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Abstract

Background: Performing systematic reviews is a time-consuming and resource-intensive process.

Objective: We investigated whether a machine learning system could perform systematic reviews more efficiently.

Methods: All systematic reviews and meta-analyses of interventional randomized controlled trials cited in recent clinical
guidelines from the American Diabetes Association, American College of Cardiology, American Heart Association (2 guidelines),
and American Stroke Association were assessed. After reproducing the primary screening data set according to the published
search strategy of each, we extracted correct articles (those actually reviewed) and incorrect articles (those not reviewed) from
the data set. These 2 sets of articles were used to train a neural network–based artificial intelligence engine (Concept Encoder,
Fronteo Inc). The primary endpoint was work saved over sampling at 95% recall (WSS@95%).

Results: Among 145 candidate reviews of randomized controlled trials, 8 reviews fulfilled the inclusion criteria. For these 8
reviews, the machine learning system significantly reduced the literature screening workload by at least 6-fold versus that of
manual screening based on WSS@95%. When machine learning was initiated using 2 correct articles that were randomly selected
by a researcher, a 10-fold reduction in workload was achieved versus that of manual screening based on the WSS@95% value,
with high sensitivity for eligible studies. The area under the receiver operating characteristic curve increased dramatically every
time the algorithm learned a correct article.

Conclusions: Concept Encoder achieved a 10-fold reduction of the screening workload for systematic review after learning
from 2 randomly selected studies on the target topic. However, few meta-analyses of randomized controlled trials were included.
Concept Encoder could facilitate the acquisition of evidence for clinical guidelines.

(J Med Internet Res 2020;22(12):e22422) doi: 10.2196/22422

J Med Internet Res 2020 | vol. 22 | iss. 12 | e22422 | p. 1https://www.jmir.org/2020/12/e22422
(page number not for citation purposes)

Yamada et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:bqx07367@yahoo.co.jp
http://dx.doi.org/10.2196/22422
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

machine learning; evidence-based medicine; systematic review; meta-analysis; clinical guideline; deep learning; neural network

Introduction

Evidence-based medicine aims to provide treatment that matches
a patient’s needs by integrating the best and latest scientific
evidence and clinical skills [1]. Performing systematic reviews
and meta-analyses is vital to obtain data that can inform
evidence-based clinical decisions as well as the development
of clinical and public health guidelines [2].

When performing a systematic review, it is critical to minimize
potential bias by identifying all relevant published articles
through exhaustive and systematic screening of the literature,
which can be an extremely time-consuming and
resource-intensive process.

The Cochrane collaboration mandates reinvestigation and
updating of published systematic reviews and meta-analyses
every 2 years to maintain the novelty and quality of evidence
[3], but this is an onerous task. As a single systematic review
or meta-analysis usually requires 1 to 2 years to complete, only
one-third of all Cochrane reviews are updated on time [4], and
many reviews are obsolete or missing [5,6]. Therefore, the
development of methods for the automation of the systematic
review process has been suggested [7].

To reduce the time and cost of screening literature when
performing systematic reviews, researchers have explored the
use of active learning text classification systems to achieve
semiautomated exclusion of irrelevant studies while retaining
a high proportion of eligible studies for subsequent manual
review [8,9]. However, little progress has been made for the
following reasons. First, previous studies did not investigate
well-characterized and high-quality data sets, so the type of
systematic review used as the data source was unclear, and the
method of applying machine learning to the clinical studies was
obscure. Second, previous reports did not specify how active
machine learning was used. Third, only an approximate
30%-50% reduction of the workload was achieved [8]. Fourth,
a method that extracts 100% of the correct articles from the
literature has not been developed because most studies use a
targeted extraction of 95% as the primary outcome; despite the
importance of not missing any eligible studies when performing
systematic reviews (ie, the objective is to identify all relevant
articles) [10-14].

To overcome some of these issues, we studied systematic
reviews of randomized controlled trials cited in several recent
international clinical guidelines to investigate whether an active
machine learning system (Concept Encoder, Fronteo Inc) could
reduce the workload and accelerate the review process while
improving its precision.

Methods

Search Strategy and Selection of Reviews
This study was performed according to a specified protocol and
was registered with the University Hospital Medical Information

Network clinical trials registry (UMIN000032663). Our
institutional review board waived the need for approval. Three
reviewers (TYamada, HT, and NS) independently checked the
reference lists of 5 recent clinical guidelines released by the
American Diabetes Association [15], American College of
Cardiology [16], American Heart Association (2 guidelines)
[17,18], and American Stroke Association [19]. The reviewers
identified all systematic reviews and meta-analyses cited in
these guidelines with no language restrictions.

Next, the reviewers selected eligible systematic reviews and
meta-analyses of interventional randomized controlled trials
for medications that fulfilled the following inclusion criteria:
First, a reproducible search strategy was required; therefore,
articles with no description of the search strategy, or without a
clear, reproducible description of the search strategy were
excluded. In addition, meta-analyses using individual data,
meta-analyses of observational studies, reports missing relevant
information, and reviews of fewer than 5 studies were excluded.
Finally, reviews were excluded if the primary screening data
set did not include all of the correct articles (ie, those cited)
when it was reproduced according to the published search
strategy. Disagreements among the reviewers were resolved by
consensus.

We reproduced primary screening data sets, including abstracts,
according to reported search strategies, that is, a search strategy
for PubMed was devised based on the search strategy for Ovid
MEDLINE described in each review (Multimedia Appendix 1).

Active Machine Learning System
An artificial intelligence engine (Concept Encoder) [20] was
used to convert sentences into vectors, extract and learn each
vector component as a feature value, identify similar vectors as
indicators of the similarity of sentence content, and perform a
rapid search for similar sentences. Vectorization facilitates text
analysis by providing numerical data that allow various
calculations to be performed (eg, to assess clustering of results).
In addition, vectorization allows searches to be based on the
sums and differences of sentences, facilitating comparison of
content between 2 sentences and resulting in a sentence retrieval
engine that can be adapted to research targets.

First, each sentence is decomposed into morphemes (the smallest
meaningful units of a language) by morphological analysis,
applying rules to label each morpheme level element with a
word. Next, the word labels were embedded in the k-dimension
vector space [21-24] using the word2vec technique. Sentences
can also be embedded in the k-dimension vector space using an
expansion to the word-embedding method called doc2vec that
yields paragraph vectors [21-24]. Several parameters are used
in these embedding techniques, such as the number of embedded
words, the vectors' dimensions, and negative sampling (ie, the
number noise samples, nonobserved data, generated in both
word2vec and doc2vec algorithms). These algorithms enable
the transformation into vectors of words and documents from
articles in a systematic review. Assuming that there are a total
of m abstracts and n words in all the articles (both reviewed and
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not reviewed) in a single systematic review or meta-analysis
(ie, 1 of the 8 systematic reviews or meta-analyses included)
embedded in a k-dimension vector space, then the abstracts and
words can be expressed as

Embedded vectors are well known to possess interesting features
such as word analogy and outperform the bag of word
approaches in several linguistic tasks. For example, if 2 articles
have similar contents, then the 2 row vectors in D associated
with those articles are a short cosine distance from one another.
Similarly, the 2 row vectors in W associated with 2 words having
a similar meaning are also a short cosine distance from one
another. Hence, if there are differences between the articles that
were reviewed and not reviewed, then the reviewed articles
should be closer to each other than those that were not reviewed.
These features persist after the 2 matrices are multiplied due to
linearity of multiplication. For example, if wi ≅ wj for 2 row
vectors in matrix W, then the inner product with d (a row vector
in matrix D) is d · wi ≅ d · wj. Expanding this to word analogy,
if wi – wi ≅ wi' – wj' where i, j, i', j' ∈ [1, 2, 3, ..., n] holds for 4
row vectors in matrix W, then d · wi – d · wj ≅ d · wi' – d · wj' is
true for any row vector d in matrix D.

Hence, the product of these 2 matrices is a DW matrix, which
is a sentence-word matrix that also possesses these interesting
features of the original matrices.

In this study, sentence similarity was evaluated by using a DW
matrix.

Neural networks have previously been used to calculate D and
W matrices, but calculation of these matrices becomes
computationally intense when a large number of articles are
investigated [21-24]. Hence, a neural network is generally
restricted to embedding the 1000 most common words in m
articles. In our analysis, the 1000 most common words were
identified for each of the 8 studies.

A skip-gram model with negative sampling was chosen to
calculate W. The embedding vector dimension was set at k=300,
which is usually considered sufficient to capture word and
document features, and the number of negative samplings was
set at ns=5. A previous paper [25] reported that values of
negative sampling in the range of ns=5-20 were useful for small
training data sets, whereas for large data sets, ns can be as small
as 2-5; the size of the data sets used in this study ranged from
m=138 to m=6935.

For D, the distributed bag of words version of paragraph vector
[20-24] was used as it is usually consistent across many tasks
[24]. The same negative sampling and embedding dimension
(ns=5 and k=300) were used. Both D and W were obtained at

the same time in this study. However, it is possible to obtain W
first and then calculate D by using the pretrained W. We used
the gensim (version 3.8.3)[26] package for Python (version 3.6)
with ns=5, k=300, and 1000 words.

A dimension reduction technique, such as singular value
decomposition, can be used to approximate the DW matrix with
a lower dimension matrix to reduce computational requirements;
however, this was not done in this analysis (the number of
columns in the DW matrix kept as 1000).

Reproduction of the Reviews
The similarity of any 2 articles is defined as the cosine distance
of the 2 vectors associated with these articles. After a correct
(reviewed) or incorrect (not reviewed) article is identified, the
associated row vector is defined as a correct or incorrect and
used as the feature vector representing a correct or incorrect
article. The cosine distances for all other articles (m − 1 articles)
are calculated and arranged in descending order. For the next
article from the top of the list, if the article is a correct one, the
mean of the vectors for the correct articles is used to train
Concept Encoder in the next step of active learning. If the article
is an incorrect one, the vector is subtracted to train Concept
Encoder in the next step of active learning, that is, it is used as
the feature vector. Cosine distances between the updated vector
and all other articles are calculated and ordered again, and this
process is repeated until all of the correct articles have been
identified. Here, the mean vector is simply used as the feature
vector for the correct articles. We could build classification
models using these vectors as features to arrange the remaining
articles in a descending manner by active learning; however,
similarity of articles seemed to be embedded in the vectors, and
using the vectors directly as the features was effective.
Therefore, we kept the process simple, and no further machine
learning was conducted in our active learning process.

Workload Reduction
Using 2 randomly selected correct articles (selected by Concept
Encoder from among the correct articles), the following steps
were performed to calculate how much workload reduction
could be achieved using Concept Encoder.

1. Concept Encoder read these 2 articles and calculated the
mean value of the sentence-word vectors corresponding to
the 2 articles. Next, this mean value was used to assign
scores to the other articles by determining the cosine
distance between the mean value and the vectors
corresponding to each of the remaining articles (Figure 1).

2. A researcher reviewed the article with the higher score. If
this was a correct article, Concept Encoder learned it as a
correct article based on the mean value of all chosen
sentence-word vectors. If it was an incorrect article, the
sentence-word vector is subtracted from the mean vector
of the corrected articles.

3. Concept Encoder learned the correct and incorrect article,
and thus identified and rescored the remaining articles,
which had not been checked by the researcher.

4. The researcher again reviewed the article with the highest
score. If this was a correct article, Concept Encoder learned
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it as a correct article. If it was incorrect, Concept Encoder
learned it as an incorrect article.

5. After learning all of the correct and incorrect articles
identified up to this point, Concept Encoder scored the
remaining articles again. The mean of sentence-word
vectors for all corrected articles minus the mean of
sentence-word vectors for all incorrect articles was used to
score the remaining articles.

6. Steps 2 to 5 were repeated until all of the correct articles
had been identified. Following this, the final reading ratio
was calculated as the number of articles read by Concept
Encoder relative to the total number of articles. For
example, if the total data set comprised 1000 articles, and
Concept Encoder found all of the correct articles after

reading 200 articles, the final reading ratio would be 20%,
and the work involved in screening the literature would
have been reduced by 80% (avoiding the need to read 800
out of 1000 articles). Work saved over sampling (WSS)
@R% is an index to measure how much work is saved
compared to manual screening to achieve identification of
R% of correct papers.

7. Next, the first correct article (step 2) was changed, and the
same process was repeated until all of the correct articles
were identified.

8. The maximum reduction of the literature screening
workload achieved by teaching Concept Encoder 2 correct
articles (ie, 2 articles that were actually reviewed) was
determined.

Figure 1. Flow diagram of information processing and user interaction with Concept Encoder.

Endpoints
The primary endpoint of this study was the reduction in the
literature screening workload when Concept Encoder was used
to identify all of the correct articles, relative to the workload
for finding all of the correct articles by manual review with
random sampling. WSS@95% recall was used for comparability
as this endpoint is often used in previous studies (Multimedia
Appendix 1).

Statistical Analysis
WSS and receiver operating characteristics were used to evaluate
the performance of the algorithm. Area under the receiver
operating characteristic curve (AUROC) shows how much the
active learning improves classification ability between correct
and incorrect articles at each step of learning .

To evaluate the impact of the 2 initial papers selected on system
performance, all possible pairs of papers were generated and
used to run the algorithm. Then the mean and standard deviation
of WSS@95% were measured. The confidence interval of the

AUROC was determined at each step of the active learning
process for all 8 studies using scores calculated from the cosine
distances for articles that were used or not used in the systematic
reviews.

Results

A flowchart of our strategy for performing the literature search
and study selection is shown in Figure 2. The systematic reviews
and meta-analyses used in this study were cited in 5 recent
clinical guidelines (93 from American Diabetes Association
2017 guidelines [15], 2 from American College of Cardiology
guidelines for nonstatin therapy [16], 13 from American Heart
Association 2017 guidelines for valvular disease [17], 18 from
American Heart Association 2017 guidelines for heart failure
[18], 19 from American Stroke Association 2015 guidelines
[19]). Among the 145 candidate reviews, 137 were excluded,
with the main reasons being that the search strategy was not
described in sufficient detail to reproduce the data set (57
reviews), or the data set could not be reproduced despite
following the described search strategy (45 reviews). A final 8
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reviews published between 2012 and 2016 were selected
[27-34]. These reviews comprised 2 Cochrane Database
Systematic Reviews and 1 each published in JAMA Neurology,
the British Medical Journal, PLOS Medicine, the Journal of the

American Medical Association, the Lancet, and the Archives
of Internal Medicine. The characteristics of these reviews are
summarized in Multimedia Appendix 1.

Figure 2. Literature search and study selection strategy.

After reproducing the primary screening data set (including
abstracts) according to the search strategy described in each
review, 81 sets of correct articles and 22,664 sets of incorrect
articles were obtained (Multimedia Appendix 1). The search
strategies employed for the reproduction of the data sets are
detailed in Multimedia Appendix 1.

One of the 8 studies contained only 140 articles. The number
of words appearing more than twice in the data set was
approximately 1200, including the stopwords. We also wished
to examine the difference in performance between studies.
Figure 3 displays the average cumulative recall curves for the
8 reviews. The performance of Concept Encoder was evaluated
for every possible pair of articles chosen at the start of active

learning. Concept Encoder was found to significantly reduce
the workload by at least 0.867 compared with manual screening
(the lowest mean WSS@95%). The average reduction of the
workload compared with manual screening was >90% or 10-fold
(WSS@95%: mean 0.904), and Concept Encoder showed a
high ability to discriminate between correct and incorrect studies
(Table 1). The choice of the initial 2 articles only had a small
influence on the performance of the learning algorithm.

Prioritization (ie, the score based on cosine distance) of the
algorithm by machine learning increased the AUROC to
between 0.99 to 1.00, while the standard deviation of the
AUROC decreased with each prioritization step (Figure 4).
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Figure 3. Average cumulative recall curves for all data sets: (a) Chatterjee et al [27], (b) Balsells et al [28], (c) Muduliar et al [29], (d) Yanovski and
Yanovski [30], (e) Eng et al [31], (f) McBrien et al [32], (g) Andrade Castetllanos et al [33], and (h) Arguedas et al [34]. WSS: work saved over sampling.
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Table 1. Review data sets and corresponding results.

Concept EncoderReview

WSS@95cWSS@100bAUROCaTrials, nArticles
screened, n

Correct arti-
cles, n

Reference

RangeMean (SD)RangeMean (SD)

0.887-0.9350.896 (0.014)0.937-0.9850.946 (0.014)1154106[27]

0.880-0.9090.886 (0.009)0.930-0.9590.936 (0.009)16656012[28]

0.896-0.9210.904 (0.006)0.946-0.9710.954 (0.006)0.999136564417[29]

0.897-0.9320.902 (0.006)0.941-0.9570.944 (0.005)0.998190693520[30]

0.856-0.9250.867 (0.023)0.906-0.9750.917 (0.023)0.9985583011[31]

0.931-0.9490.941 (0.006)0.981-0.9990.991 (0.006)11058395[32]

0.885-0.9280.896 (0.015)0.935-0.9780.946 (0.015)1101385[33]

0.932-0.9460.941 (0.006)0.982-0.9960.991 (0.006)11023895[34]

0.895-0.9310.904 (0.011)0.945-0.9770.953 (0.011)0.99962284310Mean

aAUROC: area under the receiver operating characteristic curve.
bWSS@100: work saved over sampling at 100%.
cWSS@95: work saved over sampling at 95%.

J Med Internet Res 2020 | vol. 22 | iss. 12 | e22422 | p. 7https://www.jmir.org/2020/12/e22422
(page number not for citation purposes)

Yamada et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Performance for an increasing number of prioritization steps: (a) Chatterjee et al [27], (b) Balsells et al [28], (c) Muduliar et al [29], (d)
Yanovski and Yanovski [30], (e) Eng et al [31], (f) McBrien et al [32], (g) Andrade Castetllanos et al [33], and (h) Arguedas et al [34]. AUROC: area
under the receiver operating characteristic curve.

Discussion

Principal Results
These findings demonstrated that an active machine learning
system could dramatically reduce the workload for performing
systematic reviews of randomized controlled trials in several
medical fields. Our data suggest that an active machine learning
system could improve the precision of the systematic review
process as well as reduce the time required, thus assisting with
the development of clinical guidelines. In this study, the deep
neural network–based active machine learning system achieved
a 10-fold reduction in the literature screening workload for
systematic reviews after a researcher initiated the learning
process by randomly selecting 2 studies.

Strengths and Limitations
We demonstrated that a 90% reduction in the workload for
searching literature compared with manual assessment could
be achieved and, whereas previous research mainly focused on
small databases, we showed that this reduction in workload
could be applied to large data sets by using systematic reviews
of clinical studies. In addition, we specifically described the
methods employed by our active machine learning system for
systematic reviews of literature, which most previous reports
do not explain.

One of the limitations of our study was the absence of a criterion
for when active learning can be stopped. The study focused on
how much workload could be reduced by the embedding-based
technique using WSS@95%; however, active learning could
increase the AUROC value as active learning steps proceeded;
and therefore, at some point, this method could separate correct
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articles from incorrect articles in the learning process. The other
limitation of the study was that 2 correct articles were required
at the beginning of active learning. In practice, it may be
challenging to start the review process with 2 correct articles
already identified. This limitation might be overcome by using
2 consecutive systematic reviews on the same topic; the papers
used in the first review could be used as the learning data to
identify new articles for the second systematic review.

Comparison With Prior Work
Several studies using text mining or computational technique
to reduce workload in systematic reviews have been reported.
Marshall et al [35] used an ensemble model consisting of support
vector classification and convolutional neural networks to
classify randomized controlled trial papers and showed that the
model predicted randomized controlled trial papers (AUROC
0.987, 95% CI 0.984-0.989) and also discussed the automating
risk of bias assessment using large corpus labeled by distant
supervision and presented a step toward automating or
semiautomating the data extraction needed for the synthesis of
clinical trials [36]. These authors also evaluated the performance
of the RobotReviewer in another paper [37] and showed that
machine learning could help reviewers to detect sentences or
documents containing risk of bias but are not be able to replace
manual review by humans yet. However, these works showed
a great potency of workload reduction in systematic reviews
with machine learning techniques. Wallace et al [38] developed
a tool for systematic review called Abstrackr. Based on its
technical report [38], 2 case studies were tested, and a 40%
workload reduction with 100% recall was achieved. Rathbone
et al [39] evaluated the performance of Abstrackr for 4
systematic reviews and summarized that reduction of workload
varied from 10% to 80%, but that precision was also decreased.
Recently, Gates et al [40] evaluated the Abstrackr performance
retrospectively against human review for 4 studies and
concluded that it could reduce workload by 9.5% to 88.4%,
varying by the screening task. A review of systematic reviews
[41] noted that current use of text mining in systematic reviews
could reduce workload from 30% to 70%, at 95% recall. As for
other techniques to reduce workload in systematic reviews,

using 17 studies, RobotAnalyst [42] was reported as an active
learning approach using latent Dirichlet allocation to reduce
workload, for which WSS@95% varied between 6.89% to
70.74%. Workload reduction varies by study or task; therefore,
direct comparison with our study is difficult. However, our
method, using an embedding-based technique, showed good
performance with the 8 systematic review data sets of
randomized controlled trials.

Regarding other embedding methods, embedding vectors from
BioBERT-Base version 1.1 (4.5 billion PubMed abstracts,
trained for 1 million steps) [43] were applied to the same 8
studies. WSS@95% was calculated for each study using the
same algorithm. The mean WSS@95% for the 8 studies was
0.747 (SD 0.119), which was about 15% lower than the 0.904
(SD 0.02) from this study (Table 1). Fine-tuning for each study
was not performed because some of the studies include only a
small number of articles. Hence, the performance of BioBERT
could be improved by fine-tuning. However, the method in the
present paper is still competitive enough considering the
performance and simplicity of the model.

We assessed systematic reviews and meta-analyses of
randomized controlled trials because these can estimate the true
efficacy and risks of treatment. In contrast, estimates derived
from systematic reviews and meta-analyses of epidemiological
studies are more limited due to the observational design of the
underlying studies. Therefore, further investigation will be
needed to assess the effectiveness of our system for
meta-analyses of epidemiological studies. Furthermore, in the
future, we plan to evaluate Cochrane review papers, which have
a standardized review process.

Conclusion
The deep neural network–based active machine learning system
investigated in this study achieved at least a 10-fold reduction
of the literature screening workload for systematic reviews after
a researcher initiated the learning process by randomly selecting
2 studies that fulfilled the inclusion criteria for the target review.
Our findings suggest that machine learning could facilitate the
acquisition of evidence for developing new clinical guidelines.
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