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Abstract

Background: Over the past decade, the emergence of several large federated clinical data networks has enabled researchers to
access data on millions of patients at dozens of health care organizations. Typically, queries are broadcast to each of the sitesin
the network, which then return aggregate counts of the number of matching patients. However, because patients can receive care
from multiple sites in the network, simply adding the numbers frequently double counts patients. Various methods such as the
use of trusted third parties or secure multiparty computation have been proposed to link patient records across sites. However,
they either have large trade-offs in accuracy and privacy or are not scalable to large networks.

Objective: This study aimsto enable accurate estimates of the number of patients matching a federated query while providing
strong guarantees on the amount of protected medical information revealed.

Methods: We introduce a novel probabilistic approach to running federated network queries. It combines an algorithm called
HyperLogL og with obfuscation in the form of hashing, masking, and homomorphic encryption. It is tunable, in that it allows
networks to balance accuracy versus privacy, and it is computationally efficient even for large networks. We built a user-friendly
free open-source benchmarking platform to simul ate federated queriesin large hospital networks. Using this platform, we compare
the accuracy, k-anonymity privacy risk (with k=10), and computational runtime of our algorithm with several existing techniques.

Results: In simulated queries matching 1 to 100 million patientsin a 100-hospital network, our method was significantly more
accurate than adding aggregate counts while maintaining k-anonymity. On average, it required atotal of 12 kilobytes of datato
be sent to the network hub and added only 5 milliseconds to the overall federated query runtime. This was orders of magnitude
better than other approaches, which guaranteed the exact answer.

Conclusions: Using our method, it is possible to run highly accurate federated queries of clinical data repositories that both
protect patient privacy and scale to large networks.

(J Med Internet Res 2020;22(11):€18735) doi: 10.2196/18735
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: increase statistical power or to access diverse patient populations
Introduction and geographic regions. Although it is possible to combine
Background patient-level data from multiple sites into a secure central

repository for analysis, there are often significant technical and
regulatory barriers to doing this in a way that ensures patient
privacy. Institutions must compare the benefit of centralized
datafor research with therisk of violating the Health Insurance

Widespread adoption of electronic health records has generated
vast amounts of data, which are increasingly being used in
clinical, epidemiological, and public health research [1]. Data
from multiple health care organizations are often needed to
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Portability and Accountability Act (HIPAA) and other privacy
laws as a result of unintended disclosure of patient data. An
alternative approach isto create federated clinical dataresearch
networks, which broadcast queriesto multiple sites, run analyses
locally, and then combine the results. In this way, sites retain
control over their patient data. Two of the largest networks in
the United States are the Patient-Centered Outcomes Research
Network (PCORnet) [2] and the National Institutes of Health
(NIH)—funded Accrual to Clinical Trials (ACT) network [3-5],
both of which connect dozens of health care organizationsacross
the country and include health data on nearly 100 million
Americans.

As patients often receive care at more than one clinical site, the
datafor apatient at any one site might not be complete, and the
same information about a patient might be duplicated at different
sites. This can lead to queries returning incorrect results. This
problem is amplified when the sites in the network are
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geographically close and thereisgreater overlap in their patient
populations. However, because patients move or travel,
sometimes across state or country borders, even far apart sites
might share patients. A similar situation arises when patients
data are intentionally separated for technical reasons, such as
when large amounts of clinical data (eg, diagnoses and
medications) and genomic data are stored in different locations,
and it is not feasible to merge them into a single database. In
both cases, computation must be performed in a distributed
fashion, but the challenge is that an individual patient’'s data
may be spread across multiple databases.

Various methods to addressing this problem have been described
in the literature, but they have different trade-offs in terms of
accuracy, privacy, scalability, and computational complexity.
We grouped these into 3 broad categories: aggregate counts,
hashed patient identifiers, and privacy-guaranteed methods
(Figure 1).

Figurel. Federated query methods. We classify methodsfor merging distributed queriesinto 3 groups: (top) sharing aggregate counts, (middle) sending
full hashed patient identifiers, and (bottom) generating bitstrings (displayed as hexadecimal) that do not directly correspond to individual patients but
can be merged together. HLL: HyperL ogLog; MPC: multiparty computation; SSN: social security number.
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through institutional agreements that require sites to audit
Aggregate Counts

Federated queriesin PCORNet and ACT ask sitesto return the
number of patientsin their local databases who match some set
of criteria, such as having both hypertension and diabetes. The
networks present the user with the aggregate count from each
site, and no attempt is made to link patients across sites or
deduplicate records. This can lead to large overestimates of the
number of distinct patients who match a query if the counts
from each site are naively summed [6]. To protect patient
privacy, the networks mask small counts by displaying <10
patients. However, it is possible to combine results from
multiple queriesto reveal information about individual patients
(seethe Methods section for details). Sites participating in these
networks are aware of this privacy risk, which they mitigate
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researchers’ queries and monitor their use of the network.

Hashed Patient | dentifiers

The most accurate and semisecure method to deduplicate the
resultsin afederated query isfor each siteto return the full list
of patients who match the query. Privacy is the main concern,
as data on every patient matching the query (potentially many
millions of people) must be shared. Patient identifiers (eg, name
and date of birth) [7] are typically encrypted using a one-way
hash function, such as Secure Hash Algorithm 1 (SHA-1) [8].
The same patient at two sites will be hashed to the same value
if the same hash function is used (and there are no
inconsistencies in the underlying demographic data).
Unfortunately, hash functions are vulnerable to dictionary or
linkage attacks, where an adversary who knows the encryption
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method can simply generate a rainbow table of the hashes of
many possible patient identifiers (eg, exhaustively searching
all 9-digit social security numbers or accessing public voter
registration lists) and then use thisto reidentify the list of hash
values returned by asite[9].

Privacy-Guaranteed Methods

Secure multiparty computation (MPC) and homomorphic
encryption techniques enable true privacy guarantees in a
federated network (see the Methods section) and have recently
beenintroduced for distributed genome-wide association studies
[10] and pharmacological collaboration [11]. The limitation of
these algorithms is their computational complexity. Protocols
that securely determine the number of shared patients between
two sites [6,12-14] are impractical for large networks because
the number of pairwise and multiway comparisons grows
exponentially with the number of sites. Other approaches that
avoid exponential comparison either require sharing gigabytes
of data [15], making numerous rounds of back-and-forth
communication [16], or using trusted third parties[17]. These
are also problematic because, as we have previously shown
[18], large federated clinical data networks are fragile, with
multiple sites typically failing to respond even to aggregate
count queries.

HyperL oglL og Sketch

In this paper, we propose a new method for combining data
from sites in a federated clinical data network, based on the
HyperLogL og (HLL) probabilistic sketching algorithm [19]. A
probabilistic sketch is a small data structure that summarizes
large amounts of data. A calculation can run on the sketch to
obtain afast, accurate estimate of what the result would be on
theoriginal data. Although HLL iswidely used in many software
programs, such asinternet search engines, to our knowledge, it
has not been applied to federated queries of health data.

Thebasicideabehind HLL (and other minimum value sketches)
[20] is that the minimum of a collection of random numbers
between 0 and 1 isinversely proportional to how many numbers
are present. For example, a single random number between 0
and 1 has an expected value of 0.5; however, if we have 99
random numbers, the minimum has an expected value of 0.01.
By using ahash function that maps patientsto arandom number
between 0 and 1, we can estimate the number of patients who
match a query at a site by keeping track of just the minimum
hash value of the matching patients. If the minimum hash value
isv, then the estimated number of patientsis (1/v)-1. Although
the accuracy of this estimate is poor, the method can be
improved by using t different hash functions to generate t
independent estimates of the number of patients. The average
of these results in a more accurate overall estimate. The set of
t minimum hash values is the sketch.

If each sitein anetwork uses the same hash function and returns
its minimal hash value, then we can estimate the number of
distinct patientsin thewhole network that match the query from
the smallest of those values. Although it may seem unintuitive
that the network minimum hash is the same as the hash for one
hospital, the hospital which the minimum hash corresponds to
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changes when multiple hash functions are used, alowing the
estimator to be accurate.

Instead of using t hash functions, HLL improves the accuracy
of this method by using a single hash function but efficiently
dividing the patientsinto t partitions and returning the minimum
hash value of patients in each partition. HLL also returns the
position of the leading one indicator in the binary expansion of
the minimum valuesrather than the actual values. Thisonly has
asmall effect on accuracy; however, it greatly reduces the risk
of reidentification from adictionary attack. For t partitions, the
relative error of HLL is approximately 1/sgrt(t). For example,
by asking sites to share an HLL sketch with only 100 values,
the number of distinct patients can be estimated with a 10%
relative error. Theerror can be reduced by increasing t. Although
higher t increases the risk of reidentification, the risk is
guantifiable and predictable, enabling networks to define
policies that maximize accuracy while reducing risk to an
acceptable level.

Objectives
We aim to enable accurate estimates of the number of unique
patients matching a federated query while providing strong

guarantees on the amount of protected medical information
revealed.

Structure of This Paper

In the Methods section, we first show how sites can generate a
privacy-preserving HLL sketch of the patients who match a
guery and how the shared sketches from sites can be combined
to estimate the number of unique patients in the network who
match the query. We then describe several obfuscation
approaches that further reduce the privacy risk of aggregate
counts, hashed identifiers, and HLL sketches. These include
methodsthat might result in aloss of information or anincrease
in computational complexity to make it more difficult or
impossible for an adversary to identify patients. In the Results
section, wetest our a gorithm and other methods using smulated
networks of different sizes and degrees of patient overlap. We
compare them along several dimensions, including accuracy,
privacy risk, computation time, and amount of data shared.
Finally, in the Discussion section, we summarize the trade-offs
and limitations of the algorithms and provide recommendations
on when networks should consider using HLL sketches.

Methods

Algorithmsand Obfuscation Techniquesfor Federated
Queries

Here, we describe the algorithmswe compared. The basic model
assumes that a researcher at one hospital in the network sends
aquery of the form How many unique patients have condition
X across the hospital network? to a central network hub. The
hub then distributesthe query to al the hospitalsin the network.
The hospitals determine which of their patients match the query
and return aresult (the form of this result varies by agorithm)
to the hub. The hub combinesthe results and returns an estimate
of the total number of unique patients to the researcher. The
name of each algorithm combines the base method (Count,
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HashedIDs, or HLL) and any additional obfuscation (Mask,
MPC, Rehash, or Shuffle).

Count

Each hospital runsthe researcher’s query locally and sendsthe
hub a single count of the number of matching patients. The hub
returns 2 numbers: (1) the maximum count from a hospital and
(2) the sum of counts from all hospitals. The maximum count
corresponds to alower bound on the result, because evenin the
event of significant overlapping patients between hospitals,
there are at least as many unique patients across the network as
thereare at asingle hospital. For example, in Figure 1, hospitals
1, 2, and 3 have 100,000, 80,000, and 50,000 patients,
respectively. It might be the case that all patients at hospitals 2
and 3 are also patients at hospital 1, which has the maximum
count. However, this is not possible for the hospitals with
smaller counts. For example, out of 100,000 patients of hospital
1, at most 80,000 can also be patients at hospital 2. The sum of
all countsis obviously an upper bound, although it might be a
substantial overestimate when there is a significant overlap
between hospitals. Conversely, the maximum of all counts is
obviously alower bound.

Count+Mask

The procedure is identical to Count, except that if the actual
count of ahospital isbetween 1 through 9 inclusive, the hospital
returns 10 to the hub instead. This masking procedure ensures
that no nonzero number corresponds to fewer than 10 patients,
ensuring 10-anonymity. Both the PCORNet and ACT networks
use Count+Mask. ACT further obfuscates the result by adding
asmall random number between —10 and +10 to the actual count
[4]; however, we ignore thisin our analyses.

Count+MPC

Thisprotocol isbased on the EIGamal cryptosystem [21] using
adistributed private key to ensure that no one party can decrypt
intermediate data. Only the finad sum is decrypted. The
individual hospital counts are hidden, even if al hospitals but
one and the hub are compromised. The major disadvantage is
that the MPC requiresall hospitalsto respond before any answer
can be given. In large networks, it islikely that some hospitals
will either be slow to respond or not respond at all [18], which
limits this protocol to only small networks in practice (for
additional information on our MPC implementation, see
Multimedia Appendix 1[6,7,10-12,14-17,21-24]).

Hashedl Ds

Each hospital runsthe query locally, producing alist of matching
patient IDs. Each hospital needs to use the same process for
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constructing IDs so that the same patient at different hospitals
will havethesame ID. Asthereisno universal patient identifier,
the ID should be based on information likely to be unique to
the patient and available at all hospitals, such as the
concatenation of the patient’sfirst name, last name, and date of
birth [7] (for additional details and limitations of generating a
patient ID, see Multimedia Appendix 1
[6,7,10-12,14-17,21-24]). Patient IDs are encrypted using a
one-way hash function. For our simulations, we used SHA-1,
but in practice, a newer, more secure hash function should be
used. The list of hashed IDs is then sent back to the hub. The
hub then counts the number of distinct hashed IDs received
from all sites and returns this as the exact answer to the query.
Sites can precompute the hashed IDsfor all of their patientsto
improve the performance of queries. Note that because
HashedIDs uses the same hash function for all queries, a
dictionary or linkage attack by the hub has a high likelihood of
success.

Hashedl Dst+Rehash

This is identical to HashedIDs, except that the originating
hospital (the hospital with the researcher who ran the query)
also sends the hub a random string encrypted with the public
keys of each of the other hospitals (using any kind of standard
off-the-shelf asymmetric key encryption, as used in protocols
such as Rivest-Shamir-Adleman [RSA] and Hypertext Transfer
Protocol Secure [HTTPS]). Each hospital rehashes al the
patients, prepending the random string before running it through
SHA-1. By doing so, because the hub does not know the random
prefix string, it cannot perform a dictionary attack to reverse
the hash function, and thus, all patients get 10-anonymity. Of
course, rehashing all patientswith each query requires additional
computational time.

HLL

A graphical overview of HLL is shown in Figure 2. Like
HashedIDs, in HLL, the hospital usesthe SHA-1 hash function
to produce a 160-bit pseudorandom number for each patient
that matches a query. The first 64 bits are interpreted as an
integer B, and the patient is put into bucket B mod t, wheret is
the number of buckets. The hospital then finds the position V
of the first bit set to 1 in bits 65 to 128 of the SHA-1 string.
Within each bucket, the hospital stores the largest value V
corresponding to apatient. Thelist of bucket valuesisthe HLL
sketch from that hospital. (Note that like HashedI Ds, hospitals
can precompute the buckets B and values V for all of their
patients, so that this step does not have to be repeated for each

query.)

JMed Internet Res 2020 | vol. 22 | iss. 11| 18735 | p. 4
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Yu & Weber

Figure2. HLL sketches. (a) To create an HLL sketch, we first hash a set of identifiers for the matching patients (eg, socia security number) to binary
strings. The first severa bits of each binary string are used to bucket the values, and then within each bucket, we store the position of the leading one
indicator of the minimum value. (b) HLL sketchesfrom different hospitals are merged by simply taking, within each bucket, the maximum value across
sketches. (c) Given alist of buckets, we can estimate the cardinality. HLL: HyperLogL og; SSN: social security number.

(a) Creating an HLL sketch

Patient SSN Hashed values Buckets Minimum values

00000110... {—» 00000110...
000-23-1313 00000110... 00100010... O
000-64-8912 10100011... | ;0001101
000-61-8721 11011111... anton HLL sketch

oL 00100100...

000-11-3754 10010010... = el 01001110..
000-65-9687 01001110... 01001110... 7 " 00: 4
000-87-5414 00100010.. | | 01111111.. 01: 3
000-37-5814 00001101... /v 10010010... 10: 2
000-57-9987 00100100... | ,| 10100011... > 2 11:3
000-12-3453 01111111... 10010010...
000-82-2008 11001001... 12011111.. 11001001...

11001001... >3

(b) Merging HLL sketches (c) Estimating cardinality
Hospital 1 Hospital 2 Hospital 1+2 00: 4 Let 7={4,3,2,3} and 7=| 7|
HLL HLL HLL 01:3 so 711)=4, T12]=3, and so
00: 4 00: 1 00: max(4,1)=4 ig; on. Then we estimate
01:3 | L | 01:2 | _ | 01:max(3,2)=3 : cardinality:
10:2 10:3 10: max(2,3)=3 AR T A R R
11:3 11:2 11: max(3,2)=3 E= ffu (105'2 (1 +u)) S L Zz
i=1
The hospitals send these HLL sketches to the central hub. The HLL+Mask

hub combines the sketches by taking the maximum within each
bucket across the hospital sketches, generating a sketch of the
union. The hub then estimates the cardinality C of the union
sketch using the standard HLL estimator [19]. The hub also
provides a95% CI by using the fact that the SD of the estimate
isaround 1/sgrt(t), so 1+1.96/sqrt(t) gives the lower and upper
bounds of a95% CI.
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AsshowninFigure3, thisalgorithmisidentical toHLL, except
that the hospital precomputes a list of bucket values that are
less than 10-anonymous. If after generating the HLL sketch
corresponding to the query, ahospital seesthat thereisabucket
that is not 10-anonymous, the hospital aborts and revertsto the
Count+Mask algorithm, where only asingle (possibly masked)
aggregate count isreturned. The hub thus receives acombination
of sketches and masked counts.
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Figure 3. Applying obfuscation to HLL sketches. (a) HLL+Mask: For each bucket, we count the total number of patients (not just the ones who match
the query) whose hashes have the same leading 1-indicator. If that number is less than 10, then the bucket is not 10-anonymous, so we do not send the
HLL sketch. Instead, we only send a masked aggregate count of the number of patients matching the query. (b) HLL+Shuffle: We do a coordinated
random shuffling so the central hub does not know what the origina buckets were for the leading 1 indicator. However, the hub can till estimate
cardinality in the same way as HLL without obfuscation. HLL: HyperL ogL og.

(a) HLL+Mask

All hing hash h ital ] . m-anonymity
HLL sketch matching hashes at hospital (not just in query) of bucket
If any bucket
00: (1]1] 101, 00 000, 00 111, oo 000 00: 4 less than
01: 01 1101, 01 0101, 01 1111 01:3
10-anonymous,
10: 100110100, 100100001, 100101100, 100111000 10: 4
send only
1111, 0000 2
masked count
(b) HLL+Shuffle
Hospital 1 Hospital 2 Coordinated Hospital 1 Hospital 2
HLL HLL random shuffle shuffled HLL shuffled HLL
00: 4 00:1 00210 00: 3 00: 2
01:3 01:2 01> 01:2 01:3
10: 2 10:3 10201 10: 4 10:1
3 2 200 3 2

The hub combines the sketches together using the HLL
cardinality estimator to obtain an estimate of the count of the
union of all the hospitals that sent sketches with appropriate
95% error bounds. From that, the hub goes through something
similar to Count. The hub returns 2 numbers: the sum of all raw
hospital counts plus the 95% CI maximum for the HLL union
count, which gives an upper bound, and the maximum of the
set of raw counts or the 95% CI minimum for the HLL union,
which gives alower bound.

HLL+Rehash

Thisagorithm usesHL L but with an obfuscation method similar
to Hashedl D+ Rehash. When the originating hospital sends a
query to the hub, it sends both a query and a random string
encrypted with public keys of each of the other hospitalsin the
network. The hospitals completely regenerate the HLL sketch
while prepending the random string to the patient IDs before
hashing. Although this procedure takes more time, the hub
cannot use a dictionary attack at al because it does not know
the random string. Thus, all patients are guaranteed
10-anonymity if the random string is not revealed to the hub.

HLL+Shuffle

Thisalgorithm a so sends arandom string encrypted with public
keys of each of the other hospitals in the network to the hub.
However, it is much faster than HLL+ Rehash because it avoids
having to rehash all patients. Each hospital first creates an
ordinary HLL sketch using their precomputed hashed IDs. It
then shufflesthe ordering of the buckets using the random string
to determine the sort order and then sends the shuffled sketch
to the hub (Figure 3).

As every hospital uses the same permutation, the sketches can
still be combined and the normal estimators can be used.

https://www.jmir.org/2020/11/e18735

However, the hub, without knowing the random string, cannot
know which bucket in the original sketch corresponds to a
bucket in the shuffled sketch. Normally, an HLL bucket isless
than 10-anonymous if that valuet+bucket pair corresponds to
fewer than 10 individuals at the hospital. With shuffling, an
HLL bucket is less than 10-anonymous only if that value
corresponds to fewer than 10 individuas at the hospital. On
average, thisdecreasestherisk by dividing therisk score by the
number of buckets. In other words, the buckets partition the
patient population into smaller, more identifiable groups. By
shuffling the buckets, it is no longer known which partition the
value came from, which makes the value less identifiable.

HLL+MPC

Like Count+MPC, this method is based on the ElGamal
homomorphic cryptosystem, and we use the same primitives as
in that method (with the same security guarantees). We
additionally take inspiration from a previous paper applying
MPC to a Flgjolet-Martin style approximate counter [16]. The
key setup, exchange, encryption and decryption routines are
identical to those of Count+MPC (for additional information
on our MPC implementation, see Multimedia Appendix 1
[6,7,10-12,14-17,21-24]).

HLL+ShuffletMPC

This procedure is ssmply a combination of HLL+ Shuffle and
HLL+MPC. Each hospital simply shuffles their buckets
according to the random string before performing the encryption.
Therest of the procedure isidentical to that of HLL+MPC.

Testing and Evaluating the Algorithms

To quantitatively measure privacy loss, we used an adapted
k-anonymity model of privacy, whereby the privacy risk is
defined to be the number of revealed data pointsthat correspond
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to fewer than k=10 patients [22,25] (for details on the privacy
risk score, see Multimedia Appendix 1[6,7,10-12,14-17,21-24]).
We ran benchmarks for runtime, accuracy, and privacy loss on
(2) shared aggregate counts (Count and Count+ MasK), (2) shared
hashed identifiers (HashedIDs), and (3) our proposed HLL
approach. Each of these was paired with various obfuscation
techniques of masking, rehashing, shuffling, and MPC. HLL
was tested using different number of buckets or values in the
sketch. We indicate the size of the sketch, t, with anumber after
HLL, such that HLLN means 2" values. For example, t=2'=2
(HLL1), t=2°=16 (HLL4), t=2"=128 (HLL7), and t=2""=32,768
(HLL15). Although Count+MPC uses a standard MPC
privacy-guaranteed cryptosystem, we implemented our own
protocolsfor the HLL+M PC variantsusing EIGamal encryption
[21] and aprivate equality test [23]. We did not run benchmarks
for other existing privacy-guaranteed methods because they do
not scale well and are infeasible for running on large data sets,
with either extremely high runtime or error (for descriptions of
several of these algorithmsand their limitations, see Multimedia
Appendix 1[6,7,10-12,14-17,21-24]).

Due to patient privacy, we cannot test the algorithms using
actual hospital data. Therefore, we developed software for
generating simulated federated networks of hospitals spread
geographically with highly varying sizes and overlap [24] (for
details on simulating a federated hospital network, see
Multimedia Appendix 1 [6,7,10-12,14-17,21-24]). We ran our
benchmarks on simulated networks containing up to 100 million
total distinct patients, distributed across 100 hospitals. In the
simulations, patients on average received care at 2 hospitals.
However, this number varies and hospitals that are
geographically close in the ssimulations are modeled to have a
larger number of shared patients.

The benchmarks were run on an 8-core AMD Ryzen 1700
processor with 16 GB of RAM running Ubuntu 18.04.2 Long
Term Support. We measured the wall-clock time for each
pipeline component for time complexity and seriaized bitstrings
in each communication round for transmi ssion space compl exity.
We provide all code in GitHub [26].
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Results

Quantitative Simulation Benchmark Results

Multimedia Appendix 2 liststhe detailed benchmark resultsfor
accuracy, privacy risk, and runtimes of queries matching 1, 10,
100, 1000, 10,000, 100,000, 1 million, 20 million, or 100 million
patients using the different methods. As an example, Table 1
shows a subset of rows from the table in Multimedia A ppendix
2 corresponding only to queries matching 10,000 patients and

HLL sketcheswith 27 (HLL7) and 2% (HLL15) values.

Accuracy is described in absolute terms as the 95% Cl s of the
estimated number of patients who matched a query in 100
simulated experiments. More precisely, in each of the 100 runs,
each estimator tries to return either its best guess or upper or
lower bounds. If it returns a single best guess, then we report
the 97.5 and 2.5 percentiles as the upper and lower bounds,
respectively. If it returns upper or lower bounds, then we report
the 97.5 percentile of the upper bound and the 2.5 percentile of
the lower bound. These are then converted into relative errors
by comparing them with the true number of distinct patients.

Privacy risk is determined by counting the number of statistics
(ie, acount, HLL bucket, or hash) that are not 10-anonymous
revealed to either the hub or the hub colluding with a hospital.
It relates to the number of patients who are potentially
identifiable with a specific statistic, but it does not necessarily
mean that an adversary will be able to identify a patient from a
statistic. Therefore, it can be thought of as an upper bound on
direct linkage risk. Note that this guarantee is applicable
primarily for one common threat model. In the Discussion
section, we will cover some other more sophisticated potential
avenues for attack.

Wait time is the additional computational time that hospitals
require to generate the statistics plus the time the hub requires
to combine each hospital’s results. (It does not include thetime
each hospital needs to run the query.) For the same query,
hospitals might have different wait times based on the number
of matching patients. We, therefore, report both mean wait time,
which is the average hospital computation time+hub
computation time, and max wait time, which is the maximum
hospital computation time for a run+hub computation time.
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Table 1. Benchmark results for selected methods for queries matching 10,000 patients.

Method and obfuscation Estimated number of patients Wait (seconds) Risk:Hub Risk: Hub+Site
Range of counts Relative error (%) Mean Max
Count
None 899.9-19,470 —-91to 95 0 0 2.65 2.65
Mask 899.9-19,477 -911t0 95 0 0 0 0
MPC2 18,886-19,470 890 95 0.099 0.099 0 0
HLL7°
None 8310-11,347 —171to0 13 0.006 0.006 15.73 15.73
Shuffle 8310-11,347 —17t0 13 0.006 0.006 0.23 15.73
Rehash 8310-11,347 —171t0 13 0.007 0.016 0 15.73
Mask 7167-14,123 —281t041 0.005 0.005 0 0
MPC 8310-11,347 —171to0 13 37.83 37.83 0.3 0.3
ShuffletMPC 8310-11,347 —17t0 13 37.83 37.83 0 0.3
HLL15
None 9928-10,075 -1to1l 1.462 1.462 3707 3707
Shuffle 9928-10,075 -1tol 1.462 1.462 0.23 3707
Rehash 9928-10,075 -1to1l 1.625 1.668 0 3707
Mask 899.9-19,477 —-91t0 95 0.012 0.012 0 0
Hashedl Ds
None 10,000-10,000 0toO 0.002 0.002 19,174 19,174
Rehash 10,000-10,000 0toO 0.002 0.004 0 19,174

8\IPC: multiparty computation.
BHLL: HyperLogLog.

As an example, in Table 1, for a query that actually matches
10,000 patients, the basic Count algorithm had an estimated
count Cl (using the summation for the upper estimate and
maximum for the lower estimate) of 899.9 to 19,470 patients
or arelative error of —91% to +95%. It also, on average, had
2.65 hospitals that returned potentially identifiable counts
because the value was less than 10. Thisrisk can be eliminated
with Count+Mask, which increasestheerror, or by Count+MPC,
which adds computational complexity, and only gives asingle
guess, instead of both upper and lower bounds. On the opposite
extreme, HashedIDs returns the exact answer, but al 10,000
patients' identities are at risk from a dictionary attack. (Note
that Table 1 lists the risk for HashedIDs at 19,174 because the
same patient’s hash value can be returned by more than one
hospital. We report the number of potentially identifiable values
shared, not the number of unique patients at risk.) In
Hashed| Ds+ Rehash, the hub alone cannot identify patientsfrom
the hash values (the Risk:Hub column). However, the risk
returnsif an adversary can also obtain the secret random string
from a hospital (the Risk:Hub+ Ste column).

Table 1 showsthat HLL7 and HLL15 can achieve amore tunable
balance between accuracy and privacy. HLL7 has a relative
error of —17%to +13% (8310to 11,347), which isconsiderably

https://www.jmir.org/2020/11/e18735

better than that of Count, and HLL15 resultsin an even smaller
relative error of —=1%to 1% (9928 to 10,075). HLL7 and HLL15
generate, on average, 15.73 and 3707 potentially identifiable
values. However, adding obfuscation with HLL+ Shuffle adds
essentially no additional computation time but reduces the risk
to less than 1 (0.23 on average) potentially identifiable value.
In other words, highly accurate estimates with only 1% error
can be obtained with most queries having no risk of
reidentification. Even if an adversary obtainsthe secret random
string, therisk of 3707 ismuch lessthan 19,174 for HashedI Ds.

Graphical Comparison of Algorithms

Figure4 graphically illustrates the accuracy (the horizontal axis)
and risk (the vertical axis) trade-off of the different algorithms.
For ssimplicity, only the upper bound of therelative error isused
for accuracy. (The lower bound and absolute errors are not
shown.) Although anindividual simulationisplotted asasingle
point in the figure, algorithms are shown as regions because
changing the input parameters to the simulation affects the
results. For example, the blue region in Figure 4 covers the
range of HLLswith queries of different sizes (10 to 10 million
matching patients) and sketches of different sizes (HLL1=2 to
HLL15=32,768 values).
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Figure 4. Comparison of the query accuracy/privacy risk trade-off based on the simulations of a network with 100 sites and 100 million patients.
HashedIDs and Count bound the graph, whereas HLL-based methods enable a more balanced approach. (HLL+MPC is only shown for 10 million
patients, and the values for HLL7+MPC and HLL15+MPC are theoretical rather than experimental.) HLL+MPC reduces the HLL risk by 1/s, where s
isthe number of sitesin the network. HLL+Shufflereducesthe HLL risk by 1/t, wheret isthe number of valuesinthe HLL sketch. HLL: HyperLogL og;

MPC: multiparty computation.
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The key takeaway from Figure 4 isthat Count and HashedIDs
are extremes that cover only one axis or the other, whereas
variations of HLL enable networks to select an algorithm that
fits anywhere between the axes. In other words, with HLL,
networks can determine an acceptable risk level and pick the
sketch size and obfuscation method that will give the most
accurate result. Alternatively, they can start with a desired
accuracy and pick the most secure method that runs within a
given amount of time.

Count+Mask has the worst accuracy but guarantees
10-anonymity (thin horizontal gray box; Figure 4). As each
patient in the simulation was, on average, at two hospitals,
queries that matched all 100 million distinct patients returned
counts from each hospital that added up to 200 million—a 100%
overestimate. Queries that only matched a few patients (small
gueries) had much greater error because of the obfuscation. The
worst case, in theory, is when a query matches one distinct
patient and that patient happens to be at each of the 100
hospitals. Aseach hospital returns<10, the upper bound estimate
assumesthat there are 10 patientsin each hospital and that there
is no overlap. Thiswould result in an upper bound estimate of
100x10=1000 or arelative error of 99,900%. Even when patients
are only at one hospital (no overlap), Count+Mask can have a
900% error.

Without obfuscation, the relative error of Count in the
simulations remained near 100% for queries of all sizes (thin
vertical gray box; Figure 4). However, for small queries, many
sitesreturned potentially identifiable countslessthan 10. At the
other extreme, HashedIDs always gave correct answers (0%

https://www.jmir.org/2020/11/e18735

RenderX

relative error). However, this requires sharing individual data
on all matching patients (thin vertical brown box; Figure 4).
Therisk can be reduced if a different hash function is used for
each query (Hashedl Ds+ Rehash) and an adversary isunableto
discover the hash functions.

Variationsof HLL fill in the space between Count, Count+Mash,
and HashedI Ds, allowing the networks to tune their estimation
method to achieve a more desirable balance of accuracy and
risk for agiven application. In Figure 4, HLL (the blue region),
HLL+Shuffle (the red region), and HLL+Rehash (the thin
horizontal green box) have the same accuracy but different
levels of risk. In contrast to Count, which has more risk with
smaller queries, HLL, like HashedIDs, has a higher risk with
larger queries. Doubling the number of buckets in the HLL
sketch reducesthe error by afactor of sqrt(2); however, without
obfuscation, it also doubles the risk.

The benefit of HLL+ Shuffle is that buckets can be added to
reduce error with only minimal changein risk. For queries that
matched fewer than 100,000 patients, even HLL15+ Shuffle,
which has a relative error of only approximately 1%, had an
average privacy risk of less than 1. HLL+ Rehash reduced risk
even further but required over a minute of extra computational
time in some experiments, whereas the computational time of
HLL+Shuffle is negligible. HLL+Mask guarantees
10-anonymity, but its error was often almost as large as
Count+Mask. The benefit of HLL+Mask isthat it can leverage
the improved accuracy of HLL when possible, while ensuring
that no added risk is introduced.

JMed Internet Res 2020 | vol. 22 | iss. 11| e18735 | p. 9
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Qualitative Comparison of the Algorithms

Table 2 providesaqualitative summary of theresults. In generd,
HLL, especially with obfuscation, is much more accurate than
aggregate counts, lower risk than sharing hash values of all
matching pati ents, and more scal able than privacy guaranteeing

Table 2. Qualitative comparison of algorithms.

Yu & Weber

algorithms. Therelevant benefits of certain methods depend on
the number of patients who match the query. For example, as
the number of patients increases, the risk of Count decreases,
as indicated by “(-)”, while the risk of HLL7 increases, as
indicated by “(+).”

Method and obfuscation Approximation error Runtime wait Risk:Hub Risk:Hub+Site
Count
None Large Very small Medium (-) Medium (-)
Mask Large Very small Zero Zero
MPC2 No change® Medium Zero Zero
HLL7®
None Medium Small Medium (+) Medium (+)
Shuffle No change No change Small (+) No change
Rehash No change Medium (+) Zero No change
Mask Medium (+) Medium (-) Zero Zero
MPC No change Large Small (+) Small (+)
Shuffle+MPC No change HLL7+MPC Very small (+) HLL7+MPC
HLL15
None Small Medium Large (+) Large (+)
Shuffle No change No change Small (+) No change
Rehash No change Medium (+) Zero No change
Mask Large (+) Medium (-) Zero Zero
Hashedl Ds
None Zero Medium (+) Very large (+) Very large (+)
Rehash No change No change Zero No change

3\IPC: multiparty computation.
bNo change: the value is the same as the method without any obfuscation.
CHLL: HyperLogLog.

Computational and Communication Costs

Multimedia Appendix 3 shows the theoretical upper boundson
the computational costs of each method plus obfuscation
technique, theoretical exact communication costs (the space
complexity of the amount of data that the hospitals and hub
have to send over the network), and the actual empirical results
of both computational and communication costs.

Discussion

Summary of Results and Practical Considerations

Inthisstudy, we surveyed and benchmarked arange of methods
for determining the number of distinct patients who matched a
federated query, exploring the trade-offs in accuracy, privacy,
and speed. We explicitly do not endorse asingle one-size-fits-al
method because different networks and institutions will have
different needs. With data use agreements and a trusted third
party, HashedIDs provides the most accurate results. When
minimizing privacy risk isthe most important factor, networks

https://www.jmir.org/2020/11/e18735

can choose between (1) fast but inaccurate methods such as
Count+Mask, (2) accurate but slow agorithms such as
HLL+ Rehash, or (3) privacy-guaranteed methodsthat only work
on small networks. A key goal of the ACT network isreal-time
queries that enable rapid exploration of the data. As a resullt,
adding even a few seconds of computational time to ACT
gueries might not be acceptable. When runtimes must be
minimized, methods such as HLL7+Mask and HLL7+ Shuffle
arefast and have agood balance between accuracy and privacy.

In practice, we envision a combination approach. Queries can
first be run using a fast, private method, such as Count+Mask
or Count+MPC. Given these rough results and the needs of the
researcher, hospitals can then be asked to return the HLL
sketches for the patients who matched the query. The initial
count estimate and the privacy risk allowed by the network
could be used to select the HLL sketch size and obfuscation
method that would return the most accurate result in areasonable
amount of time. Inthefinal stage of research (eg, in preparation
for afull clinical trial), investigators could request permission
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from institutions to run accurate but potentialy identifiable
queries, such asHLL15 or HashedIDs.

Limitations

It is important for each ingtitution to assess their own risk
models. In particular, our risk model assumesthat given asketch
for a given condition (eg, hypertension), the adversary already
has access to the list of patients at the hospital and wants to
identify patients that have the condition. The filled buckets of
an HLL sketch correspond to hashes of patients who have the
condition, and our goal is to ensure that for every patient with
the condition, at least nine other patients without that condition
could have hashed to the same value, ensuring 10-anonymity.
Statistics that do not meet this requirement count for the privacy
loss score. For example, our privacy risk analysis differs
considerably from that of Desfontaines et al [27] who argue that
“cardinality estimatorsdo not preserve privacy.” However, their
threat model assumesthat an adversary can access the sketches
as they are being generated, one patient at atime. In contrast,
our risk model is based on each hospital’s final sketch, which
represents al patients who match the query.

In addition, some amount of information is leaked about the
patients not included in the sketch, precisely because they were
not included. This does not allow an adversary to pinpoint
patients with a condition but may sometimes alow them to
determine a patient lacking that condition. Of course, thistype
of leakage isto some extent a problem with any aggregate query
system, because if an adversary learns that only 1% of patients
at a hospital have a condition, then they know with high
certainty that most patients do not. In line with our analysis
mentioned earlier, however, for this type of leakage, Count is
more private than HLL, which is more private than HashedI Ds,
so the same privacy-accuracy trade-off applies.

Acknowledgments

Yu & Weber

We only considered afederated or distributed network inwhich
no patient-level clinical data leave the institution and queries
only return aggregate counts. This is in contrast to
privacy-preserving record linkage approaches whose goal isto
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set through an honest broker without exchanging identifiable
information. With the appropriate technologies, a secure
infrastructure, and the proper institutional agreementsin place,
it ispossible to merge data sets, even on large scales. PCORNEet,
in particular, has used methods similar to HashedIDs and
Hashed| Ds+ Rehash to do this for subsets of hospitals in its
network [28,29]. There are multiple advantages of centralized
data, including exact results and ease of use. However, in this
study, we showed that (1) linking and deduplicating data at the
individual patient level is not necessary to obtain accurate
estimates and (2) this can be donein acomputationally efficient
manner. There are benefits to this federated model. It reduces
concerns that hospitals might have in sharing data, it does not
require updating and relinking the central database, and it places
less dependency on having an honest broker.

Conclusions

We believe that as federated data networks expand to include
more ingtitutions and data types (clinical, genomic,
environmental, etc), researchers will increasingly depend on
fast, accurate, and secure query tools to obtain the greatest
possible scientific value from the networks. However, because
no single algorithm meets al these requirements, having the
ability to select among different methods for a particular
application is essential. In this study, we introduce HLL and
several obfuscation techniques to provide networks with a
tunable approach to determine the number of distinct patients
who match a query, which is more balanced than commonly
used methods that greatly sacrifice accuracy (Count+Mask),
privacy (HashedIDs), or scalability.
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