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Abstract

Background: User dropout is a widespread concern in the delivery and evaluation of digital (ie, web and mobile apps) health
interventions. Researchers have yet to fully realize the potential of the large amount of data generated by these technology-based
programs. Of particular interest is the ability to predict who will drop out of an intervention. This may be possible through the
analysis of user journey data—self-reported as well as system-generated data—produced by the path (or journey) an individual
takes to navigate through a digital health intervention.

Objective: The purpose of this study is to provide a step-by-step process for the analysis of user journey data and eventually
to predict dropout in the context of digital health interventions. The process is applied to data from an internet-based intervention
for insomnia as a way to illustrate its use. The completion of the program is contingent upon completing 7 sequential cores, which
include an initial tutorial core. Dropout is defined as not completing the seventh core.

Methods: Steps of user journey analysis, including data transformation, feature engineering, and statistical model analysis and
evaluation, are presented. Dropouts were predicted based on data from 151 participants from a fully automated web-based program
(Sleep Healthy Using the Internet) that delivers cognitive behavioral therapy for insomnia. Logistic regression with L1 and L2
regularization, support vector machines, and boosted decision trees were used and evaluated based on their predictive performance.
Relevant features from the data are reported that predict user dropout.

Results: Accuracy of predicting dropout (area under the curve [AUC] values) varied depending on the program core and the
machine learning technique. After model evaluation, boosted decision trees achieved AUC values ranging between 0.6 and 0.9.
Additional handcrafted features, including time to complete certain steps of the intervention, time to get out of bed, and days
since the last interaction with the system, contributed to the prediction performance.

Conclusions: The results support the feasibility and potential of analyzing user journey data to predict dropout. Theory-driven
handcrafted features increased the prediction performance. The ability to predict dropout at an individual level could be used to
enhance decision making for researchers and clinicians as well as inform dynamic intervention regimens.

(J Med Internet Res 2020;22(10):e17738) doi: 10.2196/17738
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Introduction

The efficacy of digital (ie, internet, web, and mobile) behavioral
interventions to improve a range of health-related outcomes has
been well documented [1-3]. However, adherence to these
interventions is a significant issue [4]. Intervention dropout,
defined as a participant prematurely discontinuing a program,
from internet-based treatments for psychological disorders
typically varies between 30% and 50% [4-6]. However, the
reason for such high dropout rates is still unclear [5], whereas
longer treatment duration and user engagement appear to be
associated with improved treatment outcomes and greater
effectiveness of the digital intervention [7-10]. Furthermore, in
a research setting, high dropout rates and, consequently, low
exposure to digital content might affect the reported effects of
a digital intervention and the validity of the results [11,12].
Although researchers have highlighted the need for a science
of user attrition [13], there have been few advances in predicting
dropout through advanced quantitative approaches in eHealth
interventions [14]. In particular, previous work has identified
hypothetical factors influencing attrition in eHealth programs,
such as ease of leaving the intervention, unrealistic expectations
on behalf of users, usability and interface issues, and amount
of workload required to benefit from an intervention [13]. Such
factors are likely to impact how a user ultimately engages with
a program and could provide indicators for predictive factors
but do little to advance predictive modeling of dropout when
not applied in data-driven studies. Research suggests that an
increased completion of modules in digital therapeutics increases
treatment outcomes [15]. Identifying those patients that are
likely to drop out of treatment and addressing the related issues
can, thus, improve treatment outcomes and can be the basis of
the development of micro interventions that target these
high-risk participants to reengage them to complete the program
[16]. Thus, predicting dropout on a participant level supports
the decision making of experts in the target field and
consequently leads to more personalized treatment strategies.
In addition, inferential results can increase insight into the causes
of attrition by revealing data-driven indicators.
Participant-specific factors can help to identify individuals who
benefit more from digital therapies compared with individuals
for whom face-to-face treatment might be a better approach.
To evaluate the possibility of predicting dropout in digital
interventions and to shed light on some indicators of dropout,
the aim of this study is to propose a process for user journey
analysis to predict dropout from a digital intervention.

A wealth of data can be collected through the use of digital
interventions. They often feature content that is administered
over time as users complete tasks or components of the
intervention, typically over several weeks or months [17-20].
Digital interventions also track and log different types of user
interactions (eg, frequency of log-ins). These data provide a
nuanced understanding of the usage behavior of participants
over the course of an intervention [21]. Combined with

self-reported data, passively collected user data could be
captured and used to provide deeper insight into how likely
users are to drop out of an intervention on an individual level
and lead to increased prediction performance.

A user journey is a sequence of interactions as an individual
uses a digital intervention (ie, the path an individual takes to
navigate through a program). Although user journeys are well
known and established in the field of web-based marketing, to
the best of our knowledge, its direct application to digital health
interventions has not yet been examined. Web-based marketers
leverage user journeys to collect information about an
individual’s behavior [22], often referred to as clickstream data
analysis [23,24]. This increases the understanding of users’
behavior by recognizing patterns in their sequence of actions.
Thus, user journey analysis can reveal insight into an
individual’s behavior by enabling an analysis of data (eg,
Ecological Momentary Assessment [EMA] or log data) that is
not frequently used in the eHealth sphere [25].

There are several possible reasons why analysis of user journeys
has not achieved prominence in digital health interventions.
One obstacle lies in the analysis of large amounts of raw data.
Analysis of user journeys often requires transformation of raw
data, feature engineering, and the application of machine
learning techniques, which can be a burdensome process [26]
and is not a typical skill set of eHealth behavior researchers.
Although user journeys have been used to predict different
psychological factors such as mood, stress levels, or treatment
outcomes and costs [25,27-31], to our knowledge, no work has
provided steps to be taken to analyze raw user journey data and,
at the same time, predict user dropout from a digital health
intervention.

The overarching goal of this study is to establish and provide
a step-by-step process that describes how to leverage user
journeys to predict various behaviors (eg, dropout). This process
involves several steps, including creating the basic data structure
for handling user journeys, creating features that can add
additional information to the existing raw data, and ultimately
providing a framework for the statistical analysis. A technical
implementation (R package) [32,33] of this process is provided
for the research community. To demonstrate the application
and potential utility of this process, we use it to predict user
dropout in a randomized controlled trial of a fully automated
cognitive behavior therapy intervention for insomnia (Sleep
Healthy Using the Internet [SHUTi]) [34].

Methods

User Journey Process
The overarching steps of the user journey process are outlined
in Figure 1. This process applies machine learning algorithms,
specifically supervised learning, which is used when both input
(eg, log-ins and mood symptoms) and output data (eg, dropout
status) exist in the data set [35].
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Figure 1. Process of analysis. AUC: area under the curve; MAE mean absolute error; ROC: receiver operating characteristics; RMSE: root mean square
error.

It is important for researchers to clearly define the outcome
variable of interest. As dependent variables can take on different
measurement scales (eg, discrete or continuous), defining the
target variable has consequences for the choice of statistical
models. When predicting discrete outcomes (ie, consisting of
at least two discrete categories or labels), classification is often
the appropriate approach. However, when predicting continuous
outcome variables, the learning task is regression.

Step One: Data Transformation
The first step in analyzing user journey data is to transform the
raw data into a wide format, as can be seen in Figure 2. Thus,
the transformed data are structured such that each row
corresponds to a unique observation in Time for a particular
user (ID).

Figure 2. Example of data transformation in the context of digital health interventions.

When transforming the raw data, it is important to specify the
time window defining the time interval for which individual
touch points are aggregated. The choice of the time window
depends on the density of the observations in the raw data. For
example, if a raw data set is composed of a few touch points
over the course of a day, choosing a time window on a scale of
days avoids sparseness of the transformed data matrix. In
contrast, when predicting purchases in web-based marketing,
for example, a large number of observations exist for each user
on short timescales. Here, choosing a small window (eg, an
hour) could be beneficial, as the resulting matrix will not be
sparse and information loss is minimal. In an internet-based
intervention, however, it is not unusual for self-reported data
to be collected as little as once a day, with a user logging into
the system only a few times a day. In this case, it would not

make sense to choose an hour-long window because the resulting
matrix would be very sparse. Thus, choosing a time window on
a scale of days would be a better choice.

If multiple observations of the same type occur within a time
window, one must decide how to aggregate these values. For
some variables, such as diary entries, taking an average may be
desirable; for other variables, such as log-ins, the sum is a more
appropriate aggregation. The provided technical framework
supports the data transformation procedure. In addition, missing
values often exist in the data. There are various procedures that
can handle missing values. One might remove all rows that
include missing values; however, this can lead to a reduction
in observations. Other possibilities include imputation
procedures such as using aggregated values of these features or
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developing statistical models that predict the missing values
based on other features. For more information on missing values,
we refer to the study by Batista and Monard [36].

Step Two: Feature Engineering
Feature engineering can be described as the process of including
additional variables into the data with the intention of achieving
increased predictive performance. As statistical learning relies
heavily on the input data, this step is important for improving
the accuracy of prediction [37]. There are 2 approaches to
feature engineering: handcrafted or automated. Handcrafted
feature engineering is a challenging task and requires human
effort and domain knowledge. Therefore, it is appropriate for
researchers with expertise in the domain that is represented by
the data (eg, sleep) to be highly involved in the process [38-40].
A clear understanding of the problem to be solved is necessary
to derive meaningful features [40]. Handcrafted feature
engineering often involves a trial and error phase to experiment
with different features [37]. Automated feature engineering
involves the generation of candidate features that are evaluated
based on their predictive performance. Tools exist for the
application of automated feature engineering in different
domains, such as natural language processing or machine vision
[38,41,42].

Interaction terms, that is, the product of 2 original features, can
lead to additional knowledge about their relationships and
increased predictive accuracy. The provided technical
framework supports generating them. In case of a large number
of original features, however, including interaction terms results
in many additional features.

In addition, time window–based aggregation methods can be
beneficial in terms of predictive performance in the context of
digital health interventions [31]. Here, based on a user-specified
time window w, various types of aggregations are performed
on the original features. Figure 3 represents the process of this
task through the exemplification of self-reported EMA data.
The Mood level is reported by an individual at different points
in time (Time steps). For the creation of the aggregated features,
a time window of w=3 is specified in this example. Various
statistical measures, such as the sum (Mood_sum), mean
(Mood_mean), minimum, maximum, and SD (not shown in
figure), are calculated for 3 consecutive measurements of the
mood level (w=3) and included as additional features in the data
set. It should be noted that the creation of features can limit
one’s ability to reproduce study results if the feature engineering
process is not well documented or if the data set changes over
time. For the case study in this paper, we created various
theory-driven features based on expert knowledge, which will
be introduced in Feature Engineering.

Figure 3. Example of creating aggregated time window–based features for w=3.

Step Three: Statistical Analysis and Model Validation
The next step in analyzing user journey data is the application
of machine learning techniques to predict the outcome variable.
Figure 4 depicts this procedure. First, the data set can be split
into a training set for fitting the data and learning patterns and

a test (or holdout) set. This test set is usually created if sufficient
data are available. It is subsequently used to test the final model
performance of the selected algorithm. It is difficult, however,
to quantify sufficient data as it depends strongly on the field of
research, applied models, and structure of the data.
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Figure 4. Procedure of statistical analysis.

Depending on the task to be analyzed, the data can be further
split based on particular points in time. If the aim of the analysis,
for example, is the prediction of the outcome of an intervention,
it might be useful to evaluate at what point in time the predictive
accuracy is at its peak. The longer the time window, the higher
the predictive accuracy can be assumed because more data are
available. Thus, using time windows and basing the amount of
usable data on these windows (interval cut off) can be useful in
evaluating the feasibility of prediction.

There are a large number of machine learning techniques that
can be applied to user journey data; some models can be applied
to both learning tasks (classification or regression), such as
support vector machines or decision trees, whereas others fit
better for a specific task (ie, logistic regression for
classification). Researchers may wish to compare their predictive
performance to justify the model selection. Cross-validation is
often applied to gauge the predictive performance of a specified
model. Here, the data are divided into k chunks, where k-1
chunks are used for training the machine learning techniques
and the remaining data chunk is used for predicting the target
variable. This procedure is repeated k times until each chunk
has been used as a validation set. Ultimately, the model with
the best performance is selected for the specified learning task.
If a holdout set is maintained, the specified model is then trained
based on all data. The target variable in the holdout set is then
predicted and evaluated, which leads to the test prediction error.

Model validation checks the ability of a particular model to
either fit the data or predict the outcome variable [43].
Eventually, the one with the best performance is selected.
Nonvalidation can lead to inaccurate predictions and, thus,
overconfidence in the developed model [44]. Model validation

should generally be executed on the validation set for each
iteration of the cross-validation procedure (cross-validated
prediction error) to select the best model and, subsequently, on
an independent test set that was set aside earlier (test prediction
error). In some cases, especially when sufficient data are not
available, no independent test set is put aside and only the
cross-validated error is reported, which can lead to an optimistic
estimation of the error [44].

Deciding on the method of model validation also depends on
the learning task. For regression, criteria such as the root mean
square error or mean absolute error are often appropriate. For
the classification task, confusion matrices and receiver operating
characteristic (ROC) graphs are often used as performance
indicators. More information about these validation procedures
and their application can be found elsewhere [45].

In the provided technical framework, logistic regression, linear
regression, support vector machines, boosted decision trees,
and regularization techniques are implemented. As overfitting
can occur when utilizing a large number of features [37] and
some types of statistical procedures (eg, linear regression) cannot
be applied when the number of features is greater than the
number of observations, alternative techniques such as
regularization and feature selection may need to be used [46].
A thorough review of these techniques is outside the scope of
this paper, and readers are strongly encouraged to learn more
about each of these techniques and how they pertain to their
data and aims.

Case Study
To illustrate the user journey analysis process, data were
extracted from a trial of a web-based program (SHUTi) [47].
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SHUTi is a fully automated web-delivered program that is
tailored to individual users [47] and informed by the model for
internet interventions [17]. SHUTi is based on the primary
principles of face-to-face cognitive behavioral therapy for
insomnia (CBT-I), including sleep restriction, stimulus control,
cognitive restructuring, sleep hygiene, and relapse prevention.
SHUTi contains 7 cores that are dispensed over time, the first
core being a tutorial on how to use the program, with new cores
becoming available 7 days after completion of a previous core.
This format was meant to mirror traditional CBT-I delivery
procedures using a weekly session format. SHUTi has been
found to be more efficacious than web-based patient education
in changing primary sleep outcomes (insomnia severity, sleep
onset latency [SOL], and wake after sleep onset [WASO]), with
the majority of SHUTi users achieving insomnia remission
status 1 year later [48]. A mobile app version of SHUTi,
Somryst, with equivalent content and mechanisms of action
was recently cleared by Food and Drug Administration as the
first prescription digital therapeutic for treating patients with
chronic insomnia. Thus, the efficacy of SHUTi is well
established. However, similar to other digital interventions,
predicting user dropout is an important yet unaddressed issue.
Thus, the primary aim of this case study is to demonstrate the
feasibility of predicting user dropout from data generated by a
digital health intervention.

The sample for this study was drawn from a trial consisting of
303 participants (218/303, 71.9% female) aged between 21 and
65 years (mean 43.3 years, SD 11.6). They were 83.8%
(254/303) White, 6.9% (21/303) Black, 4.0% (12/303) Asian,
and 5.3% (16/303) other. Participants were randomly assigned
(using a random number generator) to receive SHUTi or
web-based patient education (control condition). The study was
approved by the local university’s institutional review board,
and the project was registered on clinicaltrials.gov

(NCT01438697). Inclusionary and exclusionary criteria as well
as outcomes are reported in detail elsewhere [48].

Data from 151 participants who were assigned to SHUTi were
used in this study. Both self-reported and system-generated
types of data are available. Participants completed a battery of
self-report measures at baseline and post intervention. A list
and detailed description of the measures have been published
previously [48]. Sleep diaries were also collected throughout
the intervention period, along with information about bedtime,
length of sleep onset, number and duration of awakenings,
perceived sleep quality, and rising time. Data were collected
prospectively for 10 days (during a 2-week period) at each of
the 4 assessment periods (pre- and postintervention and 6- and
12-month follow-ups). Sleep diary questions mirrored those
from the consensus sleep diary [49]. Values for SOL and WASO
were averaged across the 10 days of diary collection at each
assessment period. The system-generated data included
individual log-ins and automated emails sent by the system as
well as trigger events logged in the system. All data were used
to predict user dropout, defined as not completing all 7 SHUTi
cores (core 0 through core 6). Thus, users were classified as
having dropped out or not. As noted elsewhere [48], 60.3%
(91/151) participants completed all 7 cores in the SHUTi
program.

Results

The primary aim was to predict whether users prematurely
dropped out of SHUTi (dropped out by core 6/completed core
6). Therefore, the learning problem is a binary classification
(drop out/did not drop out). To verify the point at which the
machine learning techniques were capable of predicting dropout,
separate analyses were executed after the completion of each
core (Figure 5) and only included data up to the core in question.
The number of participants included in each analysis was 146,
141, 133, 116, 102, and 101 for cores 0 to 5, respectively.

Figure 5. Setup of analysis for dropout prediction.

Data Transformation
As a first step, the raw data were transformed into a rectangular
data matrix (wide format), which led to 981 basic features. Basic
features are those features that were already included in the raw
data. As an example, see column Type in Figure 2. In addition,
25 handcrafted and theory-driven features that were derived
from the raw data were implemented. These features are
introduced in the next section Feature Engineering. In total,
1006 features were used for the analyses. Whenever the same
question (ie, in the case of diary data) was administered multiple

times a day, the mean of the reported values was chosen for
numeric data and the mode for categorical data. To reduce the
sparseness of the resulting data matrix, reported values for
questionnaires such as the Insomnia Severity Index were
repeated for each participant until the next occurrence of the
questionnaire (this questionnaire was administered before each
core). To address the issue of missing data, features were deleted
based on the quantity of missing data. To evaluate how the
deletion affects the predictive performance of the models,
features were deleted that contained more than 5%, 10%, 15%,
and 20% of missing values. This procedure reduced the number
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of features tremendously. In addition, categorical variables that
had only one level or category were removed. Less data are
available for the analysis at time point core 0 compared with
time point core 5. Thus, the number of features for each level
of missing data was 83, 263, 299, and 401 features.

As the aim of this study was to predict dropout at core 6, each
participant only had exactly one outcome value—they could
either complete core 6 or not. Users that dropped out between
cores 1 to 5 would be classified as having dropped out at core
6. Therefore, the user journey data must be aggregated for each

user. For most of the variables, the mean and mode were used
as the aggregation method. However, for some variables, such
as log-in information or number of days since the last contact,
the sum is more appropriate. Table 1 illustrates the different
aggregation procedures and the corresponding features. Features
that are not listed were aggregated by mean and mode. The rest
of the missing data were imputed using the median for numeric
variables and mode for categorical features. In addition, an
imputation based on the k-nearest neighbor (KNN) algorithm
was applied (k=5). Both approaches were used to reveal which
of them led to a better prediction performance.

Table 1. Aggregation of theory-determined features.

Existing clinically important featuresHandcrafted featuresFeature aggregation method

Sum: The sum of all observations of a specific
feature for an individual

•• If the participant had an alcoholic
drink that day

Days since the last contact (any interaction)
• If sleeping duration is decreasing from core to core

• If the participant took a nap• If sleep window duration is 5 or 8 hours
• If the system recorded a triggered

event that day
• If the participant logged in that day
• If the system sent an email that day

Last: The last observation of a specific feature for
an individual

•• If the participant finished home-
work in core 2

Difference between preferred arising time in core
2 and core 3

• •If preferred arising time is greater than 8 AM in
core 2

Number of days where no diaries
have been completed in the period
of analysis• Average time in days to complete a core among all

cores that have been available • Precipitating factor includes major
life event or health/psychological• Time needed in days to complete a core in days (6

features for core 0-5)

Mean: Mean of the observations of a specific
feature for an individual

•• Naptime in minutesDifference between awake and arise time
• Difference between preferred arise time and actual

arise time (AM/PM)
• Difference between preferred arise time and actual

arise time (minutes)
• Difference between preferred bedtime and actual

bedtime

Feature Engineering
A total of 25 theory-driven features were implemented for this
case study. Some of these features, shown in Table 1, were
handcrafted and some were already existing in the data set.
Specifically, the handcrafted features were computed from the
raw data and were deemed useful for model prediction. Few of
these features are study-specific (eg, if the participant finished
homework in core 2), whereas others could be used in any type
of digital intervention (eg, if the participant logged in). As the
number of features generated from the study data was already
large, none of the generic feature generation methods were used.
These 25 features were not deleted based on the missing value
ratio (mentioned above) because there was a clinical or
theory-driven rationale that they would influence prediction
performance.

Statistical Analysis and Model Validation
For the learning task, a set of machine learning techniques was
used to select the model with the best prediction performance.

Specifically, support vector machines, boosted decision trees,
and logistic regression with L1 and L2 regularization were
applied. The optimal parameters were determined using a
grid-based search and cross-validation. In addition, stratified
10-fold cross-validation was used for each analysis. To choose
an appropriate statistical model, a heat map was created to
illustrate the average area under the curve (AUC) across all core
analyses for each model, imputation procedure, and threshold
for percentage of missing values (Figure 6). As can be seen, the
method of imputing the missing values did not have a strong
influence on the performance of the applied statistical model.
Increasing the percentage threshold negatively influenced L1
regularization and the support vector machine, whereas L2
regularization and boosted decision trees seemed not to be
influenced tremendously. The best average AUC value (0.719)
was achieved by applying boosted decision trees, deleting each
feature that contained more than 15% of missing values, and
imputing the rest of the missing values by KNN.
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Figure 6. Heat map of average area under the curve values across core analyses for each model, imputation procedure, and threshold for percentage
of missing values. AUC: area under the curve; KNN: k-nearest neighbor; LASSO: least absolute shrinkage and selection operator; SVM: support vector
machine.

Figure 7 illustrates the ROC curves for each core analysis using
the specified parameters. With the exception of core 4, the AUC
values increased with each analysis. For each core, the
predictions were better than random, indicated by AUC values
above 0.5. Generally, the AUC values ranged between 0.6 and
0.9. Importantly, the prediction of dropout appears feasible early

in the intervention period (ie, core 1 and core 2). In addition,
the area under the precision-recall curve (PRAUC) was
computed. Across all core analyses, a PRAUC of 0.48 was
observed, whereas chance had an average of 0.24. Thus, the
model performs better than chance.

Figure 7. Receiver operating characteristic for each core analysis based on boosted decision trees (15% missing value deletion, k-nearest neighbor
imputation). AUC: area under the curve; FPR: false-positive rate; TPR: true-positive rate.

Boosted decision trees were used to identify important features.
Here, SHapley Additive exPlanation (SHAP) values were used
[50]. SHAP values are a relatively new concept in the field of
machine learning and essentially represent the importance of
each feature and their contribution to the prediction by
comparing the prediction of the model with and without a
specified feature value depending on the order of their

introduction to the model. In addition to the importance of each
feature, SHAP values quantify how features contribute to the
prediction of the model.

Figures 8-13 include the 5 most important features according
to the boosted decision trees for each core analysis. In each
graph, the x-axis represents the values for each feature and the
y-axis represents the SHAP values (ie, the effect each feature
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has on predicting the completion of core 6 of the intervention).
In the core 0 analysis, for example, finishing core 0 within 3
days (x-axis) has a positive influence on dropout, as can be seen
on the y-axis above zero. However, taking more time to

complete core 0 (where x-axis is greater than 3) influences
dropout prediction negatively as the graph approaches values
under zero.

Figure 8. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, and k-nearest
neighbor imputation). The x-axis represents the values for each feature, and the y-axis represents the SHAP values. SHAP: SHapley Additive exPlanation;
SOL: sleep onset latency; WASO: wake after sleep onset.
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Figure 9. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, KNN imputation,
and Core 1 analysis). SHAP: SHapley Additive exPlanation; WASO: wake after sleep onset.
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Figure 10. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, KNN imputation,
and Core 2 analysis). SHAP: SHapley Additive exPlanation.
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Figure 11. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, KNN imputation,
and Core 3 analysis). SHAP: SHapley Additive exPlanation.
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Figure 12. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, KNN imputation,
and Core 4 analysis). SHAP: SHapley Additive exPlanation.
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Figure 13. Five most important features for each core analysis according to boosted decision trees (15% deletion of missing values, KNN imputation,
and Core 5 analysis). SHAP: SHapley Additive exPlanation.

In general, 7 out of the strongest 22 features were handcrafted
and theory driven. Table 2 summarizes all the features. Taking
more time to complete the cores appeared to influence dropout.
The time to complete core 0 predicted whether a participant
eventually dropped out (core 0 and core 1 analysis). In addition,
usual arise time and the time needed to get out of bed (from
awake to arise) affected the prediction of dropout early on in
the intervention. Participants who got up earlier than 4:30 AM
and later than 6:45 AM, and participants who needed less than
9 min or more than 66 min to get up, negatively influenced the

prediction of completing core 6 of the intervention (x-axis of
the feature usual arise time and time to get up for core 0).
Furthermore, a greater WASO also appeared to influence the
prediction of dropout status. These variables could, therefore,
be an early indicator of dropout in this particular intervention.

In addition, if triggers were logged on for more than 18 days or
participants received emails for more than 30 days, dropping
out was more likely (core 3 analysis). Furthermore, if there was
no interaction between the system and the participants for more
than 67 days, the individuals were more likely to drop out.
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Table 2. Summary of the unique top 5 most important features across analyses.

Analysis at each point in timePredictors

Core 5Core 4Core 3Core 2Core 1Core 0DescriptionFeature

N/AN/AN/AN/Ac++bTime to complete core 0 in daysCore 0 completion date—inter-

vention start datea

N/AN/AN/AN/AN/A+Difference between time of awakening and getting out of bed
in minutes (time to get up)

Arise time—awake timea

N/AN/AN/AN/AN/A+Retrospective report specified from baseline dataUsual arise time

N/AN/AN/AN/A++Minutes awake in the middle of the night from sleep diariesWake after sleep onset

N/AN/AN/AN/AN/A+Minutes to fall asleep from sleep diariesSleep onset latency

N/AN/AN/A++N/ATime the user specified that they got out of bed from baseline
data

Baseline arise time (pre retro
sleep arising time)

N/AN/AN/AN/A+N/AUser indicates having problems waking up too early in the
morning

Pre retro sleep waking early

N/AN/AN/AN/A+N/AHow much the user trusts health informationPre teach trust info source c

++++N/AN/AAverage time to complete a core among all cores that have
been available up to the point of the analysis

Average time to complete corea

N/AN/AN/A+N/AN/AHow low the user feels at baselinePre stpi 24 depd,e

N/AN/AN/A+N/AN/AHow well the user feels things have been goingPre se gen 3f

N/AN/AN/A+N/AN/AIf a participant went to bed in the AM or PM (before or after
12 AM)

Bedtime

N/AN/A+N/AN/AN/AIf the system sent an email that dayEmail senta

N/A++N/AN/AN/AHow stimulated the user feels at baselinePre stpi 26 curg

N/AN/A+N/AN/AN/AIf the system logged a trigger event that dayTrigger event loggeda

N/AN/A+N/AN/AN/AUser feels he or she can solve most problems if necessary ef-
fort is put in

Pre teach stress 6

N/A+N/AN/AN/AN/AHow eager the user feels at baselinePre stpi 18 curh

++N/AN/AN/AN/ATime to complete core 4 in daysCore 4 completion date—core

4 start datea

N/A+N/AN/AN/AN/AHow much self-confidence the user feels at baselinePre stpi 29 anxi

+N/AN/AN/AN/AN/ADays since the last contact (any interaction)Days since the last informationa

+N/AN/AN/AN/AN/AHow lonely the user feels at baselinePre CESDj 14k

+N/AN/AN/AN/AN/ANumber of months the user reports having had sleep difficul-
ties at baseline.

Pre retro sleep length of sleep
prob

aHandcrafted/theory-driven features.
b+ indicates appearance of feature in corresponding core analysis.
cN/A: not applicable.
dSTPI: state-trait personality inventory.
ePre stpi 24 dep: baseline STPI measure item #24 depression subscale.
fPre se gen 3: baseline Perceived Stress Scale item #5.
gPre stpi 26 cur: baseline STPI measure item #26 curiosity subscale.
hPre stpi 18 cur: baseline STPI measure item #18 curiosity subscale.
iPre stpi 29 anx: baseline STPI measure item #29 anxiety subscale.
jCenter for Epidemiologic Studies Depression Scale.
kPre CESD 14: baseline CESD measure item #14.
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Discussion

Principal Findings
Considering the increasing use of digital health interventions
and the tremendous amount of data gathered in such
interventions, a variety of methods can be used for the analysis
of various data types and structures. In this study, a process for
the analysis of user journey data in this context was proposed,
and a step-by-step guide and technical framework for the
analysis as an R package was provided. Challenges of data
analysis based on user journeys, such as data transformation,
feature engineering, and statistical model application and
evaluation, were discussed. The analysis of user journeys can
be a powerful tool for the prediction of various factors on an
individual participant level. Here, it has been applied to
real-world data to predict dropout from an internet-based
intervention.

The application of the proposed process and evaluation of
statistical models indicated the feasibility of dropout prediction
by using this process. AUC values ranged between 0.6 and 0.9
for the selected machine learning algorithm (boosted decision
trees). Most importantly, it was shown that the prediction of
user dropout was possible early in the intervention, which could
be helpful to clinicians and policy makers as treatment decisions
are made and adjusted. In addition, this study indicated the
importance of expert knowledge and subsequent implementation
of handcrafted features. Not all existing statistical models
necessarily require handcrafted features because automated
feature engineering can already provide crucial insight; however,
handcrafted features can increase prediction performance and
lead to increased interpretability. In this study, handcrafted
features appeared to be among the most important features
according to the boosted decision trees, perhaps given the more
nuanced understanding necessary for treating insomnia. It is
important to keep in mind, though, that the analysis presented
here was meant as a demonstration of the power of this
approach. A much larger data set is needed to draw more firm
and generalizable conclusions.

With this caveat, a number of interesting results emerged related
to features and impact on dropout prediction. For example, as
participants took longer to complete earlier steps of the
intervention, they were less likely to complete the final step of
the intervention. Thus, a discussion about how users can be
motivated to complete early steps in the intervention may be
very beneficial. In addition, the findings suggest that the time
participants get out of bed in the morning and how much time
they actually needed to get up might be an important factor for
completing the sleep intervention. Participants who get out of
bed between 4:30 AM and 6:45 AM and do not need more than
66 min to get out of bed were more likely to complete the final
step of the intervention. In addition, trigger events might only
have a positive effect in the short term, as the appearance of
triggers more often than 18 days appeared to increase the
likelihood of dropping out. However, it could be possible that
this finding only accounts for participants who would not have
completed the final step of the intervention. Assuming this,
these participants were, therefore, not influenced by trigger

events. It is also important to emphasize that these results are
based on a bottom-up, data-driven learning approach. Therefore,
it is up to researchers to interpret the results and cross-validate
them in other samples. Predictions in this context based on user
journey data and the resulting knowledge about factors that
influence these predictions, especially on an individual level,
could lead to the implementation of strategies that seek to
improve the utilization and efficacy of digital health
interventions.

Limitations
There are a number of limitations of this study that should be
considered when interpreting the results. One limitation is the
relatively limited number of participants included in the analysis
and the large feature space. The predictive performance of the
applied models is satisfactory, especially early on in the
intervention. The process and models described in this study
are technically feasible, although the reliability of the ensuing
results may be impacted by limitations to sample size. Owing
to the limited number of participants, the results of this study
should be replicated in a larger sample. Furthermore, the amount
of missing values impacts the analyses and can lead to bias.
Obtaining more complete data can further increase the
interpretability and predictive accuracy of the models. In
addition to time window–based features and time-dependent
variables, the demonstrated steps and this study in general do
not include time-dependent feature engineering, such as the
relation between features and observations across time.
Researchers should examine the data set they are planning to
analyze to determine whether time-dynamic features could be
used in their projects. Another limitation is the fact that the data
are heterogeneous at an individual participant level; thus, the
application of models that consider heterogeneous parameters
might provide deeper and more individualized information about
the participants. However, considering the number of
participants in the data, heterogeneous models have not yet been
investigated. The results are, nevertheless, promising and can
lead to increased knowledge about users and how dropout from
digital health interventions is affected by various factors. Studies
using larger data sets are necessary to improve model
performance and confirm findings.

Conclusions
This study proposes a step-by-step process for the analysis of
user journey data in the context of digital health interventions
and provides a technical framework. Furthermore, the proposed
framework was applied to data from an internet-based
intervention for insomnia to predict dropout of participants.
These participants needed to complete 7 cores to finish the
program. Importantly, our process was able to predict user
dropout at each core better than chance. The predictive
performance also varied by core; although the AUC was
approximately 0.6 for cores 0 and 1, it was noticeably higher
for the latter cores. This indicates that the user journey process
can be used to predict dropout early in the intervention and
prediction accuracy increases over the course of the intervention.
This may allow researchers to preemptively address dropout
before it occurs by providing support to users that may be
struggling to engage. Among the machine learning techniques
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we evaluated, boosted decision trees provided the greatest
accuracy while deleting features that contained more than 15%
missing values. In addition, a varying set of features was
revealed that contributed to the prediction performance of
dropout in this context. Replicating the results of this study in

a larger sample is needed to further validate the process outlined
in this paper. Researchers may also wish to develop methods
that predict the likelihood of user dropout over the duration of
an intervention, which could enable researchers to devote
resources to those at the highest risk of dropping out.
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