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Abstract

Background: Individualsin stressful work environments often experience mental health issues, such as depression. Reducing
depression rates is difficult because of persistently stressful work environments and inadequate time or resources to access
traditional mental health care services. Mobile health (mHealth) interventions provide an opportunity to deliver real-time
interventions in the real world. In addition, the delivery times of interventions can be based on real-time data collected with a
mobile device. To date, data and analyses informing the timing of delivery of mHealth interventions are generally lacking.

Objective: Thisstudy aimed to investigate when to provide mHealth interventionsto individualsin stressful work environments
to improve their behavior and mental health. The mHealth interventions targeted 3 categories of behavior: mood, activity, and
deep. The interventions aimed to improve 3 different outcomes: weekly mood (assessed through a daily survey), weekly step
count, and weekly sleep time. We explored when these interventions were most effective, based on previous mood, step, and
deep scores.

Methods: We conducted a 6-month micro-randomized trial on 1565 medical interns. Medical internship, during the first year
of physician residency training, is highly stressful, resulting in depression rates several folds higher than those of the general
population. Every week, interns were randomly assigned to receive push notifications related to a particular category (mood,
activity, dleep, or no notifications). Every day, we collected interns’ daily mood valence, sleep, and step data. We assessed the
causal effect moderation by the previous week’s mood, steps, and sleep. Specifically, we examined changes in the effect of
notifications containing mood, activity, and sleep messages based on the previous week’s mood, step, and sleep scores. Moderation
was assessed with aweighted and centered |east-squares estimator.

Results: We found that the previous week’s mood negatively moderated the effect of notifications on the current week’s mood
with an estimated moderation of —0.052 (P=.001). That is, notifications had a better impact on mood when the studied interns
had alow mood in the previous week. Similarly, we found that the previous week’s step count negatively moderated the effect
of activity notifications on the current week’s step count, with an estimated moderation of —0.039 (P=.01) and that the previous
week’s sleep negatively moderated the effect of sleep notifications on the current week’s sleep with an estimated moderation of
-0.075 (P<.001). For all three of these moderators, we estimated that the treatment effect was positive (beneficial) when the
moderator was low, and negative (harmful) when the moderator was high.
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Conclusions:
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These findings suggest that an individual’s current state meaningfully influences their receptivity to mHealth

interventions for mental health. Timing interventions to match an individual’s state may be critical to maximizing the efficacy

of interventions.
Trial Registration:

(J Med Internet Res 2020;22(3):€15033) doi: 10.2196/15033
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Introduction

Background

According to the World Health Organization, depression isthe
leading cause of disease-associated disability in the world [1].
Inthe United States, the burden of depression, including suicide,
has continued to grow [2]. In populations at high risk, prevention
of depression may be an effective strategy. The US National
Academy of Medicine has highlighted the need to develop,
evaluate, and implement prevention interventionsfor depression
and other mental, emotional, and behavioral disorders|[3].

Prevention interventions for depression are critical for
individuals in stressful work environments because these
environments can lead to increased rates of depression [4].
However, individuals in these work environments may have
inadequate time or resourcesto accesstraditional mental health
care services. High stress can also make individuals less
receptive to interventions and behavior change [5,6].

Unlike other recent advances, mobile technology has the
potential to transform the delivery and timing of depression
prevention interventions to meet the needs of highly stressed
individuals. In contrast to more intensive treatments (such as
therapeutic  appointments), mobile health (mHealth)
interventions (such as push notifications) can be delivered at
low burden, which may be critical given the individuals' high
stress workloads. Mobile devices hold the power to deliver
just-in-time adaptive interventions (J TAIs) [7] to individuals
during timeswhen they are ableto receive and respond to them.
Mobile devices also collect objective measurements of an
individual’s context and behavior with minimal burden (eg, step
counts, sleep duration). These data may, in turn, be used to
determine when to deliver interventions, and evaluate
intervention efficacy, without bothering the individuals.

When initially designing a JITAI, these states of opportunity
[7]—times when individual s are receptive to positive behavior
change—are not known. Timing iscritical because poorly timed
interventions can lead to loss of engagement with the
intervention [8]. Timing interventions is also particularly
important for individualsin stressful work environments because
poorly timed interventions could cause disengagement and
treatment fatigue [9].

Current behavioral theories lack the granularity and adaptivity
necessary to inform the timing of the delivery of mHealth
interventions [10,11]. Many theoretical models are
nondynamic—they only consider treatment adaptation based
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on baseline characteristics, such as sex and depression history
[12]. Timing and adapting treatments based on rea-time
variablesis essential for developing high-quality J TAIs[7].

Thisstudy follows adata-driven approach to inform the dynamic
timing of intervention delivery. Experimentation and data
collection were used to provide empirica evidence for
determining states of opportunity—the data illustrate when
interventions cause positive behavior changeinindividualsand
when they do not.

There have been other empirical studies showing the promise
of JTAlIstoimprove mental health [13]. Those studies are either
focused on feasibility and acceptability of the J TAI [14-17] or
use a randomized controlled trial (RCT) to demonstrate the
impact of the JITAIl on adistal outcome [18-20]. They do not
focus on the timing of intervention delivery. In two studies
[21,22], the authors demonstrated the benefits of timing mHealth
intervention delivery based on real -time variables. In that work,
thetiming of intervention delivery is specified before the study.
In contrast, because we did not know a priori how to time our
interventions, our work used empirical evidence to learn how
to dynamically time intervention delivery.

In statistical terms, we formulated the task of empiricaly
learning how to dynamically time interventions as discovering
time-varying moderators of causal treatment effects [23].
Time-varying moderators are moderators because they
change—or moderate—the efficacy of subsequent treatments
and are time-varying because the moderators values vary
throughout the study (such as daily mood). For example, if push
notifications containing sleep messages cause alarger increase
in sleep when individuals had little sleep in the previous night
compared with when individuals had high sleep, then the
previous night’s dleep moderatesthe effect of sleep notifications.
Discovering time-varying moderatorsinformstreatment timing
because treatment delivery can now be based on the observed
values of these moderators. In the example, it may be better to
send sleep natifications only after individuals have insufficient
sleep. Note that time-varying moderators should have
meaningful variability to allow the possibility of sending
different interventions at different times.

We assessed time-varying moderators of mHeal th interventions
targeting 3 categories: mood, activity, and sleep. Stressful work
environments can lead to sleep deprivation and physical
inactivity [24-26], two behaviors directly associated with
depression [24,27,28]. To prevent depression among individuals
experiencing high stress, it is critical to develop high-quality
interventions that can help them maintain and improve their
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mood, either through targeting mood directly or by indirectly
improving activity and sleep [24,28].

Our study population comprised medical interns. Medical
internship, thefirst year of physician residency training, ishighly
stressful, causing the depression rates of interns to be several
folds higher than those of the general population [29]. Focusing
on physician training, a rare situation in which a dramatic
increase in stress can be anticipated, provides an ideal
experimental model to develop interventions for maintaining
mental wellness during life and work stressors.

Our study, the 2018 Intern Health Study (IHS) [30], was a
6-month-long mHealth cohort study that tracked medical interns
using phones and wearables. During the internship year, we
conducted a micro-randomized trial (MRT) [23]. Standard
single-time point RCTs only inform moderation by baseline
variables[31] and do not permit the discovery of time-varying
moderators. The MRT was advantageous because it allowed us
to discover time-varying moderators of causal treatment effects
[23].

During each week in the 6-month study, an intern was
randomized to 1 of 4 possible treatments. a week of mood
notifications, activity notifications, seep notifications, or no
notifications. The outcomes were average daily self-reported
mood valence (measured through a one-question survey),
average daily steps (as a proxy for activity), and average daily
dleep duration, where averages were 7-day averages of data
collected during theweek of treatment. The strongest moderators
were hypothesized to be the previous week’s average daily
mood, steps, and sleep, as these were the strongest predictors
of the outcomes (based on previous years |HS data[30]). We
were only interested in a subset of combinations of outcomes,
treatments, and moderators.

Study Aims

Here, we have highlighted the primary and secondary aims of
this paper. Below, the effect (for which we are assessing
moderation) correspondsto how aweek of acertain notification
category causally changes an outcome compared with weeks of
no notifications.

The moderator aims listed below were not the only aims of the
2018 IHS. Analyses of main effects analyses were conducted
before the analysis of moderator effects (see Additional
Analyses in Multimedia Appendix 1). This paper has focused
on moderator analyses as those were the most interesting
findings.

Primary Aim

Our primary am focused on discovering how an intern’'s
previous mood moderates the effect of notificationsin general.
Specifically, we examined the following: Isthe effect of aweek
of notifications (of any category) on the average daily mood

moderated by the previousweek’s mood? Here, Outcome=mood,;
Treatment=any (mood, activity, or deep); and Moderator=mood.

Exploratory Subaim

If we do find that mood moderates the effect of notifications,
generally, we will assessif this moderation is consistent across
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all intervention categories. Specifically, we will examine the
following: Is the effect of each category of notification on the
average daily mood moderated by the previous week’s mood?
Here, Outcome=mood; Treatment=mood, activity, and sleep
separately; and Moderator=mood.

Secondary Aim 1

Secondary aim 1 focused on discovering how an intern’'s
previous activity moderatesthe effect of notifications containing
activity messages. Specifically, we examined the following: Is
the effect of aweek of activity notificationson the average daily
step count moderated by the previous week’s step count? Here,
Outcome=steps, Treatment=activity, and Moderator=steps.

Secondary Aim 2

Secondary aim 2 focused on discovering how an intern’'s
previous sleep moderates the effect of notifications containing
sleep messages. Specifically, we examined thefollowing: Isthe
effect of aweek of sleep notificationson the averagedaily sleep
moderated by the previousweek’s sleep? Here, Outcome=5 eep;
Treatment=sleep; and Moderator=sleep.

Methods

The Study App

Study participantswere provided aFitbit Charge 2 [32] to collect
deep and activity data, and a mobile app was downloaded to
theintern’s phone. The app can conduct ecological momentary
assessments (EMAS) [33], aggregate and visuaize data, and
deliver push notifications. The app was designed for iOS using
Apple ResearchKit [34].

Asthe primary aim of the study was focused on understanding
the effects of interventions on the mental health of interns, we
employed a daily EMA to measure mood valence (see Figure
1, Mood EMA). Daily mood is one of the 2 cardinal symptoms
of depression [35]. This daily mood EMA is used widely to
track the mood in patientswith depression [36]. There are more
widely used measurements of mental health other than mood
valence (such as the Patient Health Questionnaire-9, PHQ-9
[37]). However, these questionnaires are more time-intensive
and their assessment may cause higher nonresponse rates.
Participants are prompted to enter their daily mood every day
at a user-specified time between 5 PM and 10 PM.

In addition to collecting EMA data, the app aggregates and
displays visual summaries of interns' historical data, including
step and sleep counts (collected through the Fitbit) and mood
EMA data (Figure 1, App Dashboard). The data are integrated
with the app using Fitbit's publicly available application
programming interface [38]. Displaying historical trendsto the
intern helps them self-monitor their mood, activity, and sleep
trgjectories and could potentialy lead to positive reactive
behavior change [39]. These displays are a type of pull
intervention, that is, interventionsthat are available at al times
but only accessed upon user regquest. The pull component was
available to al participants, and assessing its effects was not
the focus of this study.

The IHS app aso delivers push interventions, that is,
interventions delivered without user prompting. Evaluating and
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improving the delivery timing of the push notification
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intervention was the focus of this study.

Figure 1. Screenshots of the app dashboard, mood ecological momentary assessment, and lock screen notifications.
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Push Notification I ntervention

Asapplied to mHealth, theoretically, behavior change comprises
anindividual’s motivation and ability to change, combined with
a trigger to elicit change [40]. Push natifications are such a
trigger, potentially providing motivational messagesfor change
(eg, to spark change), strategies for change (eg, to facilitate
change), and/or reminders to engage with the app (eg, to signal
change) [40]. Importantly, research supports the potential of
push notifications for behavior change [41,42].

Push notifications are particularly advantageous for medical
interns because they are delivered as needed with minimal
burden to the user [42-44]. However, poorly timed push
notifications can lead to loss of engagement and treatment
fatigue [9,45], demonstrating the importance of evaluating and
improving the delivery timing of the push notifications.

Table 1. Examples of 6 different groups of notifications.

(ii) Mood EMA

Prior to beginning internship, you averaged 117

10 17,169 steps per day. How does that compare
with your current daily step count?

BT -, el
(iii) Notifications

Push natifications were provided to theinterns through the app,
with the goal of improving healthy behavior in atarget category
of interest: mood, activity, and sleep (ie, mood notifications
improve mood, activity notifications increase physical activity,
and sleep notifications increase sleep duration). For al 3
categories, there were 2 types of notifications: tips and life
insights. Consistent with theory [40] and moativational
interviewing approaches [46-48], tips are non—data-based
notifications that provide autonomy support (eg, motivational
focused messages on why change) and tool s (eg, ability-focused
messages on how to change) to promote healthy mood, activity,
or sleep. Next, consistent with theory [40,49,50] and research
showing that interventionsthat enhance self-monitoring promote
behavior change [51], life insight notifications summarize an
individual’s data, to provide reminders (eg, signals) and/or
reduce the burden of accessing the app to view visualizations.
Table 1 contains examples of different push notifications used
in the study.

Notification groups  Lifeinsight

Tip

Mood

after intern year begins.

Activity Prior to beginning internship, you averaged 117 to

17,1609 steps per day. How does that compare with your

current daily step count?

Sleep The average nightly sleep duration for an intern is 6

hours 42 minutes. Your average since starting internship

is 7 hours 47 minutes.

Your mood hasrangesfrom 7 to 9 over the past 2 weeks.
The average intern’s daily mood goes down by 7.5%

Treat yourself to your favorite meal. You've earned it!

Exercising releases endorphins which may improve mood. Staying
fit and healthy can help increase your energy level.

Try to get 6 to 8 hours of sleep each night if possible. Notice how
even small increasesin sleep may help you to function at peak capac-
ity & better manage the stresses of internship.

Thelntern Health Study Micro-Randomized Trial
Design
To discover time-varying moderators for informing the timing

of notification delivery, we conducted an MRT. The MRT
designisshownin Figure 2. The MRT design and protocol were
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approved by the University of Michigan Institutional Review
Board (Protocol #HUM00033029).

The main randomization was the weekly randomization to a
specific notification category (mood, activity, sleep) or to no
notification. Thus, we were able to compare how aweek of a
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certain notification category changed intern behavior when
compared with aweek of no notifications.

The randomization—and the ensuing analysis of
effects—occurred at the weekly level for two reasons. First, the
notifications are not intended to change the interns’ behavior
in the next few hours, but over the next few days. Randomizing
and analyzing effects at the weekly level, as opposed to adaily
or minute level, permitted the discovery of longer-term effects.
Second, asinterns are quite busy, their behavior may not change
significantly after receiving asingle notification. Instead, interns
received several notifications related to the same category and
had a consistent reminder about improving that category.

Given a week when a user was randomized to receiving
notifications, every day they were further randomized (with
50% probability) to receive a notification on that day. Hence,
for amood notification week, the user received, on average, 3.5
mood notificationsthat week. The purpose of thisrandomization
was to balance delivering enough notifications to be noticeable
and cause behavior change but not too often that it leads to

NeCamp et al

treatment fatigue [9]. Treatment fatigueis pervasivein mHealth
[7] and for individuals with heavy workloads [9]. Additional
Analyses in Multimedia Appendix 1 contains a summary of
how many notifications users received in a given week.

Another way to prevent treatment fatigue is through increased
variability in notifications and the order in which they are
received [52]. For each notification category, the notifications
alternated between life insights and tips. In addition, given a
type and category, each notification was drawn randomly,
without replacement, from a corresponding bucket of
notifications. The bucket refilled once it was completely
emptied. Alternating between life insights and tips increased
the day-to-day variability of the notification framing. Drawing
notifications without replacement ensured that users were not
receiving repeats of the same notification. Under this scheme,
on average, a user did not receive a repeat notification for 16
weeks. Weekly and daily notification randomization and
notification delivery wereimplemented using the Firebase Cloud
Messaging platform [53].

Figure 2. Randomization scheme of the Intern Health Study micro-randomized trial.

For week jin 1:26

1/4
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For dayiin 1:7 in week
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Participants

Medical doctors starting their year-long internship in the summer
of 2018 were €eligible to participate in the study. Interns were
onboarded before the start of their internship (between April
2018 and June 2018), in which they wereinstructed to downl oad
the study app, were provided Fitbits, completed a baseline
survey, and were able to begin entering mood scores. Baseline
and follow-up surveyswere administered through the app using
Quialtrics survey software [54]. Data collection began when an
intern enrolled in the study and continued until the end of the
trial. Collecting data before the start of the internship provided
baseline measurements of mood, step counts, and sleep, which
are valuable control variables in the analysis. The weekly
randomizations and notification delivery began on June 30,
2018, 1 day before the start of interns' clinical duties. Interns
were rerandomized every 7 days thereafter. During the study,
notifications were sent at 3 PM, mood EMAs were collected
daily between 5 PM and 10 PM, and sleep and step data were
collected every minute. Datawere transferred directly from the
subjects' phones to a secure, Health Insurance Portability and
Accountability Act—compliant server managed by the University
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of Michigan Health Information and Technology Services. The
interns received notifications for 6 months (26 weeks), and the
trial ended on December 28, 2018.

Statistical Analysis

Overview

To analyze the primary and secondary aims, we performed a
moderator analysis for each of the outcomes, treatments, and
moderators specified in Study Aims. More details on the
methods can be found in Further Details on the Statistical
Methodsin Multimedia Appendix 1.

In the analysis, there were 4 sets of variables:

1 Thetreatment outcome variable of interest, Y.

2. The treatment indicator, Z. For now, Z is a binary
indicator, where Z=1 implies it is a notification week (of
any category) and Z,=0 is a no-notification week. The case

with multicategorical treatments—mood, activity, and sleep
notifications—will be described under the secondary aims.

JMed Internet Res 2020 | vol. 22 | iss. 3| €15033 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

3. The moderator, M,, corresponding to the causal effect
moderator of interest.

4. Thelast set of variables, X;, are the control variables. The
control variables are variables measured before each weekly
randomization (eg, baseline dataand previousweeks' data)
and are included in the model to reduce variation in the
outcome, Y.

The outcomes, treatment, and moderators correspond exactly
to the outcomes, treatments, and moderators described in Study
Aims. Asinterns were randomized to different trestments each
week, the outcomes, treatments, moderators, and control
variableswere aggregated at the weekly level and wereindexed
by time, t, corresponding to each week of the study (t=1,...,26).

To perform the moderator analysis, we used alinear model with
an interaction term. The outcome of interest (such as average
daily mood), Y;, was regressed on X;, M;, Z; and the interaction
between M, and Z;, ZM,, giving the model the following form:
E(YidXeMuZy) = agX; + ayM, + bz, + by ZM;
The moderation effect of interest is the coefficient b, for the
interaction of Z, and M,. This coefficient is interpreted as the
changein treatment effect of treatment Z, on Y, per unit change
in M. A positive value for b, indicates that the treatment works
better after weeks when M, is high, whereas a negative value

indicates that the treatment works better after time points when
M islow.

For the primary and secondary aims, to evaluate if the moderator
effect isstatistically significant, we performed ahypothesistest
comparing the coefficient b, to 0, with a0.05 type | error rate.
We reported the estimate of b, the standard error, and P value
of thistest. Though estimating and testing the moderation effect
is useful, it does not demonstrate whether the notifications had
apositive or negative effect on the outcome. Hence, in addition
to a hypothesis test, we also plotted the estimated treatment
effect at various values of the moderator. We did this by using
both the estimate of the slope, b, and intercept, by, of the
moderation effect. The plots aso included histograms of the
moderator to illustrate the distribution of treatment effects.

Estimation Techniques

To estimate the coefficients, we used a multicategorical
extension of the weighted and centered | east-squares estimator
described in Boruvkaet al [55]. The estimation method provides
asymptotically unbiased estimates of the causal effect
moderation of interest. The method also protects against
potential misspecification of terms not interacted with treatment
(3% + a;M,). The method assesses the uncertainty of the
coefficient estimates using robust standard error estimation—the
sandwich estimator [56]—to account for correlation between
outcomes over time. The method was implemented in R using
the package geepack [57]. The code is available on the first
author’'s website.

Missing Data
Missing data occurred throughout the trial because of interns
not completing the self-reported mood survey or not wearing
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Fitbits. Multiple imputation [58], a robust method for dealing
with missing data, was used to impute missing data at the daily
level. Due to the complexity of the trial design and data
structure, our imputation method combinesimputation methods
for longitudinal data [59] and sequentially randomized trials
[60]. Results were aggregated across 20 imputed datasets using
Rubin’s rules [58,61]. We also assessed the sensitivity of the
conclusions to the imputation method. See Missing Data and
Sensitivity Analyses in Multimedia Appendix 1 for further
details on the missingness and sensitivity analysis results.

Primary Aim

The primary aim assessed the previous week’s average daily
self-reported mood valence as a moderator of the effect of
notifications on the average daily self-reported mood valence.
For this analysis, the interpretation, b;, was the change in
treatment effect (for delivering a week of notifications compared
with a week of no notifications) on the average daily mood when
the previous week’s average daily mood increased by 1.

Secondary Aim 1

The first secondary aim assessed the previous week’s average
daily step count as a moderator of the effect of activity
notifications on the average daily step count. For this aim, the
treatment variable (Z;) and corresponding coefficients (b, and
b,) were no longer binary because there were 4 possible
notification categories. See Further Details on the Statistical
Methods in Multimedia Appendix 1 for further details on the
multicategorical treatment model. The focus of inference for
secondary aim 1 was on the first dimension of the moderation
effect, by, which corresponds to the comparison between
activity notification weeks and no-notification weeks. In
addition, to reduce right skew and decrease outliers, the outcome
and moderator used average daily square root step count. After
the sguare root transformation, the average daily step counts
more closely resembled a Gaussian distribution.

The interpretation, b4, was the change in treatment effect (for
delivering a week of activity notifications compared with a week
of no notifications) on the average daily square root step count
when the previous week’ s average daily square root step count
increased by 1. Hypothesis testing was performed on by; and
plots were made using estimates of by; and by;.

Secondary Aim 2

Secondary aim 2 assessed the previous week’s average daily
sleep count as a moderator of the effect of sleep notifications
on the average daily sleep count. Similar to secondary aim 1,
the treatment here was no longer binary, and we encoded the
treatment vector the same way as secondary am 1. For this
analysis, the focus of inference was on the second dimension,
b5, which compared dleep notification weeks with
no-notification weeks. Again, to reduceright skew and decrease
outliers, the outcome and moderator used average daily square
root sleep minutes.

The interpretation, by,, was the change in treatment effect (for

delivering a week of sleep notifications compared with a week
of no natifications) on average daily square root sleep minutes
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when the previous week's average daily square root sleep
minutes increased by 1. Hypothesis testing was performed on
b,,, and plots were made using estimates of by, and b».

Exploratory Subaim

The exploratory aim assessed the previous week’s mood as a
moderator of the effect of each notification category on the
average daily mood. For the exploratory aim, the outcome and
moderator were the same as the primary aim, except that the
treatment was separated into 4 treatment categories (as in the
secondary aims). Asthis aim was only exploratory, we did not
calculate P values. Instead, for each notification category, we
plotted the estimated treatment effect at various values of the
moderator. This required making 3 separate lines using each
dimension, with estimates of by providing the intercept and

estimates of by; providing the slope.

Results

Participants

Participants were recruited through emails, which were sent to
futureinternsfrom 47 different recruitment institutions between
April 1 and June 25, 2018. The recruitment institutions
comprised both medical schools, where emails were sent to all
graduates, and residency locations, where emails were sent to
all incoming interns. A total of 5233 future interns received the
initial email inviting them to participate in the study. In all,

NeCamp et al

40.78% (2134/5233) of interns downloaded the study app,
completed the consent form, and filled out the baseline survey
sometime before June 25, 2018. The study app and study
participation were restricted to interns using an iPhone, the
phone brand used by most interns. A total of 2134 interns
received a Fitbit Charge 2. Of the 2134 interns, 1565 (73.34%)
were randomly selected to participate in the MRT (see
Additional Anayses in Multimedia Appendix 1 for an
explanation of thisinitial randomization). These 1565 interns
were randomized according to Figure 2. Interns were
incentivized to participate in the study by receiving the Fitbit
wearable and up to US $125, distributed 5 times throughout the
year (US $25 each time) based on continued participation.

Of the 1565 interns in the MRT, 875 (55.91%) were female,
and 774 (49.45%) had previously experienced an episode of
depression. The interns represented 321 different residency
locations and 42 speciaties. The study interns baseline
information closely resembled the known characteristics of the
general medical intern population [29]. Throughout the trial,
we measured intern mood valence, steps, and nightly sleep.
Summaries of the weekly averages of those data can be found
in Table 2.

Missing data occurred throughout the study. Figure 3 displays
the percentage of interns with at least one nonmissing sleep,
step, or mood observation for each week in the study. See
Missing Dataand Sensitivity Analysesin Multimedia Appendix
1for further details on the missingness and sensitivity analyses.

Table 2. Summary statistics of daily mood, activity, and sleep during the study, averaged over each week of the study. These are the primary outcomes

and moderators used in the analyses of all study aims.

Daily measure First quartile Median Mean (SD) Third quartile
Average daily mood 6.50 7.33 7.21 (1.43) 8.00
Average daily step count 6193 7983 8274 (3285) 10,050
Average daily hours of sleep 6.02 6.65 6.54 (1.25) 7.25
Figure 3. Percentage of interns with at least one nonmissing sleep, step, or mood observation for each week in the study.
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Main Findings

Primary Aim

We conclude that the previous week's average daily
self-reported mood valenceisastatistically significant negative
moderator of the effect of notifications on the average daily
self-reported mood valence. The estimate for the moderationis
-0.052 (SE 0.014; 95% CI —0.081 to —0.023; P=.001).

Figure 4 plots the estimated treatment effect at various values
of the moderator. Figure 4 shows that the effect of notifications

NeCamp et al

(compared with no notifications) was positive for weeks when
the previous mood was low, but negative for weeks when the
previous mood was high. For example, when the previous
week’s average daily mood was 3, we estimated that aweek of
notifications increased an intern’s average daily mood by 0.19
(effect size=0.14). However, when the previous week’s average
daily mood was 9, we estimated that a week of notifications
decreased an intern's average daily mood by 0.12 (effect
size=-0.08).

Figure 4. Estimated treatment effects (compared with no notifications) of notifications on average daily mood, at various values of previous week’s
mood. The x-axis aso contains a scaled histogram of previous week’s average mood.
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For each notification category, we plotted the estimated
treatment effect at various values of the moderator. Essentially,
we broke apart the moderation effect in Figure 4 into 3
categories of notifications. The result is shown in Figure 5. We
included the line for general notifications from Figure 4 for
reference. Figure 5 demonstrates that the moderation by the
previous week's average daily mood was similar for all 3
notification categories.

http://www.jmir.org/2020/3/e15033/

estimated that aweek of mood, activity, and sleep notifications
increased an intern’s average daily mood by 0.19, 0.16, and
0.23 (effect sizes=0.13, 0.11, and 0.16), respectively. When the
previous week’s average daily mood was 9, we estimated that
aweek of mood, activity, and sleep notifications decreased an
intern’s average daily mood by 0.12, 0.14, and 0.09 (effect
sizes=—0.08, —-0.10, and —0.06), respectively.
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Figure5. Estimated treatment effects (compared with no notifications) of different notification categories on average daily mood, at various values of
previous week’s mood. The x-axis also contains a scaled histogram of previous week’s average mood.
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Secondary Aim 1

We conclude that the previous week’s average daily step count
isastatistically significant negative moderator of the effect of
activity notifications on average daily steps. The estimate for
the moderation is—0.039 (SE 0.015; 95% Cl —0.069 to —0.008;
P=.01).

Figure 6 plots the estimated treatment effect at various values
of the moderator. In Figure 6, for interpretability, we
retransformed the moderation effect back from the analysis

scale (square root) to the original scale. We see from Figure 6
that the effect of activity notifications (compared with no
notifications) was positive for weeks when previous steps were
low, but negative for weekswhen previous steps were high. For
example, when the previous week’s average daily step count
was 5625, we estimated that a week of activity notifications
increased an intern’s average daily step count by 165 steps
(effect size=0.05). However, when the previous week’s average
daily step count was 12,100, we estimated that aweek of activity
notifications decreased an intern’s average daily step count by
60 steps (effect size=—0.02).

Figure 6. Estimated treatment effects (compared with no notifications) of activity notifications on average daily steps, at various values of previous
week’s step counts. The x-axis also contains a scaled histogram of previous week’s average daily step count.
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Secondary Aim 2

We conclude that the previous week’s average daily sleepisa
statistically significant negative moderator of the effect of sleep
notifications on average daily sleep. The estimate for the
moderation is —0.075 (SE 0.018; 95% CI -0.111 to -0.038;
P<.001).

Figure 7 plots the estimated treatment effect at various values
of the moderator. Again, weretransformed the moderation effect
back from the analysis scale (square root) to the original scale.
In addition, for interpretability, the x-axisis on the hourly scale,

NeCamp et al

whereas the y-axis is on the minute scale. We see from Figure
7 that the effect of deep notifications (compared with no
notifications) was positive for weeks when previous sleep was
low, but negative for weeks when previous sleep was high. For
example, when the previous week’s average daily sleep was 5
hours, we estimated that aweek of sleep notificationsincreased
an intern’s average daily sleep by 8 min (effect size=0.11).
However, when the previous week’s average daily sleep was 8
hours, we estimated that aweek of sleep notifications decreased
an intern’s average daily sleep by 5 min (effect size=—0.07).

Figure 7. Estimated treatment effects (compared with no notifications) of sleep notifications on average daily sleep minutes, at various values of
previous week's hourly sleep. The x-axis also contains a scaled histogram of previous week’s average daily sleep count.
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Additional Analyses

The Additional Analyses section of Multimedia Appendix 1
contains detailed results on other analyses, including an analysis
of nonmoderated main effects, changesin effects over time, the
effects of lifeinsights and tips, the effects on long-term PHQ-9
scores, and an analysis of baseline moderators. Thereisevidence
of a negative effect of (general) notifications on mood. There
is also evidence of a positive effect of activity notifications on
step count and a positive effect of sleep notifications on sleep
duration. All of these effect sizes, however, are small. Thereis
no strong evidence that these effects change over time. There
is minor evidence that tips perform better than life insightsin
improving step count and sleep duration. We did not see any
effects on long-term mental health outcomes. We saw some
evidence of nonlinear moderation for the primary and secondary
aims. The nonlinear moderator analysis suggested that when
the moderators are high, the treatment effect on sleep hoursand
step count is close to 0 (as opposed to negative). Finaly, we
found that baseline variables, such as gender and depression
history, were weak moderators of notification effects,
demonstrating the value of personalizing intervention delivery
on real-time data.

http://www.jmir.org/2020/3/e15033/

Discussion

Principal Findings

Through thisMRT of an mHesalth push notification intervention,
we found that the effects of notifications were negatively
moderated by the subject’s previous measurement of the
outcome of interest. Specifically, we found that previous mood
negatively moderated the effect of notifications on mood,
previous step count negatively moderated the effect of activity
notifications on step count, and previous sleep duration
negatively moderated the effect of sleep notifications on sleep
duration.

Comparison With Other Studies

A few previous studies explored using real-time variables to
determinethetiming of mHealth interventionsfor mental health.
These studies postul ated that messageswould be most effective
when self-reported mood was outside the typical range [21], or
when self-reported stress or negative affect was high [22]. The
studies found that such timing doesimprove efficacy. Our work
differs from these studies because we did not assume,
beforehand, that interventions would be most effective during
apredetermined time. Instead, we used the MRT designto learn
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opportune times to send interventions, based on real-time
objective and self-reported data.

Outside of mental health, there have been studies that have
sought to learn opportune times to send interventions. Much of
that work isfocused on ng in-the-moment interruptibility,
namely times when a user is open to interruption and willing
to engage with a notification. For example, in one study [62],
the authors found that phone usage, time of day, and location
were strong predictors of a user’s willingness to engage with
content provided via a push notification. Another study [63]
found that location, affect, current activity, time of day, day of
week, and current stress are significant predictors of a user’s
willingness to respond to an EMA prompt. Another study [64]
used an MRT to causally demonstrate that notifications (which
ask usersto self-monitor) are more effective when sent mid-day
and on weekends. Our study differsfrom thiswork. In our study,
the outcome was not focused on short-term engagement with
the notification but rather longer-term behavior change, such
as improved weekly mood, activity, or sleep.

Most standardized effect sizes within this paper fell within the
0.05 to 0.15 range. According to the suggested definitions of
small and large [65], the effect sizes for our interventions are
small. However, these definitions of small and large may not
directly apply to the causal effects assessed in MRTs [66]. As
MRTs are arelatively new trial design, there are currently no
accepted definitions of large and small [66]. For the 3 MRTs
with published effect sizes, the effects sizes were 0.074 [67],
0.2 [66], and 0.1 [66]. The effect sizes within this paper are
similar in magnitude to these other works.

Implications

Our principal findings demonstrate that the study interns’ current
state meaningfully influences their receptivity to mHealth
interventionsfor mental health. Effective mHealth interventions
for individuals in stressful work environments must consider
timing notification delivery based on recent real-time data.
Delivering notificationswhen previous measurements of mood,
deep, and activity are low—when improvement is
needed—benefits mood and behavior. However, delivering
notifications when those variables are high, negatively impacts
mood and behavior.

mHealth interventions aiming to increase mood, activity, and
sleep can be improved based on these findings. An improved
mHealth intervention for increasing mood would deliver
notifications (of any type) only when the user’s previousweek’s
average daily mood isbelow 7 and sends nothing when previous
mood is at or above 7. Similarly, for activity, an improved
intervention would deliver activity notifications only when the
user's previous week's average activity is below 10,614 steps
and delivers nothing otherwise. For deep, an improved
intervention would deliver sleep notifications only when the
user's previous week's average daily sleep duration is below
6.9 hours. These improved interventions are based upon our
singletrial, with small effect sizes. Thereis potential for larger
effects through further intervention optimization and using
different intervention groups in conjunction with each other.
Consistent with the multiphase optimization strategy (MOST)
framework [68,69], these suggested interventions should be
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further refined and evaluated in additional studies and
confirmatory trials before being used broadly.

Study Strengths

Through the MRT design and repeatedly randomizing interns
throughout the trial, we were able to assess causal effect
moderation by time-varying measurements. Our large sample
size (1565 interns) allowed us to detect the moderators of
interest. The relatively long duration of the study (6 months)
demonstrated that our conclusions are valid beyond the first
few weeks and months of the study (we analyzed how treatment
effectsvary over timeinthe Additional Analysesof Multimedia
Appendix 1). Our study focused on medical interns, which
provided aunique opportunity to as