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Abstract

Background: Data sharing in multicenter medical research can improve the generalizability of research, accelerate progress,
enhance collaborations among institutions, and lead to new discoveries from data pooled from multiple sources. Despite these
benefits, many medical institutions are unwilling to share their data, as sharing may cause sensitive information to be leaked to
researchers, other institutions, and unauthorized users. Great progress has been made in the development of secure machine
learning frameworks based on homomorphic encryption in recent years; however, nearly all such frameworks use a single secret
key and lack a description of how to securely evaluate the trained model, which makes them impractical for multicenter medical
applications.

Objective: The aim of this study is to provide a privacy-preserving machine learning protocol for multiple data providers and
researchers (eg, logistic regression). This protocol allows researchers to train models and then evaluate them on medical data
from multiple sources while providing privacy protection for both the sensitive data and the learned model.

Methods: We adapted a novel threshold homomorphic encryption scheme to guarantee privacy requirements. We devised new
relinearization key generation techniques for greater scalability and multiplicative depth and new model training strategies for
simultaneously training multiple models through x-fold cross-validation.

Results: Using a client-server architecture, we evaluated the performance of our protocol. The experimental results demonstrated
that, with 10-fold cross-validation, our privacy-preserving logistic regression model training and evaluation over 10 attributes in
a data set of 49,152 samples took approximately 7 minutes and 20 minutes, respectively.

Conclusions: We present the first privacy-preserving multiparty logistic regression model training and evaluation protocol
based on threshold homomorphic encryption. Our protocol is practical for real-world use and may promote multicenter medical
research to some extent.

(J Med Internet Res 2020;22(12):e22555) doi: 10.2196/22555
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Introduction

Background
In recent years, researchers have proposed strong requirements
for the quality of medical research as it continues to progress,
which has promoted the development of multicenter research.
Compared with single-center research, multicenter research has
many significant advantages, including enabling specific
analyses for which no single institution has sufficient data, such
as on a rare disease; providing medical data from different
locations with diverse demographics, which increases the
reproducibility and generalizability of the research; and
generating pooled medical data that enables new discoveries
that cannot be elucidated from any individual data set [1,2]. In
addition, the development of multicenter medical research has
accelerated the translation of research outcomes into clinical
practice and strengthened collaborations among institutions
[2,3].

However, data sharing during multicenter research may increase
privacy security risks. As medical data are highly sensitive, the
leakage of sensitive information will lead to severe
consequences, such as financial loss, social discrimination, and
unauthorized data abuse, which can harm both patients and
medical institutions [4]. As a result, many medical institutions
are unwilling to share their data despite the aforementioned
benefits, which hinders the collaborative benefits of multicenter
research. To solve this problem, a framework is urgently needed
to support multicenter medical research efficiently while
preventing the leakage of sensitive information.

Prior Work
Logistic regression is a widely used machine learning approach
in various medical applications, such as prognostic prediction,
disease diagnosis, and decision-making support [5]. For
example, Abdolmaleki et al [6] used logistic regression to
predict the outcome of biopsy in breast cancer and obtained
90% accuracy. Many solutions have been developed to address
privacy-preserving logistic regression. Some use intermediary
statistics to train a model without accessing the raw data;
however, these methods remain vulnerable to statistical attack
when a particular criterion holds true for only one sample [7-9].
Other researchers use homomorphic encryption to protect
privacy during model training, which is similar to that used in
this study [10-19]. Homomorphic encryption technology
provides rigorous protection for sensitive information and
enables the computation of information in an encrypted format
and is, therefore, a potential candidate for secure logistic
regression model training. However, unlike our solution, these
homomorphic encryption–based solutions yield only sets of
parameters, and there are no methods to evaluate the trained
model in a secure manner. Furthermore, these methods use a
single public and secret key, meaning that all the research data
may be exposed to anyone who holds the secret key, limiting
the application of these solutions in real-life scenarios. In the
current literature, the works most similar to ours are those of
Emam et al [18] and Jiang et al [19], which attempt to avoid
information leak using methods that differ from ours. Emam et
al [18] kept the data local to the corresponding data providers

and used the Paillier scheme to deal with intermediate values.
However, because the public and secret keys are stored at the
central unit, when multiple parties collude with the central unit,
some meaningful information about the other parties’ sensitive
data may be revealed to them [18]. Jiang et al [19] proposed a
hybrid cryptographic method that uses a software guard
extensions (SGX) enclave to securely generate and store the
secret key in a trusted cloud. As the cloud server is shared
among different users, it is more likely to be attacked.
Considering the rapid development of attack methods toward
SGX, including a recently proposed method capable of stealing
the enclave secret to subvert the confidentiality of SGX,
placement of the secret key in the cloud is not secure [20]. Once
the attackers break through the SGX’s guard, they will be able
to obtain the secret key and decrypt all the sensitive information
stored on the cloud, leading to a severe outcome.

Multikey homomorphic encryption, first proposed by López-Alt
et al [21], allows computations on ciphertexts under different
secret keys, which makes the method suitable for secure
multicenter research. However, the scheme proposed in the
study by Lopez et al [21] is based on the Nth degree truncated
polynomial ring units cryptosystem, where if we obtain a result
computed from ciphertexts under different keys, we will need
to decrypt the result by the product of all involved secret keys,
allowing for only a very limited number of parties before the
decryption error grows too large to obtain the correct plaintext
result. Another multikey homomorphic encryption method,
called threshold homomorphic encryption, allows many more
parties to participate without resulting in an excessively large
decryption error; however, the noise generated in the
relinearization is still very large and grows quadratically with
the number of parties, which would have a negative effect on
the multiplicative depth [22].

Objectives
In this study, we propose a privacy-preserving multicenter
research protocol using secure logistic regression, consisting
of 3 primary entities: researchers, a service provider, and data
providers, in which medical data are horizontally distributed.
Our proposed protocol supports not only model training but
also the evaluation of the trained model in a secure manner. The
protocol guarantees the privacy of both the sensitive data for
the data providers and the trained model for the researchers
during model training and trained model evaluation. To satisfy
privacy requirements, we apply threshold homomorphic
encryption and propose a new relinearization key generation
process that increases scalability and multiplicative depth. The
proposed protocol has been implemented and tested with
simulated real-life scenarios. The experimental results
demonstrate that our protocol is efficient and practical for
real-world applications.

Methods

Overview of the Presented Protocol
Our proposed protocol includes 3 primary entities as shown
below. The architecture of the proposed protocol is shown in
Figure 1.
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Figure 1. The architecture of the proposed protocol, containing 3 entities: data providers, a service provider, and researchers.

Data Providers
These include institutions (eg, hospitals) who hold medical data
and are willing to provide these data to the service provider for
public use so long as the privacy of the data is preserved. To
share medical data, the data providers must obtain patient
consent if the local law requires so. Upon receiving the
researchers’ requests from the service provider, the data
providers can decide whether to accept or refuse. To allow
researchers to obtain correct research data, all data providers
must implement data standardization to transform the data into
a common format, such as the Observational Medical Outcomes
Partnership common data model from the Observational Health
Data Sciences and Informatics collaborative [23].

Service Provider
This refers to an entity that (1) provides storage for encrypted
data and research information, (2) performs the most
computationally expensive part of the privacy-preserving logistic
regression, and (3) performs information transfer among the
data providers, the service provider, and the researchers. In
addition, an interactive website is deployed by the service
provider for researchers to conduct their studies in a secure
manner and for data providers to authorize certain research
requests.

Researchers
This includes the individuals or organizations who want to
conduct research on multiple data providers’ data sets.
Researchers submit their requests to the service provider, which
are then sent to the data providers for further processing.

As we use threshold homomorphic encryption to guarantee data
and model security, in our proposed protocol, one public key
corresponds to multiple secret keys, and different secret keys
are distributed to different data providers and researchers.
Furthermore, we assume that there exist at least one honest party
and some semihonest adversaries that are capable of reading

the internal information of the colluding parties while not
deviating from the defined protocol [24].

Logistic Regression
Logistic regression is a classification algorithm that is widely
used in medicine, including for disease diagnosis, clinical
decision support, and risk assessment. Suppose a data set
consists of pairs (xi, yi), for i=1,...,N, where xi denotes a vector

of input features xi=(xi
1,...,xi

d) and yi is the class label. We then
have:

In the sigmoid function σ(xi
Tβ), β=(β0,β1,...,βd) are the model

parameters. By training a logistic regression model through
minimization of the following cost function, we can obtain the
optimal model parameters:

Homomorphic Encryption
Homomorphic encryption is a special type of encryption scheme
that allows computations on ciphertexts without the need to
access a secret key. Once the result of the computation is
decrypted, it matches the result of the operations as if they were
performed on the plaintext.

In our proposed protocol, we use a ring learning with errors
(RLWE)–based, somewhat homomorphic encryption scheme,
called Brakerski/Fan-Vercauteren (BFV) and which supports a
limited number of additions and multiplications, to perform
secure multiparty logistic regression [25,26]. The BFV scheme
has some helpful properties for our protocol. First, it is more
practical than the other 2 types of homomorphic encryption
schemes, namely, partial and fully homomorphic encryption.
More specifically, fully homomorphic encryption requires
time-consuming bootstrapping to support an unlimited number
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of operations, whereas partial homomorphic encryption allows
only addition or multiplication between ciphertexts. For
example, the Paillier scheme only supports addition between
ciphertexts, meaning that a ciphertext can only be multiplied
by a plaintext, which results in massive transfer consumption
if a large number of multiplications and the security of the
plaintext are required [27]. Furthermore, some optimization
techniques can be used to greatly improve the computation
performance in the BFV scheme as long as we set the encryption
parameters properly, such as number theoretic transform (NTT)
and Chinese remainder theorem (CRT) batching [28]. Finally,
the BFV scheme can be extended to threshold homomorphic
encryption for secure multiparty computations.

The details of the threshold variant of the BFV scheme are
described as follows. The security and noise analysis of the
scheme are provided in Multimedia Appendix 1 [25,29]:

1. setup(1λ): takes the security parameter λ as an input and
returns the public parameterization param, including the
degree of polynomial modulus n, the coefficient modulus
q, the plaintext modulus t, and the (key, error) distribution
(D1, D2).

2. THE.keygenSP(param): the service provider samples a ←
Rq and outputs it. Here, Rq=Zq[x]/(xn+1) is the ciphertext
space of param.

3. THE.keygenSkpk(param, a): each party pi samples si ←
D1, ei ← D2, sets si as its secret key and outputs its public
key pki=[−(a · si+ei)]q. Let subscript *co denote the combined
key. The combined public key pkco among parties p1,...,pz

is then computed as follows: 
4. THE.keygenRelin(param, s1,...,sz): the parties together with

the service provider generate the combined relinearization

key rlkco. As the generation of the relinearization key is
rather complicated, we will show the details of this step
later.

5. THE.encrypt(m, pkco): This takes a polynomial m∈Rt as
the input, where Rt is the plaintext space of the param. Let
pkco=(pkco(0), pkco(1)) and Δ= q/t , and sample u ← D1 and
(e1, e2) ← D2, then return:

6. THE.eval(C, rlkco, c1,...,cc): given a circuit C, a tuple of
ciphertexts encrypted by the same public key, and the
corresponding relinearization key, this outputs a ciphertext
cout. The procedure for homomorphic addition and
multiplication is the same as that in the original single-key
BFV scheme.

7. THE.decrypt(c, s1,...,sz): given the ciphertext c=(c(0), c(1))
encrypted by pkco and the corresponding secret keys, sample
(e1, ez) ← Dsmg. Here, the subscript *smg means that the
variance of the noise distribution is much larger than that
of the input ciphertext noise distribution to guarantee circuit
privacy through smudging techniques [22]. The partial
decryption shares are then computed as follows:

These shares are sent to the party that requires the
unencrypted result. The decryption result m is obtained by

Workflow of the Presented Protocol
The workflow of our proposed protocol consists of 5 major
steps, as shown in Figure 2.
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Figure 2. Workflow of the proposed protocol.

Initialization of Encryption Parameters
The service provider initializes the BFV homomorphic
encryption parameters. These parameters should be carefully
selected because they affect many aspects of the encryption
scheme, such as operational performance, security level,
multiplicative depth of the circuit, and space consumption. Two
sets of parameters must be initialized by the service provider,
one for the privacy-preserving logistic regression—param1=(n1,
q1, t1, D11, D12) and the other for the generation of the
relinearization key in a secure manner—param2=(n2, q2, t2,
D21, D22). Once initialized, the 2 sets of parameters are sent to
the data providers and researchers.

To make the encryption scheme practical, these parameters
should meet the following criteria. First, the degree of
polynomial modulus n must be a power of 2. Second, the
coefficient modulus and the plaintext modulus must be either
a prime P that satisfies P=1 (mod 2n) or a composite number
that is a product of distinct primes, where every prime satisfies
the above condition. After setting appropriate encryption
parameters, NTT can be used to accelerate the multiplications

between polynomials from o(n2) to o(nlogn), whereas the
adoption of CRT can improve the performance of the
multiplications and additions of large integers, accelerating the
multiplication and addition of the polynomials [30]. More
importantly, we can apply CRT batching to greatly reduce space
and computational consumption. Given a certain degree of
polynomial modulus n, we can pack up to n values into one
polynomial using CRT batching and apply the arithmetic

operations to all the values within this polynomial in a single
instruction, multiple data (SIMD) manner, whereas in a naive
manner, we place a single value into one polynomial and apply
operations to only one value.

Furthermore, to generate relinearization keys safely and
correctly, the 2 sets of parameters must satisfy the following
requirements: (1) their polynomial moduli must share the same
degree and (2) the plaintext modulus in param2 must be equal
to the coefficient modulus in param1.

Research Application
The research application consists of several message transfers
among the data providers, service providers, and researchers.
First, a researcher visits the website deployed by the service
provider and sets up a new research study. When the research
begins, 3 settings must be confirmed by the researcher: first,
the query condition used to obtain the research data; second,
the list of data providers from which the researcher wishes to
obtain the research data; finally, the settings of the secure
logistic regression, including the variables to be used as features
and the variable to be used as a class label and the settings of
the maximum number of iterations, learning rate, and
termination condition of the model training. This information
is stored in the database of the service provider and sent to the
corresponding data providers as a research request. After
receiving the request, the data providers decide whether to
authorize this research and send their decision to the service
provider to inform the corresponding researcher about the
authorization status.
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Key Generation and Data Preparation
Once the data providers complete the research authorization,
key generation is implemented by an interactive protocol among
all parties, which comprises 2 steps—THE.keygenSP and
THE.keygenSkpk. After this procedure, each party pi holds its
secret keys s1i and s2i, whereas 2 corresponding public keys
pk1co and pk2co are broadcasted among all parties. Here, the
number in the symbol represents the set of parameters to which
these keys belong.

The data preparation phase then begins, which is described as
follows:

1. The data provider generates their own research data
according to the query condition of the research. Next, all
the floating-point numbers in the research data are scaled
and rounded into integers because all the operations in the
BFV scheme are integer based. Categorical features are
encoded as integers if they are Boolean or ordered;
otherwise, one-hot encoding is implemented.

2. The data provider encodes the research data by CRT
batching. As mentioned before, we can pack multiple values
into one polynomial and apply operations to them in an
SIMD manner via CRT batching. This means that when
given a data set with d features and N samples, one can
pack them into d+1 polynomials (d features and 1 class
label) as long as the degrees of the polynomial moduli are
larger than N.

3. The data provider encrypts all the CRT-batched polynomials
using the combined public key pk1co. After all the plaintext
polynomials are encrypted, they are sent to the service
provider.

Relinearization Key Generation
After data preparation, the researcher, and all involved data
providers together with the service provider generate the
combined relinearization key. The relinearization step is not
necessary for the correctness of homomorphic multiplication
but is essential in our threshold-variant BFV scheme. By
performing relinearization after every homomorphic
multiplication, the size of the ciphertext can be strictly kept at
2, which simplifies decryption.

The relinearization key generation procedure is illustrated next.
We denote the number of parties by z. Suppose the coefficient
modulus in param1 is a product of k distinct primes, whereas
each party pi holds 2 secret keys s1i and s2i from param1 and
param2, respectively. Given a combined public key pk2co from
param2, the following is observed:

1. Each party pi performs THE.encrypt(s1i, pk2co) and outputs
k ciphertexts, of which the plaintext modulus is a group of
primes whose product is the coefficient modulus in param1.
The ciphertexts of secret key cj(s1i) (j=1,...,k) are then sent
to the service provider.

2. The service provider computes the ciphertexts of the
combined secret key cj(s1co) (j=1,...,k) and sends them to
the data provider and researcher:

3. Each party pi computes the ciphertexts of the product of
the combined secret key and its secret key from param1 as
follows and sends the result to the service provider:

Here, cj(0) (j=1,...,k) are the ciphertexts of 0, which contain
sufficiently large noise to guarantee function privacy [31].

4. The service provider computes the ciphertexts of the square
of the combined secret key cj(s1co2) (j=1,...,k) as follows:

Having encrypted the combined secret key and its square,
the service provider defines the decomposition bit count T
and the size of the relinearization key L= log2(q1)/T ,
samples a0 ~ aL ← Rq1, whereas each party pi samples ei0

~ eiL ← D12, performs THE.encrypt(ei0 ~ eiL, pk2co) and
sends these ciphertexts cj(ei0 ~ eiL) (j=1,...,k) to the service
provider. After receiving encrypted noise, the service
provider computes the following:

The encrypted combined relinearization key is then
generated as follows: all parties perform
THE.decrypt(cj(rlkco), s21,...,s2z) and finally return the
plaintext combined relinearization key rlkco. Compared
with the combined relinearization key generation procedure
presented in the study by Mouchet et al [22], our method
involves more transfer consumption but much less noise,
which grows only linearly with the number of parties

Privacy-Preserving Model Training and Evaluation
Secure logistic regression model training begins once all the
encrypted research data and the combined relinearization key
are sent to the service provider. We choose the gradient descent
algorithm to train the model with homomorphically encrypted
data because we can implement the algorithm using only
addition and multiplication, which all fully and somewhat
homomorphic encryption schemes naturally have, whereas
despite its faster convergence, Newton method requires matrix
inversion, which may have a very high time cost under the
homomorphic encryption computation [32].

After choosing the proper training method, another major

problem is the evaluation of the sigmoid function σ(xTβ),
because the BFV scheme can only be used to evaluate
polynomial functions. Instead of simply using the Taylor
polynomial to approximate the sigmoid function, we use the
degree-3 least squares approximation of the sigmoid function
over the interval (−8, 8), as the former has a much larger error

as |xTβ| increases, whereas the latter only has a small error as

long as xTβ is within the interval [13]. The least squares
approximation polynomial is:
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As the BFV scheme is based on integers, we apply scaling factor

(SF) to scale up the floating-point number xTβ into the integer

 xTβ×SF . In our privacy-preserving logistic regression protocol,
we set SF=1000, which is a trade-off between approximation
accuracy and performance. Specifically, if we set SF smaller,
the approximation accuracy will decrease; if we set SF larger,
2 or more polynomials may be required to represent a set of
values, or larger encryption parameters may be required to
maintain the same multiplicative depth for a given security level,
both of which result in larger space and computational resource
consumption. This SF also scales up the approximation interval
from (−8, 8) to (−8000, 8000), scaling the degree-1 and degree-3

coefficients to 1/1000 and 1/10003, respectively, of the original
value. Finally, the least squares approximation function is
integerized to be compatible with the homomorphic encryption
computation:

The integerized function output is then transformed into an
original function:

We now describe the detailed process of secure logistic
regression. Before training begins, the involved data providers
divide their own research data into 10 folds from Fold1~Fold10
for 10-fold cross-validation and then encode the information
into a vector. For example, a data set x containing 20 samples
is divided as follows:

Fold1 ~ (x1, x6), Fold2 ~ (x2, x17), Fold3 ~ (x3, x13), Fold4 ~ (x4,
x10), Fold5 ~ (x5, x20), Fold6 ~ (x7, x16), Fold7 ~ (x8, x14), Fold8
~ (x9, x11), Fold9 ~ (x12, x18), Fold10 ~ (x15, x19)

Next, the information is encoded into a vector of values (1, 2,
3, 4, 5, 1, 6, 7, 8, 4, 8, 9, 3, 7, 10, 6, 2, 9, 10, 5). The vector can
be viewed as a special column of research data, although this
column is not used in the computation of the approximation
sigmoid function.

When all the data providers finish dividing their research data,
they send these vectors to the service provider. As these vectors
do not contain any sensitive information, they do not need to
be further encoded into CRT-batched polynomials and
encrypted.

After all preparations are completed, the model training begins,
as shown in Textboxes 1-3. In Textbox 1, we use minibatch
gradient descent instead of batch gradient descent because the
former converges faster, and we can make full use of CRT
batching by simultaneously training 10 models for 10-fold
cross-validation, which vastly reduces the time cost of model
training. Specifically, for each iteration, the researcher assigns
the sets of parameters to the research samples according to the
number of iterations and the fold to which these samples belong,
which means that in one iteration, a one-to-one correspondence
exists between the 10 sets of parameters and the 10 folds of
research data. Once the gradient ciphertexts are computed, all
data providers will mask them via randomly generated encrypted
noises (Textbox 3). The masked gradients are then decrypted,
and only the researcher can obtain the plaintext result. As the
researcher only knows the sum of noises for each fold, the
correct overall gradients are finally obtained to update the model
parameters of the researcher without revealing the gradient of
any single sample.
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Textbox 1. Privacy-preserving logistic regression model training.

Input: epoch (# of iterations), α (learning rate), ε (step tolerance), c(x)={c(x1),...,c(xd),c(y)} (encrypted research data), xd+1 (vector describing how
data providers divide their research data), b (# of samples in one fold), z (# of parties), s11 ~ s1z (secret keys), pk1co (combined public key), β(1) ~

β(10) (model parameters initialized by researcher where each β(i)=(β(i)0, β(i)1,...,β(i)d))

Output: βnew(1) ~ βnew(10) (trained model parameters)

Researcher does:

1: For iter=1 to epoch / 9

2: βold(1) ~ βold(10) ← β(1) ~ β(10)

3: For cv=1 to 9

4: B ← empty vector

5: For-each element i in xd+1

6: B.push_back(β((i+cv−1) mod 10+1))

7: End for-each

8: B’ ← CRT-batchingEncode(B) // B’={B’0,…,B’d}

9: c(B0) ~ c(Bd) ← THE.encrypt(B’, pk1co)

10: Wait for encrypted gradient calculation c(gra0) ~ c(grad) // See (Textbox 2) for details

11: Wait for securely decryption of encrypted gradients gra(1) ~ gra(10) // See (Textbox 3) for details

12: β(1) ~ β(10) −= (gra(1) ~ gra(10))×α ÷ b

13: End for

14: βnew(1) ~ βnew(10) ← β(1) ~ β(10)

15: If (||βnew−βold|| ÷ ||βnew||<ε) then

16: return βnew(1) ~ βnew(10)

17: End if

18:End for

Textbox 2. Encrypted gradient calculation.

Input: c(B0) ~ c(Bd), c(x) // See details in (Textbox 1)

Output: c(gra0) ~ c(grad) (encrypted gradients)

Service provider does:

1: c(xTβ) ← c(B0)+c(B1)×c(x1)+...+c(Bd)×c(xd)

2: c(G) ← G3(c(xTβ)) // G3 is an integerized sigmoid function

3: c(gra0) ~ c(grad) ← [c(G)−627743311836×c(y)]×[c(x0) ~ c(xd)] // Here, c(x0)=1
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Textbox 3. Secure decryption of encrypted gradients.

Input: xd+1, cv, c(gra0) ~ c(grad), s11 ~ s1z, pk1co // See details in (Textbox 1)

Output: gra(1) ~ gra(10) (unencrypted gradients)

All data providers do:

1: e0 ~ ed ← random noise vectors whose size equals xd+1

2: E(1) ~ E(10) ← zero vectors whose size equals d+1

3: For i=1 to size(xd+1)

4: For j=1 to d+1

5: E((xd+1(i)+cv−1) mod 10+1)(j)+= ej−1(i)

6: End for

7: End for // E(1) ~ E(10) are sent to the researcher

8: e’ ← CRT-batchingEncode(e0 ~ ed)

9: c(e0) ~ c(ed) ← THE.encrypt(e’, pk1co) // c(e0) ~ c(ed) are sent to the service provider

Service provider does:

10:c’(gra0) ~ c’(grad) ← c(gra0) ~ c(grad)+c(e0) ~ c(ed)

All parties do:

11:gra’0 ~ gra’d ← THE.decrypt(c’(gra0) ~ c’(grad), s11 ~ s1z) // To ensure only the researcher obtains the plaintext result, data providers’ and
researcher’s partial decryption shares are added at the service provider and the researcher, respectively.

Researcher does:

12:gra(1) ~ gra(10) ← zero vectors whose size equals d+1

13:gra’’0 ~ gra’’d ← CRT-batchingDecode(gra’0 ~ gra’d) // Decoding result is vectors whose size equals xd+1.

14:For i=1 to size(xd+1)

15: For j=1 to d+1

16: gra((xd+1(i)+cv−1) mod 10+1)(j)+= gra’’j−1(i)

17: End for

18:End for

19:gra(1) ~ gra(10) −= E(1) ~ E(10)

Once the model training is completed, all involved data
providers encode their own research data for each fold into
CRT-batched polynomials whose slots are randomly chosen to
contain samples. In the meantime, the data providers also
generate vectors containing information about whether a certain
slot contains a sample and encode them into CRT-batched
polynomials. For instance, for a CRT-batched polynomial
containing samples in slots (1, 6, 8), the vector should be (1, 0,
0, 0, 0, 1, 0, 1). These polynomials are then encrypted by pk1co

and sent to the service provider.

When all the aforementioned preparations are completed, the
model evaluation starts, as shown in Textboxes 4-6. In Textbox

5, lines 3-5, all data providers mask the encrypted predictive
values. Here, the noise generation should meet 2 criteria,
whereas the noise generation in Textbox 3 line 1 has no special
limitations as long as the error is random and sufficiently large
to mask the true values. First, in the empty slots, we sample
noise from a uniform distribution whose upper and lower bounds
are the minimum and maximum values of the integerized
approximation sigmoid function G3. Second, in the slots
containing samples, we sample noise from a uniform distribution
(−1569358279, 1569358279) whose corresponding values are
(−0.005, 0.005) in the scaled down plaintext. In Textbox 6, lines
1-3, all data providers perform another masking; this time, the
noise generation is exactly the same as in Textbox 3 line 1.
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Textbox 4. Model evaluation.

Input: c(1)(x, y) ~ c(10)(x, y) (10 encrypted folds of research data), c(1)(xd+1) ~ c(10)(xd+1) (encrypted vectors indicating whether a certain slot
contains a sample), β(1) ~ β(10) (trained sets of parameters), s11 ~ s1z (secret keys), pk1co (combined public key)

Output: TP, FP, TN, FN (number of true positives, false positives, true negatives, and false negatives, respectively, under different predictive value
thresholds)

Researcher does:

1: For FD=1 to 10

2: c(β0) ~ c(βd) ← THE.encrypt(β(FD), pk1co) // c(β0) ~ c(βd) are sent to the service provider

3: Wait for masked predictive values σ // See (Textbox 5) for details

4: For V=min(G3) : (max(G3)–min(G3))/100 : max(G3)

5: X ← empty vector

6: For-each predictive value σi in σ

7: X.push_back(if(σi≥V))

8: End for-each

9: X’ ← CRT-batchingEncode(X)

10: c(TP), c(FP), c(TN), c(FN) ← c(FD)(y)×X’×c(FD)(xd+1), (1−c(FD)(y))×X’×c(FD)(xd+1), (1−c(FD)(y))×(1−X’)×c(FD)(xd+1),

c(FD)(y)×(1−X’)×c(FD)(xd+1) // These 4 ciphertexts are sent to the service provider

11: Wait for masked model evaluation results TP’, FP’, TN’, FN’ // See (Textbox 6) for details

12: TP’’, FP’’, TN’’, FN’’ ← CRT-batchingDecode(TP’, FP’, TN’, FN’)

13: TP, FP, TN, FN ← TP’’−sum(eTP), FP’’−sum(eFP), TN’’−sum(eTN), FN’’−sum(eFN)

14: output TP, FP, TN, FN // under fold FD and predictive value threshold V

15: End for

16:End for

Textbox 5. Calculation of masked predictive values.

Input: c(1)(x) ~ c(10)(x), xd+1(1) ~ xd+1(10), c(β0) ~ c(βd), FD, pk1co, s11 ~ s1z // See details in (Textbox 4)

Output: σ (masked predictive values)

Service provider does:

1: c(xTβ) ← c(β0)+c(β1)×c(FD)(x1)+...+c(βd)×c(FD)(xd)

2: c(G) ← G3(c(xTβ)) // G3 is an integerized sigmoid function

All data providers do:

3: e ← random noise vectors whose size equals xd+1(FD)

4: e’ ← CRT-batchingEncode(e)

5: c(e’) ← THE.encrypt(e’, pk1co) // c(e’) are sent to the service provider

Service provider does:

6: c’(G) ← c(G)+c(e’)

All parties do:

7: σ ← CRT-batchingDecode(THE.decrypt(c’(G), s11 ~ s1z)) // The same as in (Textbox 3), only the researcher obtains the plaintext result
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Textbox 6. Calculation of masked model evaluation results.

Input: c(1)(xd+1) ~ c(10)(xd+1), FD, pk1co, c(TP), c(FP), c(TN), c(FN), s11 ~ s1z // See details in (Textbox 4)

Output: TP’, FP’, TN’, FN’ (masked model evaluation results)

All data providers do:

1: eTP, eFP, eTN, eFN ← random noise vectors whose size equals to c(FD)(xd+1) // The sums of noises sum(eTP), sum(eFP), sum(eTN), sum(eFN) are
sent to the researcher

2: e’TP, e’FP, e’TN, e’FN ← CRT-batchingEncode(eTP, eFP, eTN, eFN)

3: c(e’TP), c(e’FP), c(e’TN), c(e’FN) ← THE.encrypt((e’TP, e’FP, e’TN, e’FN), pk1co) // These encrypted noises are sent to the service provider

Service provider does:

4: c’(TP), c’(FP), c’(TN), c’(FN) ← c(TP)+c(eTP), c(FP)+c(eFP), c(TN)+c(eTN), c(FN)+c(eFN)

All parties do:

5: TP’, FP’, TN’, FN’ ← THE.decrypt((c’(TP), c’(FP), c’(TN), c’(FN)), s11 ~ s1z) // The same as in (Textbox 3), only the researcher obtains the
plaintext result

Once the model evaluation ends, the researcher obtains the
number of true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs) for the 10 folds and
different predictive value thresholds, which should be sufficient
to evaluate the trained model via 10-fold cross-validation.

Results

Overview
In this section, we consider the following aspects to assess the
performance of our proposed multicenter secure logistic
regression protocol: (1) Security analysis: security of sensitive
research data and learned model; (2) accuracy loss: the loss in
accuracy during the model training and evaluation with respect
to the nonsecure method with real medical data; (3) model
training and evaluation time: the time needed to perform 10-fold
cross-validation with real medical data; and (4) scalability: how
the model training and evaluation time increases as the size of
the data increases in the synthetic data set.

The biomedical data sets used for the experiments are shown
in Table 1 [33,34]. For the breast cancer data set, we eliminate
missing samples, use all the attributes except breast-quad, and
assume that the data set is provided by 1 data provider. For the
surveillance, epidemiology, and end results colorectal cancer
data set, we choose a portion of the samples and use 5-year
survival status as the label. Moreover, all the attributes, except
the registry, are used, and we assume that the data set is provided
by 3 different data providers. More details about these 2 data
sets are provided in Multimedia Appendix 1. We use 10-fold
cross-validation, which partitions the data sets into 10 folds of
approximately equal size by stratified sampling to ensure that
the positive/negative ratio of each fold is approximately equal.
Each time, 9 folds are used as the training set and the remaining
fold is used as the test set. In addition, we assume that during
model training, all data ciphertexts share the same data division
vector so that the gradient ciphertexts can be summed to reduce
the size of transferred data in Textbox 3 line 11.

Table 1. Description of the data sets.

UCIc breast cancer [32]SEERa CRCb data [31]Data sets

27749152Samples, n

910Attributes, n

18.060.0Size of ciphertexts, MB

aSEER: surveillance, epidemiology, and end results.
bCRC: colorectal cancer.
cUCI: unique client identifier.

To set the homomorphic encryption parameters, we select the
following parameters to guarantee sufficient security, as shown
in Table 2. Our values for the polynomial modulus, coefficient
modulus, and security level match the most recent homomorphic
encryption security standards proposed by the
Homomorphic-Encryption.org group [35]. The degree of

polynomial modulus n is a power of 2, whereas the coefficient
moduli in param1 and param2 are products of 8 and 5 distinct
primes, respectively, where every prime P is at most 60 bits
long and satisfies P=1 (mod 2n), which makes the NTT
accessible. The plaintext modulus in param1 also satisfies t1=1
(mod 2n), allowing for the implementation of CRT batching.
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Table 2. Select parameters for Brakerski/Fan-Vercauteren homomorphic encryption.

param2param1Parameters

16,38416,384Polynomial modulus

300-bit integer438-bit integerCoefficient modulus

Coefficient modulus of param11125899904679937Plaintext modulus

Uniform distribution {−1, 0, 1}Uniform distribution {−1, 0, 1}Key distribution

Discrete Gaussian distribution with σ=3.2Discrete Gaussian distribution, with σ=3.2Error distribution

192-bit128-bitSecurity level

To simulate a real-world scenario, we place the data providers,
the researcher, and the service provider on different machines.
For the data providers and the researcher, we use PCs with a
2.2-GHz Intel Core i7-8750H processor and 16.0 GB RAM
(Windows 10 Enterprise). For the service provider, we use a
server with a 2.3 GHz Intel Xeon Gold 6140 processor and
128.0 GB RAM (Linux 3.10.0). The secure logistic regression
protocol is implemented in C++ using Microsoft SEAL v3.0
and is publicly available at GitHub [36], where we made some
modifications to support the threshold-variant BFV scheme
[37]. All PCs have an internet connection of 100 Mbps
bandwidth.

Security Analysis
In our protocol, security means that corrupted parties will not
be able to obtain sensitive data or learned models from honest
parties. Here, we show the security of our protocol from the
following 2 aspects: (1) honest parties’ secret keys will not be
obtained by the corrupted parties so that no ciphertext will be
decrypted illegally, including the encrypted data, model
parameters, and any other intermediate results and (2) if the
researcher is an adversary, he or she cannot obtain any
meaningful information about honest parties’ individuals from
the unencrypted intermediate results.

Security of Secret Keys
To demonstrate the security of the secret keys, we use the
simulation paradigm described in the study by Goldreich [38],
that is, for all adversaries, there exists a simulator program S
that, when provided only with the adversaries’ input and output,
can simulate the adversaries’ view in the protocol, and the
simulated view is computationally indistinguishable from the
real view. Suppose there are z parties. Let A denote the
adversaries, defined as a subset of at most z −1 corrupted parties,
and H denote the honest parties.

Combined Public Key Generation
In the generation of the combined public key, S can simulate
the adversaries’ view of public key shares (pk1, pk2,..., pkz) by
randomizing these shares under 2 constraints: (1) the simulated
shares must sum to pkco(0) and (2) the adversary shares must
be equal to the real shares. S can compute this sharing as
follows:

When |H|>1, there is no efficient algorithm that can distinguish
between the simulated and real shares in H because of the
decision-RLWE problem. When |H|=1, S computes the real
shares of the honest party. However, because both si and ei are
private inputs from party pi, the adversaries cannot find the
secret key of the honest party because of the search-RLWE
problem.

Decryption
Given the ciphertext c=(c(0), c(1)), during the decryption
process, S can simulate the adversaries’ view of the decryption
shares (μ1, μ2,..., μz) by randomizing these shares under 2
constraints: (1) the simulated shares must sum to μ–c(0) and
(2) the adversary shares must be equal to the real shares:

When considering the distribution of the simulated and real
views alone, the RLWE assumption is sufficient to ensure the
security of secret keys of H if the researcher is uncorrupted.
However, if the researcher becomes an adversary, they can
extract the noise of c as follows:

where e’ is the noise of c, which should be unknown to the
researcher; otherwise, the RLWE assumption will be broken
and the secret keys of the honest parties may be exposed to the

researcher. Let var2
c denote the variance of a centered Gaussian

distribution that e follows and var2
smg denote the variance of

Dsmg, which is used to generate ei. Thus, as long as the ratio

var2
c/var2

smg is negligible, the following 2 distributions are
statistically indistinguishable, which means that e’ is unknown
to the researcher and that the researcher cannot obtain H’s secret
keys:

Unencrypted Intermediate Results
First, during model training, all data providers apply
one-time-use noise to mask the encrypted gradient before
decryption, meaning that even if only one data owner is honest,
it will not lead to the disclosure of the gradients of the
individuals.
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Second, during model evaluation, the researcher will inevitably
obtain CRT-batched polynomials containing the predictive
values for each sample. Given a masked predictive value σi ∈
(Vj, Vj+1), the probability of recovering the research data is
computed as follows:

Here, Nj is the number of samples whose predictive value
belongs to (Vj, Vj+1), Nej is the number of empty slots whose
value belongs to (Vj, Vj+1), and Npi is the number of all possible
combinations of feature values whose predictive value belongs
to (σi−1569358279, σi+1569358279). Therefore, as long as
either of these 2 terms is sufficiently small, it is impossible for
the researcher to recover the feature values.

Furthermore, because the encrypted (TP, FP, TN, and FN)
information of samples under different predictive value
thresholds is also masked by all data providers before being
sent to the researcher, the researcher cannot obtain the label of
any specific sample.

Accuracy Loss
In Table 3, we demonstrate the accuracy of our protocol by
comparing the area under the curve between the nonsecure
logistic regression and our secure logistic regression, where the
former uses the standard sigmoid function and both have the
same hyperparameters (learning rate α=.1, 45 iterations).
Compared with that of the nonsecure protocol, a relatively small
loss of accuracy was observed in our protocol, which was not
statistically significant (the smallest P=.09). The average
receiver operating characteristic curves from the 10-fold
cross-validation are plotted in Figure 3.

Table 3. Accuracy comparison between nonsecure and proposed secure logistic regressions.

Breast cancerSEERa CRCb dataData sets

0.728 (0.156)0.703 (0.008)AUCc (nonsecure)

0.717 (0.164)0.696 (0.008)AUC (our protocol)

.88.09P value (AUC)

0.664 (0.149)0.620 (0.013)Accuracy (nonsecure)

0.632 (0.155)0.612 (0.013)Accuracy (our protocol)

.64.18P value (accuracy)

0.508 (0.198)0.654 (0.012)F1
d (nonsecure)

0.505 (0.240)0.649 (0.012)F1 (our protocol)

.97.42P value (F1)

aSEER: surveillance, epidemiology, and end results.
bCRC: colorectal cancer.
cAUC: area under the curve.
dF1: the harmonic mean of the precision and recall.

Figure 3. Average receiver operating characteristic curves of nonsecure and proposed secure logistic regressions. CRC: colorectal cancer; ROC: receiver
operating characteristic; SEER: surveillance, epidemiology, and end results; UCI: University of California, Irvine.
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Furthermore, in Table 4, we test the relationships between the
learning rate and the convergence of the nonsecure and secure
logistic regressions. Although our protocol’s model training
will be fully spoiled because of the limited valid input interval

for the approximation sigmoid function when the learning rate
becomes too large, our protocol has a slightly broader range of
learning rate selection than the nonsecure protocol.

Table 4. ||βnew–βold|| ÷ ||βnew|| after 99 iterations (surveillance, epidemiology, and end results colorectal cancer data).

0.40.30.20.1Learning rate

0.3470.3020.0460.056Nonsecure

—a0.0470.0520.061Our protocol

aFail to convergence.

Model Training and Evaluation Time
We show the time consumption of the 10-fold cross-validation
for the 2 different data sets in Table 5.

Here, we compare our protocol with the SecureLR protocol by
Jiang et al [19], which is also optimized with NTT and CRT
batching but evaluated on only 1 PC. As shown in their

experiments, SecureLR can train only 1 model at a time and
requires 44.9 seconds per iteration over a data set with a
ciphertext size of 5.0 M. In comparison, our protocol can train
10 models simultaneously and perform each iteration much
faster (on a data set with a ciphertext size of 60.0 M in less than
10 seconds per iteration). Moreover, our protocol supports
secure model evaluation with reasonable time consumption.

Table 5. Time consumption of the proposed protocol.

Evaluation timeTime per iteration (seconds)Training timeIterations, nData sets

20 min 27 seconds9.987 min 29 seconds45SEERa CRCb data

14 min 28 seconds5.874 min 24 seconds45UCIc breast cancer

aSEER: surveillance, epidemiology, and end results.
bCRC: colorectal cancer.
cUCI: unique client identifier.

Scalability Evaluation
To test our protocol’s scalability, we use a synthetic data set
with different numbers of data providers and features, as shown
in Tables 6 and 7. Given a certain number of features d, for the
sake of simplicity, we suppose that every data provider encrypts
(d+1) polynomials. As the number of data providers increases,
the computation times of both the model training and evaluation
increase proportionally, whereas there is no increase in the
transfer time of the model training because the size of the
transferred data (encrypted parameters and gradients) is only

related to the number of features. Similarly, because there is no
relationship between the number of data providers and the
transfer of the encrypted (TP, FP, TN, and FN), the transfer
time of the model evaluation increases very less. As the number
of features increases, the computation and transfer times of the
model training increase proportionally, whereas the computation
and transfer times of the model evaluation increase only slightly
because the majority of the model evaluation involves the
computation of (TP, FP, TN, and FN) information under
different predictive value thresholds, which is not related to the
number of features.

Table 6. Scalability of the proposed protocol for different numbers of data providers (9 features).

Evaluation time
(transfer)

Evaluation time
(computation)

Training time
(transfer)

Training time
(computation)

Iterations, nSize of ciphertexts,
MB

Data providers, n

10 min 33 seconds9 min 54 seconds3 min 13 seconds4 min 16 seconds4560.03

10 min 39 seconds15 min 24 seconds3 min 13 seconds6 min 26 seconds45100.05

10 min 51 seconds30 min 42 seconds3 min 12 seconds12 min 45 seconds45200.010

11 min 3 seconds45 min 54 seconds3 min 13 seconds19 min 5 seconds45300.015

11 min 17 seconds61 min 13 seconds3 min 13 seconds25 min 52 seconds45400.020
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Table 7. Scalability of the proposed protocol for different numbers of features (3 data providers).

Evaluation time
(transfer)

Evaluation time
(computation)

Training time
(transfer)

Training time
(computation)

Iterations, nSize of ciphertexts,
MB

Features, n

10 min 33 seconds9 min 54 seconds3 min 13 seconds4 min 16 seconds4560.03

10 min 53 seconds10 min 22 seconds6 min 23 seconds8 min 30 seconds45100.05

11 min 13 seconds10 min 47 seconds9 min 37 seconds12 min 48 seconds45200.010

11 min 32 seconds11 min 16 seconds12 min 50 seconds16 min 54 seconds45300.015

11 min 53 seconds11 min 40 seconds16 min 10 seconds21 min 13 seconds45400.020

Discussion

Principal Findings
As researchers cannot obtain unencrypted research data, they
may have difficulty choosing the proper hyperparameters,
especially the learning rate. Despite a slightly broader range of
learning rate selection, the setting of the learning rate is still
very important in our privacy-preserving multicenter logistic
regression protocol because compared with the nonsecure
protocol, our protocol still has a considerable time cost. In our
proposed protocol, interactions exist among the service provider,
the data providers, and the researcher, allowing the researcher
to obtain the plaintext model parameters in every iteration. As
a result, the researcher can easily judge whether the
hyperparameters are set properly according to the trend of the
model parameters. Moreover, the researcher can halt the model
training in the early stages, which results in less waste of
computational resources. However, to implement the web-based
protocol, clients must be installed on all the data providers’ and
researchers’ machines, which must be kept online during the
entire process of model training and model evaluation, leading
to an additional consumption of network bandwidth.

There is a trade-off between computation and transfer
consumption in our protocol. Although some solutions use fully
homomorphic encryption to avoid decryption during model
training [14,15], our proposed protocol uses somewhat
homomorphic encryption for several reasons. First, to support
an unlimited number of operations, a bootstrapping process is
required, which is very time consuming. More time is consumed
in threshold homomorphic encryption because we must select
larger encryption parameters because there is not only greater
noise in the combined public and relinearization keys but also
greater smudging noise during decryption. Second, to avoid
decryption, fixed-point arithmetic operations without a rounding
process are required. Bonte and Vercauteren [14] use nonintegral
base nonadjacent form with window size ω to encode a real
number as a polynomial, which may affect the use of CRT
batching (the most important optimization technique in our
protocol), whereas Chen et al [15] use the
Cheon-Kim-Kim-Song (CKKS) [39] scheme, which is also
based on RLWE and naturally supports floating-point
approximate arithmetic operations. However, in the CKKS
scheme, the decryption result contains noise, meaning that in
the threshold variant of the CKKS scheme, we must set a very

high value for the encryption parameter scale to avoid
destruction of the plaintext by the smudging noise, which greatly
reduces the multiplicative depth of the circuit.

Limitations
Our proposed protocol has a few limitations. First, to make the
privacy-preserving logistic regression realistic, this protocol
requires a high-speed and stable network. Second, as the BFV
scheme is based on integers, before encryption, all floating-point
numbers must be scaled up and rounded to integers. A larger
SF can support a higher level of precision but will also result
in higher computation and storage costs for a given security
level. Third, in a real-world scenario, a single patient may have
multiple medical records across different data providers, which
rarely occurs when data providers are far apart but is not
uncommon when data providers are located in the same region
(eg, a city). Therefore, in the latter case, further research on
privacy-preserving identification and deduplication is required
to ensure that there are no duplicate medical records to affect
the analysis results. Furthermore, this study mainly focuses on
technical issues and thus does not delve into matters related to
ethics and law, which are also very important in multiparty
medical research.

Conclusions
In this paper, we propose the first privacy-preserving multiparty
logistic regression model training and evaluation protocol based
on threshold homomorphic encryption. We conduct experiments
in simulated real-life scenarios, and the results demonstrate that
the proposed protocol is practical for real-world use. We believe
that our work can help medical institutions eliminate privacy
leakage concerns during data sharing, promote multicenter
medical research, and thus improve the use of medical data to
some extent.

In the future, we will extend our tools to be more practical. As
the BFV homomorphic encryption scheme does not have
indistinguishability under chosen ciphertext attack security,
additional security technology, such as hashing, should be
integrated into the tools to prevent malicious attackers from
tampering with the ciphertexts. More privacy-preserving
statistics and machine learning methods will be added to our
tools to facilitate considerably enhance flexibility in secure
multicenter research. Furthermore, we will improve the
efficiency of our tools using graphics processing unit or field
programmable gate array acceleration.
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Abbreviations
BFV: Brakerski/Fan-Vercauteren
CKKS: Cheon-Kim-Kim-Song
CRT: Chinese remainder theorem
FN: false negative
FP: false positive
NTT: number theoretic transform
RLWE: ring learning with errors
SF: scaling factor
SGX: software guard extensions
SIMD: single instruction, multiple data
TN: true negative
TP: true positive
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