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Abstract

Background: Federated learning (FL) is a newly proposed machine-learning method that uses a decentralized dataset. Since
data transfer is not necessary for the learning process in FL, there is a significant advantage in protecting personal privacy.
Therefore, many studies are being actively conducted in the applications of FL for diverse areas.

Objective: The aim of this study was to evaluate the reliability and performance of FL using three benchmark datasets, including
a clinical benchmark dataset.

Methods: To evaluate FL in a realistic setting, we implemented FL using a client-server architecture with Python. The implemented
client-server version of the FL software was deployed to Amazon Web Services. Modified National Institute of Standards and
Technology (MNIST), Medical Information Mart for Intensive Care-III (MIMIC-III), and electrocardiogram (ECG) datasets were
used to evaluate the performance of FL. To test FL in a realistic setting, the MNIST dataset was split into 10 different clients,
with one digit for each client. In addition, we conducted four different experiments according to basic, imbalanced, skewed, and
a combination of imbalanced and skewed data distributions. We also compared the performance of FL to that of the state-of-the-art
method with respect to in-hospital mortality using the MIMIC-III dataset. Likewise, we conducted experiments comparing basic
and imbalanced data distributions using MIMIC-III and ECG data.

Results: FL on the basic MNIST dataset with 10 clients achieved an area under the receiver operating characteristic curve
(AUROC) of 0.997 and an F1-score of 0.946. The experiment with the imbalanced MNIST dataset achieved an AUROC of 0.995
and an F1-score of 0.921. The experiment with the skewed MNIST dataset achieved an AUROC of 0.992 and an F1-score of
0.905. Finally, the combined imbalanced and skewed experiment achieved an AUROC of 0.990 and an F1-score of 0.891. The
basic FL on in-hospital mortality using MIMIC-III data achieved an AUROC of 0.850 and an F1-score of 0.944, while the
experiment with the imbalanced MIMIC-III dataset achieved an AUROC of 0.850 and an F1-score of 0.943. For ECG classification,
the basic FL achieved an AUROC of 0.938 and an F1-score of 0.807, and the imbalanced ECG dataset achieved an AUROC of
0.943 and an F1-score of 0.807.

Conclusions: FL demonstrated comparative performance on different benchmark datasets. In addition, FL demonstrated reliable
performance in cases where the distribution was imbalanced, skewed, and extreme, reflecting the real-life scenario in which data
distributions from various hospitals are different. FL can achieve high performance while maintaining privacy protection because
there is no requirement to centralize the data.
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Introduction

Background
Traditional machine learning and deep learning require a
centralized dataset to train a model. Therefore, such methods
not only require data transfer to collect data from many devices,
people, or institutions but also have a high computational cost
because they must be trained on large datasets. When collecting
privacy-sensitive data such as medical data, privacy protection
is a major hurdle. Centralized databases are the main targets of
hacking attacks, and therefore the risk of a data breach is
severely increased [1,2]. Moreover, data centralization increases
the risk of reidentification of deidentified data because of the
increased data size [3].

To reduce the computational cost, Google proposed a method
known as federated learning (FL), which uses the computational
cores in mobile devices [4-6]. In FL, training is performed at
the individual client level, and then the local weights of each
client are sent to the server. The server collects the updated local
weights and calculates the new global weights. Subsequently,
the client downloads the global weights from the server and
continues the training process. Since its first use in mobile apps
[7-9], many researchers have been studying and improving FL
in various fields [10-14]. In particular, studies on heterogeneity
of data [4,15], robust optimization [16-20], and security methods
such as differential privacy and secure multiparty computation
have also been conducted with an FL approach [12,21,22].
Research on FL has also been conducted in the medical field
[10,13,19]. In particular, studies have been conducted using
electronic medical records and brain tumor data [23-25].
However, the application of FL to real medical data has not
been sufficiently studied.

FL can be used to resolve privacy issues and mitigate the risk
of a data breach in clinical information, since transfer and
centralization of data are not required. Privacy protection is
particularly beneficial for medical data analysis, since medical
data represent some of the most sensitive types of personal data.
To protect patients’ privacy, deidentification methods have
typically been applied [26-28]. However, data centralization is
required for both deidentifying data and evaluating the risk of
reidentification. If the data are centralized, the risk of a data
breach is increased. Moreover, when deidentifying the dataset,
the direct or indirect identifiers in the medical data must be
determined. This is challenging because of the lack of clear
guidelines. The Health Insurance Portability and Accountability
Act in the United States provides clear deidentification guidance;
it defines 18 types of protected health information to be removed
[29]. However, many researchers and social activists claim that
this guidance should be revised to enhance privacy protection
[30]. In contrast, FL does not require the centralization of raw

data. As a result, even the FL developers cannot access the raw
data. Therefore, FL can solve privacy or deidentification issues
that occur when using clinical data.

Objectives
The aim of this study was to assess the performance of FL on
three benchmark datasets: the Modified National Institute of
Standards and Technology (MNIST) dataset, Medical
Information Mart for Intensive Care-III (MIMIC-III) dataset,
and PhysioNet Electrocardiogram (ECG) dataset. We also
verified FL in environments that simulate real-world data
distributions by modifying the MNIST, MIMIC-III, and ECG
datasets.

Methods

FL Code and Server
FL is supported by several open-source projects, including
TensorFlow Federated in TensorFlow 2.0 [31], PySyft [32,33],
and Federated AI Technology Enabler [34,35]. However, there
are limitations in using these libraries. First, most of these
libraries only support a single server and not a network
environment. Therefore, there is no control process for data
communication. Second, as a prototype, the necessary features
were not fully implemented to handle a complex dataset. For
future research using real clinical data from hospitals, we
implemented our own client-server version of FL using Python.
The implemented server code is available on the FL_Server
repository [36] and the client code is available on the FL_Client
repository [37]. The MNIST dataset analyzed during the current
study is available in the Keras package in the TensorFlow
framework. Additionally, the original code used to generate and
preprocess the MIMIC-III experiment used in this study referred
to the mimic3-benchmarks repository [38]. The original
MIMIC-III dataset analyzed during this study is available on
the PhysioNet repository [39]. The ECG dataset analyzed during
this study is available on the 2017 PhysioNet/CinC Challenge
website [40]. The model and environment assessed in this study
refer to Hannun et al [41].

The FL server was developed using the Django framework and
Python in Amazon Web Services (AWS). The server provides
several application programming interfaces (APIs) for
communication with a client, as shown in Table 1, and performs
federated averaging (FedAVG) [4], which calculates the
weighted averages. FedAVG is a widely used optimization
algorithm that calculates the average value when the local
weights collected from the client reach a specific level. The
implemented code was deployed and managed in AWS
Beanstalk, which was continuously monitored during the
training process.
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Table 1. Application programming interface calls provided by the server.

ReturnDescriptionParameterURLMethod

NumberRequest current roundN/Aa/roundGET

ListRequest global weightN/A/weightGET

N/AUpdate local weightList/weightPUT

aN/A: Not applicable.

Client
The client consists of three components. The first is the local
learning component, which builds a suitable model for the
dataset during the learning phase. The second is the
communication component, which updates local weights
according to the results of local training (the first component)
on the server and downloads the global weights from the server.
The third is the performance measure component, in which the
performance of each client is measured using the downloaded
global weights. The implemented code was deployed on an
AWS EC2 instance. We used the specifications of g4dn.xlarge
with the NVIDIA T4 Tensor core GPU for the Amazon instance.

Communications
Client–server communication for FL was implemented based
on the process described by McMahan et al [42]. However, the
implemented code exhibits some differences. The
communication assumes that all clients (hospitals) are always
powered (as is the case for a typical computer but not for a
mobile device) and that their online status is maintained by a
wired network connection. In addition, rather than selecting
clients via an eligibility criterion from multiple client pools
(thousands or millions), the code was implemented to manage
a predefined fixed number of clients. In other words, all clients
could participate in each round.

A schematic diagram of the FL client–server communication
is shown in Multimedia Appendix 1. In brief, the client decides
whether to participate in the current round through the API. If
it has already participated (sending local weights to the server),
it waits to participate in the next round. The server waits for the
client’s weight updates and ensures that no clients are eventually
dropped. All communications are performed through the API
provided by the server. The monitoring system is used to
continuously observe system abnormalities.

Datasets

MNIST
The MNIST dataset, which consists of digit handwriting images,
contained 70,000 samples (including 60,000 for training and
10,000 for testing). The basic model was a simple artificial
neural network with an input layer, one hidden layer with 128
units with a rectified linear unit activation function, and an
output layer. The hyperparameters for training were set as
follows: batch size 32, maximum 1000 epochs, and early
stopping. Stochastic gradient descent was used as an optimizer
[43].

For FL, we used 10 individual clients to best mimic a real
environment. We modified the datasets and hyperparameters

of the learning algorithms. The datasets were modified
considering differences in the distribution of medical data
between hospitals. Hyperparameters were adjusted for training
in each client. The proposed approach was evaluated on the
MNIST dataset in four different experiments.

We first evaluated the basic performance of the FL. Ten clients
randomly selected 600 images from the basic dataset. We
continued the process for up to 500 rounds and observed the
results. For the imbalanced FL experiment, each client used
different sizes of randomly selected data, ranging from 1 to 600,
for training (ie, one client used 36 data points and another client
used 537 data points). However, other environments such as
hyperparameters and the number of rounds were the same as
set in the basic FL experiment. In addition, the MNIST dataset
was split into single-digit groups, ranging from 0 to 9. Each of
the 10 numbers was assigned to 10 different clients.
Consequently, each client had a single digit instead of 10. This
modified MNIST simulated an extremely skewed data
distribution. Each client randomly selected 600 images from a
dataset with a single digit for training. The simple artificial
neural network used in the basic model was also used in these
experiments. The hyperparameters were set as follows: 5 epochs
and a batch size of 10. We continued the process for up to 3000
rounds and observed the results. For evaluation, a model was
created with the latest updated global weights using 10,000 test
samples. Finally, we conducted an extension of the modified
MNIST FL that represents a skewed distribution. Each client
was trained on data with an imbalanced and skewed distribution.
Hence, each client was trained only on a single digit using a
randomly selected sample.

MIMIC-III
The MIMIC-III dataset is a clinical dataset related to human
health information, including demographics, vital signs,
laboratory tests, and medications from intensive care units.
MIMIC-III data were preprocessed using a state-of-the-art
(SOTA) benchmark [44]. In this case, FL experiments with
three individual clients were performed to predict in-hospital
mortality, which is a classification problem that predicts death
within the first 48 hours of an intensive care unit stay. After
preprocessing the MIMIC-III dataset using the method described
by Harutyunyan et al [44], the dataset contained 21,139 samples
(including 17,903 for training and 3236 for testing). The basic
model was a standard long short-term memory (LSTM) with
reference to the benchmark [44]. The LSTM was chosen with
16 hidden units, depth 2, dropout 0.3, time step 1.0, batch size
8, and an adaptive moment estimation (ADAM) optimizer.

For FL, randomly chosen samples from the original dataset
were divided into 3 datasets without duplication and assigned
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to each client. This simulates having data from three different
institutions. The same basic LSTM was used, and
hyperparameters were set as follows: 2 epochs and a batch size
of 4. We continued the process for up to 30 rounds and observed
the results.

For the basic FL experiment, each client was trained on a subset
of data that were split into three parts with the same data size
without duplication. For the imbalanced FL experiment, all data
were split into 50%, 30%, and 20% without duplication, and
one subset was assigned to each client.

ECG
The 2017 PhysioNet/CinC Challenge ECG dataset was used in
this study [40]. This target problem is a multiclassification
problem that classifies four signals: atrial fibrillation, normal
sinus rhythm, alternative rhythm, and noisy using a single short
ECG signal. The total data size is 8528 single-lead ECG data
points. The dataset was divided into 90% training data (7676)
and 10% test data (852). For traditional learning, a convolution
neural network with 34 layers based on Hannun et al [41] was
applied to the ECG dataset. The hyperparameters were chosen
with a batch size of 32 and an ADAM optimizer.

For FL, randomly chosen samples from the original dataset
were divided into 3 datasets without duplication and assigned
to 3 clients. The same model was used, and hyperparameters
were set as follows: 3 epochs and a batch size of 16. We
continued the process for up to 30 rounds and observed the
results.

For the basic FL experiment, each client was trained on a subset
of data that were split into three parts with the same data size
without duplication. For the imbalanced FL experiment, all data
were split into 50%, 30%, and 20% without duplication, and a
subset was assigned to each client.

Evaluation
During training, we monitored the FL accuracy to evaluate
performance. If the accuracy did not improve during the round,
we completed the FL. Finally, we chose the best model and
conducted bootstrapping to determine if there were significant
differences between the experiments.

In all experiments, the area under the receiver operating
characteristic curve (AUROC) score and F1-score were used
as performance metrics. In addition, we evaluated the confusion
matrix, precision, recall, or area under the precision recall curve
(AUPRC) for comparison with the performance of the SOTA
method. We calculated the 95% CIs and resampled the test set
K times (for MNIST and ECG, K was 100, whereas for
MIMIC-III, K was 10,000).

Results

MINST
The proposed approach was evaluated on the MNIST dataset
for five different cases (as described in the Methods). Table 2
presents the values of the AUROC and F1-score for each case,
and Multimedia Appendix 2 presents the confusion matrix for
each case.

Table 2. Comparison of the experimental results for the five different MNIST cases described in the Methods.a

Recall (95% CI)Precision (95% CI)F1-score (95% CI)AUROCb (95% CI)Experiments

0.981 (0.971-0.989)0.981 (0.972-0.989)0.981 (0.978-0.983)0.999 (0.999-0.999)CMLc

0.945 (0.930-0.959)0.945 (0.929-0.959)0.946 (0.941-0.950)0.997 (0.996-0.998)Basic FLd

0.920 (0.903-0.937)0.920 (0.904-0.937)0.921 (0.917-0.927)0.995 (0.994-0.995)Imbalanced FL

0.904 (0.885-0.920)0.905 (0.885-0.922)0.905 (0.899-0.911)0.992 (0.991-0.993)Skewed FL

0.889 (0.868-0.908)0.890 (0.869-0.909)0.891 (0.884-0.896)0.990 (0.989-0.991)Imbalanced and
skewed FL

aAll experiments used the same model and hyperparameters. All results are presented with a 95% CI by resampling the validation task 100 times.
bAUROC: area under the receiver operating characteristic curve.
cCML: centralized traditional machine-learning method.
dFL: federated learning.

Centralized machine learning (CML) is a baseline training
method that was used as a control group. CML achieved an
AUROC of 0.999 and an F1-score of 0.981. For basic FL, the
AUROC and F1-score were 0.997 and 0.946, respectively. The
initial performance of the basic FL was fairly high, with an
accuracy of approximately 0.800, which continually improved
(Multimedia Appendix 3A).

Imbalanced FL was designed to reflect a realistic clinical data
distribution. As described in the Methods section, each client
had a different training data size. Interestingly, the performance
of imbalanced FL was significantly superior, with an AUROC

and F1-score of 0.995 and 0.921, respectively. The initial
performance was rather poor, as expected. However, after
several rounds of processing, the performance rapidly improved
to reach an accuracy of 0.900, after which the performance
improvement was slow (Multimedia Appendix 3B).

Skewed FL assumed an extreme case. Each client had only one
digit from 0 to 9, thereby simulating a situation in which each
hospital has a unique subpopulation of patients without overlaps.
The final AUROC and F1-score were 0.992 and 0.905,
respectively. As expected, the initial performance was poor;

J Med Internet Res 2020 | vol. 22 | iss. 10 | e20891 | p. 4http://www.jmir.org/2020/10/e20891/
(page number not for citation purposes)

Lee & ShinJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


however, it rapidly improved after the initial rounds (Multimedia
Appendix 3C).

The most extreme case was designed by combining an
imbalanced and a skewed dataset. In this experiment, the
AUROC and F1-score were 0.990 and 0.891, respectively.
Similar to the skewed FL, the initial performance was very poor,
but it rapidly improved after the initial rounds (Multimedia
Appendix 3D).

Additionally, the precision and recall results for each digit class
classification in each experiment are presented in Multimedia
Appendices 4-8.

MIMIC-III
The proposed approach was evaluated on the MIMIC-III dataset
in two different cases to compare the performance with a

reported benchmark. FL experiments were performed on three
individual clients. Apart from the AUROC and F1-score, we
also refer to the AUPRC, which is reported in the benchmark
[44]. The results are presented in Table 3 and in Multimedia
Appendices 9 and 10.

SOTA performance was achieved by executing the codes
provided in Harutyunyan

[38]. FL achieved an AUROC, F1-score, and AUPROC
comparable with those of the SOTA method. The imbalanced
FL experiment, as an extension of the basic MIMIC-III FL, also
achieved AUROC, F1-score, and AUPRC comparable with
those of SOTA (Table 3).

Table 3. Comparison results of MIMIC-III.a

Recall (95% CI)Precision (95% CI)AUPRCc (95% CI)F1-score (95% CI)AUROCb (95% CI)Experiments

0.773 (0.907-0.927)0.973 (0.967-0.979)0.505 (0.451-0.558)0.944 (0.938-0.950)0.857 (0.837-0.875)SOTAd

0.797 (0.906-0.926)0.975 (0.969-0.980)0.483 (0.427-0.537)0.944 (0.938-0.950)0.850 (0.830-0.869)Basic FLe

0.714 (0.897-0.918)0.981 (0.976-0.986)0.481 (0.426-0.535)0.943 (0.937-0.949)0.850 (0.829-0.869)Imbalanced FL

aAll results are presented with a 95% CI by resampling 10,000 times.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dSOTA: state of the art.
eFL: federated learning.

ECG
The proposed approach was evaluated on the ECG database
using two different methods to compare the performance with
a reported benchmark [41]. The results are presented in Table
4 and Multimedia Appendices 11-14.

Benchmark results were achieved using the code available on
github [45]. The AUROC and F1-score of both basic and
imbalanced FL were comparable with those of the benchmark
(Table 4).

Table 4. Comparison results for the electrocardiogram dataset.a

Recall (95% CI)Precision (95% CI)F1-score (95% CI)AUROCb (95% CI)Experiments

0.814 (0.640-0.936)0.820 (0.672-0.943)0.814 (0.655-0.910)0.954 (0.930-0.978)Benchmark

0.795 (0.660-0.925)0.823 (0.645-0.942)0.807 (0.651-0.931)0.938 (0.860-0.978)Basic FLc

0.788 (0.626-0.905)0.830 (0.650-0.935)0.807 (0.635-0.902)0.943 (0.883-0.977)Imbalanced FL

aAll results are presented with a 95% CI by resampling 100 times.
bAUROC: area under the receiver operating characteristic curve.
cFL: federated learning.

Discussion

Principal Findings
When comparing the performances of CML and FL in basic
MNIST experiments, both the AUROC and F1-score were high.
Unexpectedly, when using an imbalanced dataset, FL delivered
good performance with only small differences (AUROC and
F1-score of 0.003 and 0.035, respectively). When using a
skewed dataset, FL also yielded remarkable results with respect

to both the AUROC and F1-score. When comparing the
confusion matrices for experiments with four datasets (ie,
normal, imbalanced, skewed, and a combination of two
distributions), FL showed some deterioration in performance
for visually similar numbers (eg, 3 vs 5; 4 vs 9). Even in the
basic MNIST classification, the performance was relatively
poor in these cases. However, this problem was not related to
the small sizes of the training datasets. When we monitored the
size of the training datasets for each client, the dataset for class
5 was not small. Moreover, depending on the experiment, the
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datasets for class 1 or 7 could be small, but superior
classification performance was nevertheless achieved. This
trend was maintained in the experiments with basic FL and
imbalanced FL using the MIMIC-III dataset.

The FL experiments using MIMIC-III also exhibited good and
competitive performance compared to a benchmark that has
been trained on CML. The experimental results of in-hospital
mortality using the MIMIC-III dataset, which is a well-known
dataset with real clinical data, also showed good performance.
This experiment was performed by splitting the randomly
selected MIMIC-III data into three parts (ie, from the perspective
of each institution, learning one-third of the total data).
However, the performances of FL and CML were almost the
same, with only a 0.005 difference in AUROC detected
compared with the SOTA performance reported by Harutyunyan
et al [44]. Before the experiments, we expected that the
performance of FL would be slightly inferior to that of CML
because FL uses a distributed dataset instead of a centralized
dataset. Nevertheless, no significant difference was found in
well-known evaluation indicators such as accuracy, sensitivity,
precision, and F1-score (except for AUROC). Experimental
results with an imbalanced dataset were very similar to those
of basic FL. Therefore, an individual client may only use a small
amount of data for training in FL, and the results will be similar
to those achieved when all available data are used for training.

The FL experiments using ECG data also exhibited good and
competitive performance compared to CML. This experiment
was performed by splitting the randomly selected ECG data
into three parts (ie, from the perspective of each institution,
learning on one-third of the total data) with each using different
data distributions.

However, the performance of FL and CML was not significantly
different. Experimental results with an imbalanced dataset were
very similar to those for basic FL. As shown in Multimedia
Appendices 12-14, the noisy case was shown to have relatively
low performance in precision and recall. This is because the
data size for training was only 3% of the total size. However,
the other classes performed well, such as atrial fibrillation,
normal sinus rhythm, and alternative rhythm.

The performance of FL was verified using three datasets with
changed data distributions: imbalanced (with disproportionally
represented classes) and skewed (the distribution of the target
variable was different) to imitate real-world medical data. As
a result, FL was comparable to CML. During the initial rounds,
only a relatively small amount of data was used on each client
instead of an ensemble; therefore, the performance of FL was
significantly inferior to that of CML. However, in the subsequent
rounds, the performance of FL (with respect to AUROC and
F1-score) became similar to that of CML. Typically, medical
centers have datasets with very different distributions, and our
results demonstrate that FL is suitable for real-world medical
datasets without requiring data centralization.

One reason for the comparable performance of FL might be that
the weight updates and the process of FedAVG could have a

similar effect in mini-batches [46-48] and ensembles [49]. In
FL, each client trains on a relatively small dataset and then
transfers the local weights to the server. The server then collects
the local weights and updates the global weights that reflect all
of the data through FedAVG. Subsequently, the round is
repeated to improve the global weights. Hence, individual clients
are an element of a mini-batch, and FedAVG is similar to
ensemble processing. When implementing FL, we used the
widely known FedAVG aggregation method [5], but this does
not guarantee the best choice. To solve this problem, many
researchers have studied aggregation methods that can work
well with abnormal distributions, robust aggregation, and
efficient communication such as FedProx [16], FSVRG [17],
CO-OP [18], LoAdaBoost FedAVG [19], and RFA [20].
Hyperparameter selection also requires further research.

In addition, many researchers have studied methods to reduce
communication costs. First, it has been suggested to reduce the
communication round through methods such as client selection,
peer-to-peer, and local update [11-13]. Second, a method such
as sparsification, subsampling, or quantization has been
suggested to reduce the communication message size [12,13].
Third, the asynchronous update method in traditional parallel
computation methods can be applied.

FL can be used to build medical artificial intelligence apps by
protecting patient privacy. Although the data themselves are
not exposed or gathered in the central repository in FL, these
data can nevertheless be guessed during the aggregation process
in the network [12]. Therefore, other privacy preservation
methods such as differential privacy, secure multiparty
computation, and homomorphic encryption [11,12,21,22] might
be necessary to protect privacy from diverse up-to-date privacy
attack methods.

In future studies, we plan to use the proposed FL methods in
real clinical datasets rather than benchmark datasets. First, we
will try to improve the FL framework based on the results from
this study. We will then compare the performance of a breast
cancer recurrence prediction model using data from two different
medical centers in Korea.

Conclusions
Our experiments demonstrated the potential of FL in terms of
performance and data protection, which is important for dealing
with sensitive medical data. Specifically, in FL, only weights
are transferred, and the participants are unaware of each other’s
local datasets. This can prevent personal information leaks. In
addition, the proposed approach can be used to supplement
existing approaches and to avoid problems that may occur during
the deidentification process. The future direction of research is
to use FL for actual medical data through collaborations with
multiple institutions. Tasks such as expanding the client–server
version of FL and improving communication will be expected
to be important for the application of FL in real-world medical
data with multiple institutions.
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