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Abstract

Background: COVID-19, which is accompanied by acute respiratory distress, multiple organ failure, and death, has spread
worldwide much faster than previously thought. However, at present, it has limited treatments.

Objective: To overcome this issue, we developed an artificial intelligence (AI) model of COVID-19, named EDRnet (ensemble
learning model based on deep neural network and random forest models), to predict in-hospital mortality using a routine blood
sample at the time of hospital admission.

Methods: We selected 28 blood biomarkers and used the age and gender information of patients as model inputs. To improve
the mortality prediction, we adopted an ensemble approach combining deep neural network and random forest models. We trained
our model with a database of blood samples from 361 COVID-19 patients in Wuhan, China, and applied it to 106 COVID-19
patients in three Korean medical institutions.

Results: In the testing data sets, EDRnet provided high sensitivity (100%), specificity (91%), and accuracy (92%). To extend
the number of patient data points, we developed a web application (BeatCOVID19) where anyone can access the model to predict
mortality and can register his or her own blood laboratory results.

Conclusions: Our new AI model, EDRnet, accurately predicts the mortality rate for COVID-19. It is publicly available and
aims to help health care providers fight COVID-19 and improve patients’ outcomes.

(J Med Internet Res 2020;22(12):e25442) doi: 10.2196/25442
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Introduction

COVID-19 is a highly contagious infection caused by
SARS-CoV2. In severe cases, COVID-19 causes acute
respiratory distress, multiple organ failure, and, eventually,
death [1]. As of November 2020, COVID-19 cases and deaths
are approaching 60 million and 1.5 million, respectively,
worldwide.

In a pandemic situation, the most important issue in the
management of patients diagnosed with COVID-19 is to select
patients at risk of high mortality in the early period of disease
and to provide appropriate treatments [2]. Particularly, the
condition of patients at high risk can rapidly deteriorate. Some
papers reported that deceased COVID-19 patients initially had
mild symptoms but suddenly transitioned to a critical stage,
leading to death [3-5]. In Italy, 75% of deceased patients showed
mild symptoms, such as fever, dyspnea, and cough, at admission
to the hospital [1]. Thus, the development of a prognostic model
to predict mortality as early as possible is very critical.

In this pandemic crisis, the shortage of resources and medical
staff causes big problems in the health care system. Accordingly,
artificial intelligence (AI) can aid in the management of
COVID-19 patients. A recent research study has developed an
AI prediction model of mortality based on blood test results [6].
In this study, Yan et al initially considered 73 blood-borne
markers for the mortality prediction model; finally, three blood
biomarkers were selected, including lactate dehydrogenase
(LDH), lymphocyte, and high-sensitivity C-reactive protein
(hs-CRP). This model predicted mortality with 90% accuracy
based on a decision tree using an XGBoost classifier [7] to
analyze feature importance.

However, Yan et al’s study has drawbacks. First, the three
biomarkers derived from the XGBoost-based feature selection
may not be the best choices. Feature importance provides a
score indicating how each feature contributes in the construction
of decision trees within the model. However, due to the
stochastic nature of machine learning algorithms, each feature’s
importance score may vary. Moreover, in decision tree
algorithms, such as an XGBoost and a random forest (RF), when
multiple features have the same gain during the split, a branch
in a tree is made by randomly selecting features among them.
Second, numerous studies have shown that the disease
progression of COVID-19 is not only associated with LDH
[2,8-11], lymphocyte [12,13], and hs-CRP [2,10,14-17] but also
with other blood-based biomarkers, such as neutrophil counts
[16,18,19], albumin [18,20,21], and prothrombin activity

[18,22-24]. In our study, we developed an AI model using 28
biomarkers for predicting the mortality of COVID-19 patients.
Third, the three biomarker-based AI models [6] predicted
mortality 10 days before a patient’s recovery or death. These
limitations show that the model may not work for COVID-19
patients who have just been diagnosed and hospitalized.

Therefore, in this study, we aimed to develop an AI model based
on a blood test for mortality prediction at the early stage of
hospital admission. We deployed the developed AI model on a
public website so that all patients and medical staff could predict
mortality using individual patient blood test results.

Methods

Data Sets
This study was approved by Wonkwang University Hospital
(WKUH), Chonnam National University Hospital (CNUH),
and Samsung Medical Center (SMC) in Korea. Informed consent
was waived. For training data, we used the blood test results
obtained from 375 COVID-19 patients collected between
January 10, 2020, and February 24, 2020, in Tongji Hospital,
Wuhan, China [6]. Of these, 14 patients without a blood test
within 1 day after the hospital admission were excluded, and
361 patients—212 males (58.7%) and 149 females (41.3%);
mean age 58.9 years (SD 16.5)—were included. As presented
in Multimedia Appendix 1, the training data set of 361 patients
included the admission date and time, discharge date and time,
age, gender, mortality outcome, and results of blood tests
obtained within 24 hours after hospital admission. For testing
data, we collected medical records on COVID-19 patients
(N=106) from three medical institutions: CNUH (85/106,
80.2%), WKUH (11/106, 10.4%), and SMC (10/106, 9.4%).
The blood laboratory results from these 106 COVID-19 patients
were collected between February 2020 and July 2020. Similar
to the training data, we used the blood test data obtained within
24 hours after hospital admission (see Multimedia Appendix
2). For summarizing the statistics of the training and testing
data sets, the patients were classified into a survivor group and
a deceased group in the training and testing data sets. The
number of blood tests differed across patients and institutions.
The mean numbers of blood tests per patient were 61.21 (range
24-73) in the training data set and 35.36 (range 30-55) in the
testing data set. The mean numbers of hospitalization days were
13.82 (survivor group) and 8.16 (deceased group) in the training
data set and 18.21 (survivor group) and 17.98 (deceased group)
in the testing data set (see Table 1).
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Table 1. Statistical summary of the training and testing data sets.

Testing data set (N=106)Training data set (N=361)Patient data

Total (N=106)SMCc (n=10)WKUHb (n=11)CNUHa (n=85)Tongji Hospital

Number of patients, n (%)

106 (100)10 (100)11 (100)85 (100)361 (100)Total

104 (98.1)10 (100)9 (82)85 (100)195 (54.0)Survived

2 (1.9)0 (0)2 (18)0 (0)212 (58.7)Deceased

Gender, n (%)

42 (39.6)3 (30)5 (45)34 (40)212 (58.7)Male

64 (60.4)7 (70)6 (55)51 (60)149 (41.3)Female

Number of hospitalization
days, mean (SD)

18.21 (11.46)30.95 (23.03)28.16 (11.13)15.06 (7.90)13.82 (6.38)Survived

17.98 (11.83)N/A17.98 (11.83)N/Ad8.16 (7.38)Deceased

46.73 (22.28)58.20 (21.05)56.27 (23.00)44.14 (21.81)58.91 (16.49)Age in years, mean (SD)

Number of blood biomarkers
collected

30-5530-4030-5232-5524-73Min-max

35.36 (4.19)34.20 (3.16)35.00 (5.31)36.89 (4.11)61.21 (6.92)Mean (SD)

aCNUH: Chonnam National University Hospital.
bWKUH: Wonkwang University Hospital.
cSMC: Samsung Medical Center.
dN/A: not applicable; there were no deceased patients in the testing data set at this institution.

Feature Selection
Given the total 73 blood biomarkers from the training data, we
performed an analysis of variance (ANOVA), which uses an F
test to check for any significant difference between the two
groups (ie, deceased vs survivor) according to each blood
biomarker. For the feature selection, we also considered the
available data rate (ADR), which refers to how much blood
biomarker data were available for training the AI model. This
is calculated as

where Npatients is the total number of patients (N=361) and
Nbiomarker is the number of patients having each of the specific
biomarker data.

Based on the ANOVA, we first selected the top 32 biomarkers

corresponding to P values less than 10–5. Subsequently, we
excluded four biomarkers with ADR values of less than 90%.
Table 2 summarizes the final selection of 28 biomarkers with
the corresponding ANOVA P values and ADR values. The
ANOVA P values and ADR values for all 73 biomarkers in the
training data set are summarized in Multimedia Appendix 3,
Table S1. The sample distributions of the selected 28 biomarkers
in the survivor and deceased groups are presented in Multimedia
Appendix 3, Figure S1.
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Table 2. List of 28 blood biomarkers selected for the artificial intelligence model training.

ADRb, %ANOVAaP valueBlood biomarkerBiomarker index No.

96.952.44×10−46Lymphocytes1

96.685.65×10−43Neutrophils2

96.122.90×10−37Albumin3

96.124.18×10−36Lactate dehydrogenase4

96.683.54×10−35Neutrophil count5

94.748.38×10−35Hypersensitive C-reactive protein6

94.183.20×10−26Prothrombin activity7

95.292.24×10−19Calcium8

96.123.29×10−17Urea9

96.125.05×10−17Estimated glomerular filtration rate10

96.951.09×10−14Monocytes11

96.126.06×10−13Globulin12

96.682.07×10−12Eosinophils13

93.632.39×10−11Glucose14

92.248.43×10−10Red blood cell distribution width (RDW)15

96.122.68×10−9HCO3
− (bicarbonate)16

92.243.06×10−9RDW standard deviation17

96.681.46×10−8Platelet count18

92.241.92×10−7Mean platelet volume19

92.242.02×10−7Platelet large-cell ratio20

94.183.42×10−7Prothrombin time21

96.125.29×10−7Total protein22

92.246.98×10−7Platelet distribution width23

96.121.01×10−6Aspartate aminotransferase24

92.241.49×10−6Thrombocytocrit25

92.242.90×10−6Eosinophil count26

96.128.27×10−6Alkaline phosphatase27

92.242.65×10−5International standard ratio28

aANOVA: analysis of variance.
bADR: available data rate.

Preprocessing
Given the selected 28 biomarkers, the mean number of available
biomarkers per patient was 27.22 (SD 2.33) for the training data
and 16.86 (SD 1.58) for the testing data, as summarized in Table

3. To handle the missing data, we calculated the mean value
from the training data for each biomarker and replaced the
missing data with the mean value for the training and testing
data sets. We then added two more features (ie, age and gender)
to the 28 biomarkers and trained our AI model using 30 features.
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Table 3. Number of available blood biomarkers per patient for the artificial intelligence model training.

Number of blood biomarkersData sets and sources

Min-maxMean (SD)

13-2827.22 (2.33)Training data: Tongji Hospital

Testing data

19-2420.39 (1.13)Chonnam National University Hospital

14-1915.82 (1.94)Wonkwang University Hospital

14-1714.40 (1.58)Samsung Medical Center

14-2416.86 (1.58)Total

With the 30 features, we performed data set standardization,
which is a common requirement for machine learning estimators.
The standardization changes the data distribution of each feature
with zero mean and standard deviation of 1 as

where mean(train) and SD(train) are the mean and standard
deviation values, respectively, for each feature from the training
data. The standardization was applied to the training and testing
data sets.

Development of an Ensemble AI Model
As illustrated in Figure 1, the new ensemble AI model is
composed of a 5-layer deep neural network (DNN) and RF

model. Our ensemble AI model was named as EDRnet
(ensemble learning model based on DNN and RF models). The
5-layer DNN was comprised of an input layer, three fully
connected (FC) layers, and an output layer. The input layer
contained 30 features, including 28 biomarkers, age, and gender.
The input layer was fed into three FC layers in a series, each of
which consisted of 30, 16, and 8 nodes. To alleviate the
overfitting issue, we applied a dropout rate of 0.3. Then, the
last FC layer was fed into a softmax layer, which is an output
layer providing the probabilities for the patient mortality. Figure
S2 in Multimedia Appendix 3 shows our DNN model and its
printed textual summary run on Keras, where the total number
of parameters (ie, weights and biases) was 1571.
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Figure 1. Proposed ensemble model (EDRnet) composed of a 5-layer deep neural network (DNN) and random forest (RF) model for the mortality
prediction. In the training of both models, a 10-time-repetition 10-fold stratified cross-validation was separately performed, and the predicted mortality
probabilities of the DNN model, p(DNN), and the RF model, p(RF), were calculated. The final predicted mortality probability of the ensemble model,
p(EDR), was obtained by soft voting based on the p(DNN) and the p(RF). ADR: available data rate; ANOVA: analysis of variance; EDRnet: ensemble
learning model based on DNN and RF models.

For the 5-layer DNN, a 10-time-repetition 10-fold stratified
cross-validation was performed to confirm the model’s
generalization ability. The training data (N=361) were randomly
shuffled and partitioned into 10 equal subgroups in a stratified
manner. Of the 10 subgroups, a single subgroup was retained
as the validation data set for testing the model, and the remaining
nine subgroups were used as the training data set. The process
was then repeated 10 times, with each of the 10 subgroups used
exactly once as the validation data set. By repeating this
stratified 10-fold cross-validation process 10 times, a total of
100 models from the 5-layer DNN were derived. Then, we
ensembled the models with the weighted average as

where pm(DNN) is the predicted mortality probability value

from the mth model of the DNN, p(DNN) is the ensemble result
corresponding to the predicted mortality prediction probability,

and m(DNN) is the normalized weight value for the mth model.

We obtained the normalized weight value m(DNN) as

where the weight wm(DNN) was obtained using the validation

loss from the mth model, lm(DNN), as
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Along with the 5-layer DNN, we separately trained an RF
model. For the RF model, 100 decision trees were trained with
a maximum depth of 4 and maximum feature number of 5.
Similar to the 5-layer DNN, we performed a 10-time-repetition
10-fold stratified cross-validation and ensembled the 100 models
with the weighted average as

where pm(RF) is the predicted mortality probability value from

the mth model of the RF, p(RF) is the ensemble result
corresponding to the predicted mortality prediction probability,

and m(RF) is the normalized weight value for the mth model.

We obtained the normalized weight value m as

where the weight wm(RF) was obtained using the validation loss

from the mth model, lm(RF), as

Given the two ensemble results p(DNN) and p(RF), we finally
obtained the final predicted mortality probability value using
soft voting. Based on the average of the two probability values
p(DNN) and p(RF), if the value is greater than or equal to 0.5,
then the prediction result represents death; otherwise, it
represents survival.

Implementation
We implemented and trained EDRnet using TensorFlow, version
1.13.1 for graphics processing unit (GPU), and Keras, version
2.2.4 for GPU. NumPy, version 1.16.4; Pandas, version: 0.25.3;
Matplotlib, version 3.1.2; and scikit-learn, version 0.22.1, were
used to build the model and analyze the results. We trained the
models with the Adam optimizer and a binary cross-entropy
cost function in equation 9 with a learning rate of 0.0001 and
a batch size of 64 on the NVIDIA GeForce GTX 1080 Ti GPU
as

where yi is the label (ie, 1 for deceased and 0 for survived) and
p(yi) is the predicted probability of each patient being deceased
for the batch size N number of patients.

Performance Evaluation of AI Models
To evaluate the performance of the AI models in predicting
mortality, we used the sensitivity, specificity, accuracy, and
balanced accuracy metrics, defined as

where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative, respectively.

In the training data set, the prediction performance of the AI
models was evaluated based on a 10-time-repetition 10-fold
stratified cross-validation. In the testing data set, the prediction
performance of the AI models was independently evaluated.

To compare the performance of our proposed EDRnet model
with those of other external AI models, we separately trained
the models of XGBoost and AdaBoost (AB), each of which was
evaluated as a single model and as an ensemble model combined
with DNN, resulting in four models: XGBoost, AB, ensemble
with DNN and XGBoost (EDX), and ensemble with DNN and
AB (EDA). For the training of these models, we searched the
optimal hyperparameters providing the highest validation
accuracy value, as presented in Multimedia Appendix 3, Table
S2. In addition, we adopted a recently published AI model by
Li et al [6] using a decision tree via an XGBoost-based feature
selection for performance comparison. All five external AI
models were evaluated using our testing data set of 106 patients.

Results

The cross-validation of RF, DNN, and our ensemble model
EDRnet showed that the accuracy on the validation data set is
89% for RF, 92% for DNN, and 93% for EDRnet. Thus, EDRnet
provides the highest sensitivity, specificity, accuracy, and
balanced accuracy values (see Table 4).

Table 4. Cross-validation accuracy comparison.

Cross-validation results (N=361), mean (SD)Model

Balanced accuracyAccuracySpecificitySensitivity

0.89 (0.04)0.89 (0.04)0.89 (0.07)0.89 (0.06)Random forest

0.92 (0.06)0.92 (0.04)0.93 (0.04)0.91 (0.06)Deep neural network

0.93 (0.05)0.93 (0.03)0.93 (0.03)0.92 (0.05)EDRneta

aEDRnet: ensemble learning model based on deep neural network and random forest models.
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Moreover, we applied EDRnet to 106 Korean patients as an
independent testing data set to check the TP, TN, FP, FN,
sensitivity, specificity, accuracy, and balanced accuracy. The
results show a sensitivity of 100%, specificity of 91%, accuracy
of 92%, and balanced accuracy of 96%, indicating that the model

trained and validated on Chinese patient data can be applied to
Korean patients for mortality prediction (see Table 5). The
computational times of DNN and RF in EDRnet for the training
were 796 and 126 seconds, respectively. The overall
computational time for the testing of EDRnet was 72 seconds.

Table 5. Test results from our proposed EDRnet (ensemble learning model based on deep neural network and random forest models) model.

Balanced
accuracy

AccuracySpecificitySensitivityTrue positive,
%

False negative,
%

False positive,
%

True negative,
%

Testing dataModel

0.930.930.93N/Ab00679CNUHaEDRnet

0.890.820.781.002027WKUHcEDRnet

0.900.900.90N/A0019SMCdEDRnet

0.960.920.911.0020995TotalEDRnet

aCNUH: Chonnam National University Hospital.
bN/A: not applicable.
cWKUH: Wonkwang University Hospital.
dSMC: Samsung Medical Center.

Next, we summarized the performance comparison results
between XGBoost, AB, RF, DNN, EDX, EDA, Li et al’s model
[6], and EDRnet. Considering all variables, EDRnet provided
the highest prediction performance. Indeed, the balanced
accuracy was 88% with XGBoost, 89% with AB, 92% with RF,

71% with DNN, 88% with EDX, 71% with EDA, 67% with Li
et al’s model [6], and 96% with EDRnet. Notably, the accuracy
of Li et al’s model was only 36%, indicating that a few blood
markers may not be sufficient to predict patient mortality (see
Table 6).

Table 6. Comparison of the performance of various methods.

Balanced
accuracy

AccuracySpecificitySensitivityTrue positive,
%

False negative,
%

False positive,
%

True negative,
%

Model

0.880.770.771.00202480XGBoost

0.890.780.781.00202381AdaBoost

0.920.840.841.00201787Random forest

0.710.900.910.50119955-layer deep neural net-
work (DNN)

0.880.770.771.00202480DNN + XGBoost

0.710.910.920.5011896DNN + AdaBoost

0.670.360.351.00206836Li et al’s model [6]

0.960.920.911.0020995DNN + random forest

(EDRneta)

aEDRnet: ensemble learning model based on DNN and random forest models.

Our proposed EDRnet model used 28 blood biomarkers for
prediction, but it does not require all 28 blood biomarkers. In
our testing data sets, EDRnet training was validated using
available biomarkers, ranging from 14 to 24, for each patient
(see Figure 2). The results reveal that the majority of the patients
had 19 to 21 available biomarkers (ie, 19 in 15 patients, 20 in

41 patients, and 21 in 22 patients) with a similarly high
prediction accuracy (ie, 93%, 95%, and 86%, respectively). For
the patients with 17 and 18 available biomarkers, the accuracy
was 75% and 50%, respectively. By contrast, the patients with
14 to 16 biomarkers showed a high accuracy ranging from 83%
to 100%.
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Figure 2. Accuracy with the number of available blood biomarkers from the 106-patient testing data set.

To further investigate the effect of the number of available
biomarkers, we estimated the accuracy values according to the
number of available biomarkers (see Figure 3). For the
estimation, we randomly selected 1 to 20 biomarkers from all
of the testing data points and tested the model with a 100-time
repetition. When randomly selecting biomarkers, only samples

where the actual available number of biomarkers was equal to
or greater than the number of randomly selected biomarkers
were simulated. The results show that accuracy increases with
the number of available biomarkers until reaching 19
biomarkers.

Figure 3. Estimated accuracy values according to the number of available biomarkers. Red circles represent the median. The bars at the top and bottom
represent the 75th and 25th percentiles, respectively. The blue rectangles at the top and bottom represent the 90th and 10th percentiles, respectively.
The blue diamonds at the top and bottom represent the 95th and 5th percentiles, respectively.
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Furthermore, our developed AI model, EDRnet, was
successfully deployed on a public website [25] so that anyone
can predict mortality using individual blood test results. The
web application provides predicted mortality probability, as
shown in Figure 4. A user inputs his or her blood sample results
(see Figure 4a), and then the predicted mortality results are

presented (see Figure 4b). Currently, the web application does
not store any information entered by users. However, we
consider and plan to store information entered by users on
agreement to improve the AI model via a real-time learning
process.

Figure 4. Deployed web application, BeatCOVID19 [25]: (a) input windows where a user inputs his or her blood sample results and (b) the predicted
mortality results after entering the blood sample results.

Regarding clinical characteristics (see Table 7), there were no
significant differences in comorbidity. In terms of initial
symptoms, the deceased group had more frequent dyspnea
symptoms than the survivor group (66.7% vs 16.8%; P=.04).
All patients from the deceased group required oxygen supply.
The deceased group had more frequent altered mentality than
the survivor group (50.0% vs 1.0%; P=.02). There was no

significant difference in terms of antiviral drugs (ie, lopinavir
or ritonavir, chloroquine or hydroxychloroquine, ribavirin,
remdesivir, and oseltamivir) or anti-inflammatory drugs (ie,
interferon, dexamethasone, and methylprednisolone) between
the deceased and survivor groups. However, the deceased group
received more antibiotics or combination therapy.
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Table 7. Clinical characteristics of the patient groups from the testing data set.

P valueTotal (N=106)Survivor group (n=104)Deceased group (n=2)Characteristics

Comorbidity, n (%)

>.9910 (9.4)10 (9.6)0 (0)Diabetes mellitus

>.998 (7.5)8 (7.7)0 (0)Asthma

>.990 (0)0 (0)0 (0)Chronic obstructive pulmonary disease

>.993 (2.8)3 (2.9)0 (0)Coronary heart disease

>.991 (0.9)1 (1.0)0 (0)Cardiovascular disease

>.991 (0.9)1 (1.0)0 (0)Chronic kidney disease

>.990 (0)0 (0)0 (0)Chronic liver disease

.114 (3.8)3 (2.9)1 (50)Congestive heart failure

>.993 (2.8)3 (2.9)0 (0)Cancer

Initial symptom, n (%)

.6161 (57.5)59 (56.7)2 (100)Fever

>.9947 (44.3)46 (44.2)1 (50)Cough

.0420 (18.2)18 (16.8)2 (100)Dyspnea

>.9911 (10.0)11 (10.3)0 (0)Diarrhea

>.9926 (23.6)26 (24.3)0 (0)Myalgia

Initial vital sign, mean (SD)

.97128.0 (18.4)128.0 (18.5)127.5 (17.7)Systolic blood pressure (mm Hg)

.6478.7 (12.8)78.8 (12.8)74.5 (10.6)Diastolic blood pressure (mm Hg)

.3484.4 (17.8)84.2 (17.7)96.5 (24.7)Heart rate (per minute)

.4320.4 (4.3)20.2 (4.1)29.5 (10.6)Respiration rate (per minute)

.022 (1.9)1 (1.0)1 (50)Altered mentality, n (%)

Oxygen requirement, n (%)

.0783 (78.3)83 (79.8)0 (0)No oxygen supply

.6916 (15.1)15 (14.4)1 (50)Conventional oxygen

>.993 (2.8)3 (2.9)0 (0)High-flow nasal cannula

>.990 (0)0 (0)0 (0)Noninvasive ventilation

.114 (3.8)3 (2.9)1 (50)Mechanical ventilation

>.991 (0.9)1 (1.0)0 (0)Extracorporeal membrane oxygenation

Pharmacologic agent, n (%)

.1632 (30.2)30 (28.8)2 (100)Lopinavir or ritonavir

>.997 (6.6)7 (6.7)0 (0)Chloroquine or hydroxychloroquine

>.990 (0)0 (0)0 (0)Ribavirin

.990 (0)0 (0)0 (0)Remdesivir

.992 (1.9)2 (1.9)0 (0)Oseltamivir

>.990 (0)0 (0)0 (0)Interferon

>.991 (0.9)1 (1.0)0 (0)Dexamethasone

>.994 (3.8)4 (3.8)0 (0)Methylprednisolone

.00110 (9.4)8 (7.7)2 (100)Antibiotics

.0217 (16.0)15 (14.4)2 (100)Combination
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Discussion

Principal Findings
Our new AI model, EDRnet, was able to predict the mortality
of COVID-19 patients using 28 blood biomarkers obtained
within 24 hours after hospital admission. In the independent
testing data sets, EDRnet showed excellent prediction
performance with high sensitivity (100%), specificity (91%),
and accuracy (92%). We were able to improve the prediction
performance by adopting the ensemble approach combining
DNN and RF models. Of note, EDRnet was developed by
training with Chinese patients’ data and testing with Korean
patients’ data.

EDRnet has several advantages. First, EDRnet can predict which
patients are at a high risk of mortality in the early stage of
hospital admission (ie, within 24 hours after admission). This
is a substantial improvement compared to the prior AI prediction
model reported by Yan et al, which predicted mortality 10 days
before the occurrence of survival or death [6]. The mortality
prediction at the time of admission can be substantially
informative for clinicians because the critical time regarding
disease progression is 10 to 14 days from the onset of symptoms,
according to previous studies [13,16,26]. EDRnet can provide
treatment priority guidance regarding who should be treated
intensively. Second, EDRnet only uses blood biomarkers to
predict mortality. In general, COVID-19 patients get blood
laboratory tests at the time of hospital admission [9,27]. Blood
biomarkers are objective indices that are used to estimate
patients’ conditions in a quantitative manner, which may be
beneficial to assure the reliability of the AI model. We did not
include subjective biomarkers, such as symptoms, nor
predisposing factors, such as underlying comorbidities, because
these indices are difficult for quantification and may show high
variability between patients. Third, the clinical meaning and
significance of blood biomarkers used in our EDRnet model
have been well investigated through many prior clinical studies.
Thus, the AI’s predicted mortality results are explainable and
easily understood by doctors. Furthermore, several major blood
biomarkers are used in our EDRnet model.

The hematological changes in lymphocytes, neutrophils,
monocytes, eosinophils, and platelets are common, as these
changes are related to viral replication and hyperinflammation
in COVID-19 infection [12,13]. In severe cases, the infiltration
and sequestration of CD4+/CD8+ T cells occurred, leading to
a decrease in the peripheral lymphocytes. Neutrophil counts
[19-21] were significantly higher in the severe group than in
the mild group. Platelet count, platelet volume, and platelet
large-cell ratio are related to COVID-19 infection because
immunologic destruction can lead to inappropriate platelet
activation and consumption as well as impaired
megakaryopoiesis [28-30].

Regarding blood chemistry, hs-CRP is a major biomarker that
represents acute phase inflammation [2,10,14-17]. LDH is
related to cell damage, so elevated LDH is an independent risk
factor for the severity and mortality of COVID-19 [2,8-11].

Hypoalbuminemia [18,20,21], hypocalcemia [31-33], and
elevated aspartate aminotransferase [18] are highly associated
with severe COVID-19 infection requiring hospitalization in
the intensive care unit. Urea and estimated glomerular filtration
rate are important lab findings associated with an underlying
chronic renal disease, which is a well-known predisposing factor
of mortality [34]. In terms of the coagulation profile, COVID-19
generally presents a hypercoagulation state, thus resulting in an
elevated prothrombin time and international normalized ratio
in severe COVID-19 cases [3,18].

In this study, no significant differences were observed in the
use of pharmacologic agents between the deceased and survivor
groups except antibiotics and in the use of antiviral drugs, such
as remdesivir. Antibiotics or combination therapy is usually
used for suspected bacterial superinfection that represents severe
diseases. To date, there has been no successfully effective
pharmacologic agent to treat COVID-19. The pharmacologic
treatment is not significantly related to survival in this study.

EDRnet does not require all 28 blood biomarkers for the
prediction of mortality. EDRnet worked well as long as there
were at least 19 blood biomarkers at the time of admission.
Compared to prior AI prediction models for COVID-19
mortality, which used three biomarkers, there might be concern
that EDRnet requires too many biomarkers. However, these
blood tests are commonly performed in our daily clinical
practice for hospitalized patients with COVID-19. If more data
are accumulated, then we can reduce the number of blood
biomarkers for mortality prediction.

Limitations and Future Work
Our study has several limitations. First, the number of patients
available for testing might be small. According to Johns Hopkins
Coronavirus Resource Center, the mortality rate in South Korea
is 1.7%. In the testing data set of 106 Korean patients, the
mortality rate was 1.9%, which is almost equivalent to the actual
mortality rate. It might be necessary to update EDRnet by
training with a large population data set from all over the world.
To update EDRnet, we made a web application [25] so that
anyone can access the model. We believe that opening the AI
model to the public is helpful to improve its performance and
generalizability. Second, our data did not include other races,
such as Caucasian or Middle East Asian. Our future research
plan is to establish a real-time AI training system that can
continue to train our model using prospectively collected data
from all over the world. In addition, we will upgrade the web
application so that the database framework allows a user to
input his or her blood sample results along with the outcome.
Based on the extended data, we will improve EDRnet for better
generalization.

Conclusions
In conclusion, our new AI model, EDRnet, was developed to
predict the mortality of COVID-19 patients at the time of
hospital admission using blood biomarkers only. It is now open
to the public with the hope that it can help health care providers
fight COVID-19 and improve patients’ outcomes.
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