delayed Recall

(0,1), (2,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (10,10), (11,11)Logical Memory Recognition

(0,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (10,10), (11,14)Visual Reproductions Immediate Recall

(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,9), (10,14)Visual Reproductions Delayed Recall

(0,0), (1,1), (2,2), (3,3), (4,4)Visual Reproductions Recognition

(0,7), (7.5,8.5), (9,9.5), (10,11), (11.5,12.5), (13,13.5), (14,14), (14.5,15.5), (16,17.5), (18,21)Paired Associate Learning Immediate Recall

(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,12)Hard Score of Paired Associate Learning Im-
mediate Recall

(0,0), (1,1), (2,2), (3,3), (4,4)Hard score of Paired Associate Learning De-
layed Recall

(0,6), (7,10), (11,12), (13,13), (14,14), (15,15), (16,16), (17,17), (18,19), (20,26)Similarities Test

(0,12), (13,17), (18,20), (21,23), (24,25), (26,26), (27,27), (28,28), (29,29), (30,30)Boston Naming Test 30 Item Even Version

aParentheses are used to indicate closed intervals, in case the square brackets are mistaken for references.
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Discussion

Principal Findings
Various analytic models have been used to identify informative
NP tests for AD prediction [4]. However, it is challenging to
understand the hierarchical influence between NP tests. Our
study explores the hierarchical probabilistic dependency of 11
NP tests and adjudicated cognitive outcomes—HC, AD, and
NAD—based on the participants’ cognition at the time of their
NP tests. These tests were incorporated into our Bayesian
network to establish a probabilistic-based framework for
cognitive outcomes. Within this theoretical hierarchical
influence structure, upstream NP tests affect downstream NP
tests, allowing us to probabilistically inference downstream NP
tests. We observed interdependence between NP tests and
overall cognition of an individual, where higher-level cognitive
functions—represented by individual NP tests that preceded
cognitive outcome in the hierarchy—are considered as
precursors of dementia, whereas the lower-level cognitive
functions are impacted as a result of dementia.

Machine learning methods have been used to predict cognitive
decline [51,52]. The identification of preclinical patterns of
cognitive decline is essential for the prevention and early
treatment of AD [3,53,54]. NP tests have been used for AD
diagnosis for a long time. Not surprisingly, all NP tests were
found to be related to AD. However, the hierarchical relationship
between NP tests was not previously fully investigated. Our
data-driven findings depict the interplay of cognitive functions
and further identify tests that influence, or are influenced by,
cognitive status. Current use of cognitive tests largely focuses
on declines that are in later disease states and thus cannot be
used to detect preclinical disease states. We advocate that the
decline of some cognitive functions is only the later
manifestations of AD, not the precursor (ie, pre-AD performance
metric). From a preventive medicine perspective, tests that are
identified as precursors can be taken as reference for physicians
to be considered as potential targets for AD intervention and
perhaps prevention. The value of using patterns of NP tests is
that they can be used as early screening tools to identify at-risk
patients and provide interventions, including
nonpharmacological therapies, which may delay or perhaps stop
disease progression altogether.

Our study represents a significant step forward in how to better
characterize preclinical AD heterogeneity. As cognitive
functions tend to interrelate in complex ways, we explored
conditional probability dependencies to present a main
relationship between cognitive functions. For males, decline of
memory function influences cognitive status, which also
influences the functions of language, verbal reasoning, and
visuospatial simultaneously. In comparison, for females, the
relationships are more complex; verbal reasoning function
influences language function, which influences visuospatial
function and, subsequently, cognitive status. Cognitive status
in females influences the function of logical and visual memory.
It is noteworthy that although the interplay of cognitive functions

has a different sequence for males vs females, logical memory
and visual reproduction functions are typically the first
precursors in AD. Our results suggest that gender-specific
evaluations need to be considered by clinicians in AD clinics
similar to other diseases such as heart attacks [55].

We also quantified functional connectivity through statistical
correlations and coherence [56]. Functional connectivity is
defined as a function of probability distributions over observed
multivariate responses. The hierarchical influence among
cognitive functions under various AD risk factors was assessed
to understand psychological functional segregation for
heterogeneous AD beyond just those associated with sex
differences.

Our study has several advantages. In terms of method, the
proposed structure of Bayesian network combined with inference
offers several advantages in the inference of disease status. First,
it provides a likelihood of the diagnosis, which is more intuitive
and meaningful in a clinical setting [57,58]. In addition, we
were able to impute the missing data by the probabilistic
inference strategy, which was based on the network structure
and training samples to capture the global assessment between
NP tests. The long follow-up period, beginning in 1976, and
the minimal loss to follow-up at FHS make it an ideal study
population for AD research [59]. The AD diagnosis was
adjudicated and verified by a panel consisting of at least one
neurologist and one neuropsychologist; hence, outcome bias
was minimized [3]. The NP tests within the FHS NP battery are
well known and widely administered by many clinicians and
researchers. Given these strengths, the results of this study can
be readily translated into real-world application.

We also acknowledge several limitations of our study. The study
participants are primarily of European ancestry, they have higher
levels of education than the general population in the United
States, and the majority of NP tests were carried out in English.
In addition, the average age of dementia onset among FHS
participants is around 85 years, which is higher than the expected
average. Therefore, findings of our study might not be
generalizable to other populations, such as these with lower
educational attainment, other ancestries, or
non-English–speaking groups. Moreover, we did not further
distinguish participants with mild cognitive impairment from
HCs. The models presented in this study were solely based on
11 NP tests from five categories of cognitive function.
Introduction of other NP tests might reveal additional
interactions between cognitive functions and help to strengthen
the overall model.

Conclusions
We developed a probabilistic dependency network for AD
diagnosis from 11 NP tests. Our study revealed important
psychological functional segregations and precursor evidence
of AD development. Future validations with additional samples
and NP tests would provide a more comprehensive picture of
cognitive function and identify potential NP biomarkers for AD
surveillance.
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