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Abstract

Background: Fractures as a result of osteoporosis and low bone mass are common and give rise to significant clinical, personal,
and economic burden. Even after a fracture occurs, high fracture risk remains widely underdiagnosed and undertreated. Common
fracture risk assessment tools utilize a subset of clinical risk factors for prediction, and often require manual data entry. Furthermore,
these tools predict risk over the long term and do not explicitly provide short-term risk estimates necessary to identify patients
likely to experience a fracture in the next 1-2 years.

Objective: The goal of this study was to develop and evaluate an algorithm for the identification of patients at risk of fracture
in a subsequent 1- to 2-year period. In order to address the aforementioned limitations of current prediction tools, this approach
focused on a short-term timeframe, automated data entry, and the use of longitudinal data to inform the predictions.

Methods: Using retrospective electronic health record data from over 1,000,000 patients, we developed Crystal Bone, an
algorithm that applies machine learning techniques from natural language processing to the temporal nature of patient histories
to generate short-term fracture risk predictions. Similar to how language models predict the next word in a given sentence or the
topic of a document, Crystal Bone predicts whether a patient’s future trajectory might contain a fracture event, or whether the
signature of the patient’s journey is similar to that of a typical future fracture patient. A holdout set with 192,590 patients was
used to validate accuracy. Experimental baseline models and human-level performance were used for comparison.

Results: The model accurately predicted 1- to 2-year fracture risk for patients aged over 50 years (area under the receiver
operating characteristics curve [AUROC] 0.81). These algorithms outperformed the experimental baselines (AUROC 0.67) and
showed meaningful improvements when compared to retrospective approximation of human-level performance by correctly
identifying 9649 of 13,765 (70%) at-risk patients who did not receive any preventative bone-health-related medical interventions
from their physicians.

Conclusions: These findings indicate that it is possible to use a patient’s unique medical history as it changes over time to
predict the risk of short-term fracture. Validating and applying such a tool within the health care system could enable automated
and widespread prediction of this risk and may help with identification of patients at very high risk of fracture.
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Introduction

Fractures due to osteoporosis and low bone mass are associated
with a significant personal, clinical, and economic burden. These
fractures are common; the risk of sustaining such a fracture
increases with age, and their incidence is expected to increase
worldwide as the population ages [1-11]. In the United States,
an estimated 1 in 2 women and 1 in 4 men over 50 years of age
will experience such a fracture [12-14]. However, there remains
a significant diagnosis and treatment gap for osteoporosis
[1,2,4,12]. When these fractures occur, they often result in a
loss of independence for patients and can lead to functional
disability, lower quality of life, and increased mortality
[5,15-38]. Given this substantial burden and unmet need for
interventions, it is critical to identify patients at risk of fracture,
as effective management of risk can prevent these deleterious
outcomes.

Several fracture risk prediction tools have been developed for
clinical use. The most commonly used tools are the University
of Sheffield Fracture Risk Assessment Tool, known as FRAX
[39], and the Garvan Institute of Health Bone Fracture Risk
Calculator (GIH-BFRC) [40]. Both tools use a set of
cross-sectional clinical risk factors to evaluate fracture
likelihood, and typically require manual data entry to perform
the predictions. The performance of both methods varies greatly
in real-world analyses; this variance is partially explained by
study population and design and predicted fracture outcome
(hip vs other osteoporotic fractures). In a review [41], 12 studies
of FRAX showed an average area under the receiver operating
characteristics curve (AUROC) of 0.65 (SD 0.038) when
predicting major osteoporotic fractures without including bone
mineral density in the model, and similar results were shown
for GIH-BFRC [41]. These commonly used risk assessment
tools estimate 5- and 10-year fracture risk but do not provide
estimates of 1- to 2-year risk [42-45].

Increased risk of fracture in the next 1-2 years is not routinely
assessed in clinical practice, despite the existence of rapid-acting
preventative therapeutics [8,46,47]. Although methods for
predicting short-term risk have been explored [48-50], they have
not yet been widely clinically accepted. Furthermore, these
models are limited to a specific set of cross-sectional
information, some of which may not readily be available. Thus,
there remains a need to further develop a fracture risk prediction
tool that predicts on a short-term time frame in order to facilitate
identification of patients at high risk. While there are published
examples [51-53] applying artificial intelligence to fracture and
osteoporosis risk, these approaches focus either on imaging data
[51] or on cross-sectional data for long-term predictions [52,53].
To our knowledge, there is no existing method that applies deep
learning to sequential patient data for predicting fracture risk.

To address these unmet needs, we developed Crystal Bone, a
machine learning approach that leverages techniques typically
applied in natural language processing. However, rather than
applying these methods to text-based data, we applied them to
longitudinal data contained in electronic health records.
Specifically, we focused on diagnosis codes (International
Classification of Diseases; ICD), treating each code as a word
and sequences of codes as stories. The goal of this study was
to evaluate the ability of these natural language
processing–based models to learn patterns associated with
increased short-term (ie, 2-year) fracture risk. The results of our
analyses suggest that not only does this unique longitudinal
method produce accurate short-term fracture risk predictions,
but also that the approach can help fulfill the unmet need that
exists in fracture-risk identification.

Methods

Data Background
We used subsets of the Optum deidentified electronic health
record data set, which contains comprehensive longitudinal
electronic health record data for 91 million patients from over
140,000 providers (as of March 2018) from the United States.
The subsets, which contain bone health and pan-therapeutic
populations respectively, cover the time from January 1, 2007,
through December 31, 2018 (Optum, email communication,
August 2019).

The bone health subset was obtained by filtering for patients
with osteoporosis, fractures, or bone-related medications
(n=6,329,986). In the period covered by the data set, the fracture
incidence rate (ie, the proportion of fractures among all events
detected, which may include multiple fractures per person) was
39% in the population over 50 years of age. The bone health
data set was primarily used for training the model.

The pan-therapeutic data set represented a random sample of
5% of the overall Optum electronic health record data set and
contained patient data (n=3,476,219) with no filtering for any
specific comorbidities or treatments; this dataset had a fracture
incidence rate of 8.5% in the population over 50 years of age.
Because the sample was drawn from such a large population,
the pan-therapeutic data set was assumed to be broadly
representative of the US population. As such, we performed all
model evaluations on a testing sample from this data set (a
holdout data set), to better understand the generalizability of
the model in a real-world setting.

Ethical Approval
Since this was a retrospective study using deidentified data,
patients were not required to actively participate in the study.
Therefore, neither informed consent of patients nor institutional
review board approval was required.
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Data Engineering and Cohort Selection
The cohort consisted of patients who were at least 50 years of
age at the time of their event; this criterion was chosen to reduce
the data to a population that is more susceptible to fractures
associated with osteoporosis and low bone mass. For fracture
patients, an event is the date of occurrence of any qualifying
fracture. Qualifying fractures are defined by a set of rules based
on those used by Wright et al [54] for identifying novel and
relevant fracture events in claims data. For nonfracture patients,
an event is the date of the last recorded diagnosis of any kind
in the data set. We describe further details of the fracture
identification process in Multimedia Appendix 1.

We further filtered our cohorts for patients with at least 2 years
of medical history leading up to their respective events.
Applying these parameters limited the bone health cohort to
3,408,494 patients and the pan-therapeutic cohort to 700,315
patients.

We applied sliding windows to the data (Figure 1), where each
event could have up to 5 windows, and each window was a
historical sequence defined as the list of chronologically ordered
ICD codes in the 2 years leading up to an event. These historical
sequences were then used to predict risk of fracture within a
2-year horizon (a 1-year horizon was also explored, see
Multimedia Appendix 1). As shown in Figure 1, some windows
were dropped from the analysis due to incomplete or potentially
overlapping coverage. Additionally, windows that occur more
than 2 years before a fracture event were labeled as nonfracture
windows. The motivation for this approach was to provide the
algorithm with multiple unique code sequences leading up to
the same event that may reflect changes in risk at various times
within the given time horizon. Furthermore, the fixed window
size provided a consistent timeframe for prediction as opposed
to varying lengths of time for each patient, which would have
occurred if patients’complete code histories were used. Further
details regarding the motivation and methodology of this
approach are in Multimedia Appendix 1.

Figure 1. Sliding window algorithm schematic. This schematic depicts the sliding window algorithm for a multifracture and nonfracture patient.
Dx:diagnosis; ICD: International Classification of Diseases.

There was no additional filtering based on specific diagnoses
or comorbidities. For each qualifying patient, the algorithms
utilized all available ICD codes in the historical sequences
described above. Only the codes that occurred fewer than 5
times in the full cohort were excluded, as these codes were too
rare to be included in the diagnosis code vocabulary.

Data Sampling
Before model training, we generated a 70:30 random split of
the pan-therapeutic data, representing training and holdout
subsets. Since the pan-therapeutic data set is highly imbalanced,
with a fracture event incidence of only 6.5% after applying the
sliding window algorithm, we oversampled additional fracture
windows from the bone health data set to achieve a balanced

(50:50) training set for modeling. This oversampling training
paradigm was replicated for all models. The holdout set
remained untouched, with the original distribution of fractures.

Modeling Approaches

Overview
Crystal Bone was inspired by techniques that are typically
applied in natural language processing. However, instead of
applying these techniques to text-based data, we applied them
to sequences of ICD codes. Correspondingly, each ICD code
was analogous to a word, and each sequence of ICD codes was
analogous to a document. To this end, we implemented 2 distinct
frameworks: (1) ICD code vectorization and long short-term
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memory networks, and (2) patient-level vectorization and
extreme gradient boosting decision trees. Both approaches utilize
sequences of ICD codes as inputs. The ICD code vectorization
and long short-term memory framework undertakes this task
by first learning semantic definitions for the codes, then
evaluating the sequence of definitions through a deep learning
network.. The patient-level vectorization and extreme gradient
boosting modeling framework employs a similar approach;
however, rather than embedding individual ICD codes, it embeds
the entire ICD code sequence for each patient, thereby learning
“summaries” of patient sequences. This framework produces a
prediction by feeding these summaries through a decision tree
classifier. The model parameters were tuned to optimize
AUROC; details of this process are provided in Multimedia
Appendix 1.

Framework 1: ICD Code Vectorization + Long
Short-Term Memory
The first framework consisted of 2 primary components. The
ICD code vectorization component was responsible for learning
a “definition” for each ICD code based on skip-gram architecture
word embedding (word2vec) [55], an unsupervised learning
approach that mapped each code in the vocabulary to a
100-dimensional vector. To generate these embeddings, we
utilized sequences from the pan-therapeutic training set alone
(without oversampling), to avoid bias toward bone-health related
codes. In our implementation, the vocabulary consisted of all
diagnosis codes that occurred at least 5 times in this data set,
amounting to more than 40,000 unique codes. The method
generated a vector for each code based on the context in which
it appeared; in electronic health records, similar ICD codes

appear in similar contexts, and as a result have similar vector
representations. These embeddings reduced the dimensionality
and sparsity of the feature space, and helped the neural network
recognize related ICD codes. Figure 2 illustrates the encoded
vectors projected onto a 2D space using uniform manifold
approximation and projection (UMAP) for dimension reduction
[56]. The collocation of related diagnosis codes in this
coordinate space provided qualitative evidence that the ICD
code vectorization had encoded meaningful latent information.

The long short-term memory component consisted of a neural
network with long short-term memory layers, a deep learning
architecture that enables the evaluation of recurrent data, such
as sequences of embedded ICD codes. We trained this network
with the complete training set (including oversampling from
the bone health data set). The long short-term memory network
predicted the likelihood of a fracture event within 2 years as a
classification problem. Long short-term memory networks are
a common approach for solving such problems [57].

Additionally, given the ubiquitous use of nonsequential features
such as age and sex for predicting fracture risk, we supplied age
and sex to the neural network as static features through
concatenation of long short-term memory and dense layers.
Furthermore, because the long short-term memory framework
required all input sequences to have uniform length, we also
included total diagnosis count as a static feature to account for
the effects of truncating or padding the sequences. The
schematic in Figure 3 provides an overview of the model
architecture and inputs to the algorithm, namely age, sex,
diagnosis count, and the patient’s unique sequence of ICD codes.
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Figure 2. 2D projection of ICD-10 code embeddings from the ICD code vectorization model: (a) All ICD-10 codes by the first letter (high-level
category) of the code, (b) a cluster of codes related to alcohol near coordinates (2.3, 3) by code subgroups, (c) a cluster of codes related to kidney function
near coordinates (3.75, 0.025) by code subgroups, and all ICD-10 fracture codes in region C (d) by region of the body, and (e) by frequency of occurrence.
ICD: International Classification of Diseases; UMAP: uniform manifold approximation and projection.
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Figure 3. High-level architecture of the long short-term memory neural network including the dimensionality of the inputs, as well as the number of
nodes in each layer. Dx: diagnosis; Icd2vec: ICD code vectorization; LSTM: long short-term memory.

Framework 2: Patient-Level Vectorization and Extreme
Gradient Boosting
Similar to the ICD code vectorization + long short-term memory
modeling framework, the patient-level vectorization and extreme
gradient boosting decision trees framework consists of 2
components. First, the patient-level vectorization embeds entire
ICD code sequences to a 128-dimensional semantic space using
the distributed bag of words framework [58]. Much as the ICD
code vectorization learned definitions of individual ICD codes,
the patient-level vectorization instead learned summaries of
patient sequences. The method for doing so is the same; patients
with similar sequential contexts will have similar summary
vectors. We trained the patient-level vectorization with the
sliding window ICD code sequences, again only utilizing the
pan-therapeutic data to avoid bias toward the bone health
therapeutic area. This created embeddings that represented
2-year episodes of patient histories; a detailed exploration of
these embeddings is in Multimedia Appendix 1.

The extreme gradient boosting decision trees component utilized
the embeddings from the patient-level vectorization, as well as
the static features of age, sex, and total diagnosis count that
were incorporated in Framework 1, to predict fracture risk. This
type of algorithm, also referred to as XGBoost, is a scalable
tree-based modeling approach that improves the generalizability,
speed, and efficacy of prediction [59]. We trained this algorithm
with the full training set (including bone health data set
oversampling) to learn a classification model that predicted the
likelihood of fracture within 2 years.

Ensemble Model
An ensemble model was also evaluated. This algorithm
combined the outputs of both the aforementioned frameworks
with a logistic regression metaclassifier.

Baseline Models
We compared these modeling frameworks to 2 baseline models.
The first baseline model utilized the age and sex of each patient
at each window. These were 2 of the only features shared by
the FRAX tool and the GIH-BFRC models. The other shared
feature is prior fracture; however, because neither the FRAX
tool nor GIH-BFRC’s method of measuring this value was
possible for our data set without censoring, we did not include
it in the model. The second baseline incorporated age, sex, and
total diagnosis count (number of ICD codes) in each sample;
these represent all of the static features used by both modelling
frameworks, enabling evaluation of the relative benefit of
including sequential ICD code data. Both baseline models
utilized extreme gradient boosting decision tree algorithms, the
same classification approach that was used in Framework 2.

Human-Level Performance Approximation
In addition to these baselines, we approximated human-level
performance by isolating a set of retrospective
physician-prescribed interventions that were identifiable in the
electronic health record data set. These interventions consisted
of diagnostic tests as well as pharmacologic treatments. The list
of interventions was based on treatment guidelines provided by
the National Osteoporosis Foundation [60] and the Journal of
Clinical Endocrinology and Metabolism [61] and was further
validated by the physician coauthors of this manuscript, who
confirmed that the interventions aligned with their understanding
of osteoporosis treatment guidelines (Table 1). If a patient
received one of these interventions in a 2-year historical
window, that window was flagged as “physician-identified risk,
worthy of intervention.” A full description of the limitations of
this approach is described in Multimedia Appendix 1.
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Table 1. List of physician interventions for human-level performance analysis.

PharmacologicType and name

Procedure

NoDual-energy x-ray absorptiometry

NoVertebral fracture assessment

NoQuantitative computed tomography

NoOther bone density measurements (single energy x-ray absorptiometry, radiographic absorptiometry, ultrasound, single-
photon absorptiometry)

NoBone turnover markers

YesAdministration of any medications referenced below

Treatment

YesBisphosphonates (alendronate, alendronate-cholecalciferol, ibandronate, risedronate, zoledronic acid)

YesAbaloparatide

YesDenosumab

YesRaloxifene

YesBazedoxifene

YesRomosozumab

YesTeriparatide

YesCalcitonin

Diagnosis

NoOsteoporosis (M80, M81, 733.0)

We defined the cohort of patients who did not receive any form
of intervention (diagnoses, tests, or treatments) as no
intervention and assessed how well the algorithm was able to
correctly identify which patients had a fracture within 2 years,
as well as how frequently the algorithm mistakenly flagged
patients with no imminent fracture. We also evaluated the
patients who received interventions (the intervention cohort)
with this method, referred to as the cohort analysis. However,
since an intervention can directly modulate fracture risk, we
performed a separate analysis in order to mitigate some of the
uncertainty due to the effects of interventions. For this analysis,
we identified each patient’s first pharmacologic intervention
and used the diagnosis history leading up to this date as input.
This analysis allowed us to gauge the extent to which the
algorithm flags agreed with human-level performance
interventions (without needing to adjust for their effects). We
termed this the overlap analysis. The cohort analysis utilized

the full list of interventions, while the overlap analysis utilized
the pharmacological subset of the list of interventions.

Model Performance
We report model performance on a set of 5 primary metrics:
AUROC, recall (sensitivity), specificity, precision, and area
under the precision-recall curve (AUPRC).

Results

Model Performance
The overall performance of the algorithms is shown through
comparison of the 2 frameworks with the 2 baseline models to
demonstrate the quality of each algorithm's predictions. Table
2 shows a summary of key model performance metrics on the
same holdout data set. The Crystal Bone models, including the
ensemble model that combined the 2 approaches, outperformed
the baseline models for nearly all performance metrics.
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Table 2. Comparison of model performance metrics.

AUPRCbPrecisionSpecificityRecallAUROCaModel

0.4620.1920.8120.6460.812ICD code vectorization + LSTMc

0.3580.1610.7580.6700.790Patient level vectorization + XGBoostd

0.4630.1770.7770.6930.818Ensemble

0.1190.08550.4160.7870.667Baseline (age, sex)

0.1300.1140.7070.5470.668Baseline (age, sex, diagnosis count)

aAUROC: area under the receiver operating characteristics curve.
bAUPRC: area under the precision-recall curve.
cLSTM: long short-term memory.
dXGBoost: extreme gradient boosting.

ICD Code Vectorization + Long Short-Term Memory
Model
To further characterize this performance, we evaluated the ICD
code vectorization and long short-term memory model on
primary and subsequent fracture events. While the model
performs best on subsequent fractures, both primary and
subsequent fracture analyses (AUROC 0.742 and 0.910,
respectively) show a marked improvement against corresponding
baseline models (AUROC 0.591 and 0.747, respectively). We
report detailed results of this experiment and additional
evaluations of sensitivity and robustness of this model in
Multimedia Appendix 1.

Human-Level Performance Comparison
Table 3 contains the results of the cohort analysis. For windows
with no interventions, Crystal Bone Framework 1 correctly
flagged 16,127 of the 28,626 windows that resulted in fracture

(56.3%); this corresponds to 9649 out of 13,765 (70.1%) of the
unique fracture events. Crystal Bone Framework 1 incorrectly
flagged 91,717 of the 532,621 windows with no fractures as
at-risk (17.2%); however, 1053 of the windows in this cohort
(3%) sustained a fracture in >2 years.

For windows with interventions, only 11,833 of 69,198 (17.1%)
of the detected interventions included treatments; thus, the
remaining 57,365 (82.9%) interventions were either diagnoses
or diagnostic tests. In the intervention cohort, Crystal Bone
Framework 1 correctly captured 10,277 out of 12,244 windows
for which fracture occurred within 2 years (83.9%). For the
windows with interventions and no fracture event, 19,235 out
of 56,954 (33.8%) are incorrectly flagged by our algorithm as
at risk. These results suggest Crystal Bone’s ability to recognize
interventions through their associated ICD codes and adjust the
predicted fracture risk accordingly. However, a deeper
exploration of specific interventions is required to verify this.

Table 3. Human-level performance results.

No flag, n (%)Flag, n (%)Windows, n (%)Cohort

——a630,445 (100)Total

——561,247 (89.0)No intervention

12,449 (43.7)16,127 (56.3)28,626 (5.1)Fracture

440,904 (82.8)91,717 (17.2)532,621 (94.9)Nonfracture

——69,198 (11.0)Intervention

1967 (16.1)10,277 (83.9)12,244 (17.7)Fracture

37,719 (66.2)19,235 (33.8)56,954 (82.3)Nonfracture

aNot reported.

The overlap analysis enabled us to better understand how well
Crystal Bone Framework 1 correlated with observed physician
interventions through exploration of the first pharmacological
treatment in the holdout set. Of the 7127 patients who received
treatment, 6071 had enough medical history leading up to this
treatment for Crystal Bone Framework 1. When evaluating these
patients, 3017 out of those 6071 (49.7%) were considered at
risk of fracture in 2 years.

We evaluated the incidence of fracture within 2 years for this
subgroup. Of the cohort deemed at risk by the algorithm, 684

out of 3017 (22.7%) experienced a fracture within 2 years of
the first intervention date. This precision is a slight improvement
over that of the algorithm on the overall holdout set, at 19.2%.
Furthermore, of all 570 patients in this pharmacological
intervention cohort who ultimately suffered from a fracture
within 2 years, Crystal Bone Framework 1 correctly flagged
469 (82.3%).
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Discussion

General
In this study, we evaluated the performance of 2 natural
language processing–inspired fracture prediction models: (1)
ICD code vectorization and long short-term memory (AUROC
0.812) and (2) patient-level vectorization and extreme gradient
boosting (AUROC 0.790). The performance of these models
reflected a substantial improvement over 2 baseline models: (1)
with age and sex (AUROC 0.670) and (2) with age, sex, total
diagnosis count (AUROC 0.670). Furthermore, these short-term
prediction metrics were an improvement over cross-sectional
tools for long-term time frames, such as FRAX and GIH-BFRC,
which have been widely clinically accepted [41]. Although
fundamental differences in study design make it impossible to
compare these metrics directly, sensitivity analyses of Crystal
Bone across fracture types, prediction time frames, and fracture
definitions suggest robust predictive performance and
generalizability. To our knowledge, this is the first study that
has experimented with separate models for primary and
subsequent fracture types; further discussion of this analysis,
as well as the additional sensitivity analyses, is in Multimedia
Appendix 1.

The human-level performance comparison provides deeper
insight to the benefits of Crystal Bone. The retrospective
labeling utilized in both the cohort and overlap analyses enabled
a scalable, data-driven comparison of physician action and
Crystal Bone and avoided bias that may occur through
alternative methods of human-level performance evaluation
[62]. To our knowledge, this is the first fracture risk prediction
study which includes such a human-level performance
comparison in the analysis.

Through the cohort analysis we learned that only a small
proportion of patients received preventative interventions,
including basic diagnostic tests, showcasing the extent of unmet
need in the health care system [1,2,4,12]. In the subset of patient
windows with no interventions, Crystal Bone was able to flag
70.1% of the unique fracture events. Given the existence of
rapid-acting preventative therapeutics [8,46,47], as well as the
demonstrated efficacy of bone-forming agents in reduction of
1- to 2-year fracture risk [63-69], these results suggest that, had
appropriate preventative measures been taken, the risk of these
fractures may have been reduced, thus mitigating a significant
burden to both the patient and the health care system.

The findings of the overlap analysis further support the merits
of Crystal Bone, through demonstration of alignment with
observable interventions made by physicians. Because it is
impossible to confirm whether these treatment interventions
were taken in response to a perceived short-term risk of fracture,
we cannot expect 100% overlap between Crystal Bone and these
observed interventions. We saw that Crystal Bone was aligned
with these physician interventions 49.7% of the time. While
this overlap is not complete, it captured 82.3% of the patients
who ultimately experienced a fracture, reflecting the algorithm’s
increased sensitivity for the cohort deemed at-risk by physicians.

This suggests a meaningful alignment with both physician
evaluation and actual observed fracture risk. Ultimately, these
human-level performance comparisons, coupled with
performance against baseline models and alternative risk
prediction methods, suggest that Crystal Bone can fulfill a
critical unmet need through identification of patients at high
risk of fracture.

Limitations of the Current Approach
Various limitations exist for the approaches described,
particularly from the inherent complications of using real-world
data. The techniques described rely upon ICD codes recorded
in electronic health record systems, which will impact the
performance and validity of the models if diagnoses are not
detected, incorrectly recorded, or missed due to patient dropout.
Indeed, most vertebral fragility fractures are clinically silent
and hence not captured in electronic health records [70]. While
an approach utilizing only ICD codes is potentially more
comprehensive and straightforward for real-world
implementation due to the quality of coverage and descriptive
nature of diagnosis codes, we may miss salient clinical features
captured elsewhere in the electronic health record. For example,
there exist ICD codes associated with obesity, osteopenia, and
osteoporosis, which represent measurements of BMI and bone
mineral density on a categorical level. However, these do not
reflect exact clinical measurements; the exclusion of these
quantitative measurements may limit the performance and
clinical impact of the algorithm. Nevertheless, it may be
advantageous to utilize these ICD codes rather than the
quantitative measures, as such measures in an electronic health
record frequently contain human error and may not always be
readily available.

In addition to data set challenges, there exist limitations inherent
to assumptions of the modeling approach. The suppositions of
constant time between diagnosis codes and uniform sequence
length may affect performance. Exploration of more advanced
methods that do not require such assumptions could improve
the model and is an area of future work.

Perhaps the greatest limitation of the described approaches is
that they are generally considered black box approaches and
lack significant interpretability. Developing methods for
improved interpretation of deep learning models is an active
area of research. We have performed an initial exploration of
this for the ICD code vectorization and long short-term memory
model in Figure 4, which compares various characteristics of
the four prediction cohorts of the confusion matrix for the test
set (true positive [TP], false positive [FP], true negative [TN],
false negative [FN]). Within each of these groups, we performed
exploratory analysis on the associated samples for each of the
input features in the model: age, sex, total diagnosis count, and
ICD codes. Results of this analysis are described in detail in
Multimedia Appendix 1. While this serves as an initial
evaluation of model interpretability, a deeper exploration of
interpretability techniques is an area for future work in these
algorithms.
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Figure 4. Exploration of model interpretability by comparison of various characteristics of the input data for the 4 prediction cohorts of the confusion
matrix. FN: false negative; FP: false positive; ICD: International Classification of Diseases;TN: true negative; TP: true positive; UMAP: uniform
manifold approximation and projection.

Another limitation of this study is the inability to perform direct
comparisons with established risk calculators such as FRAX.
Additionally, this approach has yet to be validated with external
data, which is the subject of future work.

Potential Applications
We foresee numerous applications of this work in the health
care system, with benefits for patients, providers, and payers
alike. For payers, Crystal Bone provides a unique opportunity
to explore population health, enabling insurers to identify and
address patients in need of evaluation or intervention, and
preventing the large expenses associated with fracture events.
For providers, direct electronic health record integration would
facilitate patient care, and help identify at-risk patients who are
not currently identified as such. That being said, effective
implementation requires additional understanding on the impact
of interventions on short-term fracture risk; while there is
evidence to suggest that rapid acting treatments and
bone-forming agents can significantly decrease fracture risk on
a shortened time frame [8,46,47,63-69], a more detailed
exploration of the optimal care pathways for various Crystal
Bone risk scores would likely be required to facilitate real-world
use of the algorithm.

Crystal Bone addresses the need for an automated and largely
physician-independent tool that is effective at predicting

short-term fracture risk. It is the first such approach that takes
longitudinal patient trajectories into account, rather than
focusing primarily on cross-sectional information, enabling a
more personalized assessment of fracture risk. Furthermore,
with automated aggregation of patient histories in an electronic
health record system, the prediction of fracture risk could be
entirely hands-off, without requiring a doctor or patient to
manually enter any information into the software. This unique
approach may facilitate broader adoption of the algorithm. Still,
the lack of clinical guidelines for 1- and 2-year risk may limit
adoption in the near future.

Such a tool, if widely applied, could facilitate early patient
identification, and help reduce the morbidity and mortality
associated with fractures. The retrospective human-level
performance comparison suggests that Crystal Bone would
identify patients who are currently missed in the health care
system, potentially minimizing the burden on patients and the
health care system overall. Given the prevalence and anticipated
increase of fractures due to osteoporosis and low bone mass as
the population ages, as well as the enormous personal, clinical,
and economic costs associated with such fractures, Crystal Bone
could provide a meaningful positive impact through reduced
burden and improved outcomes.
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