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Abstract

Background: Applications of artificial intelligence (AI) in health care have garnered much attention in recent years, but the
implementation issues posed by AI have not been substantially addressed.

Objective: In this paper, we have focused on machine learning (ML) as a form of AI and have provided a framework for thinking
about use cases of ML in health care. We have structured our discussion of challenges in the implementation of ML in comparison
with other technologies using the framework of Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and
Sustainability of Health and Care Technologies (NASSS).

Methods: After providing an overview of AI technology, we describe use cases of ML as falling into the categories of decision
support and automation. We suggest these use cases apply to clinical, operational, and epidemiological tasks and that the primary
function of ML in health care in the near term will be decision support. We then outline unique implementation issues posed by
ML initiatives in the categories addressed by the NASSS framework, specifically including meaningful decision support,
explainability, privacy, consent, algorithmic bias, security, scalability, the role of corporations, and the changing nature of health
care work.

Results: Ultimately, we suggest that the future of ML in health care remains positive but uncertain, as support from patients,
the public, and a wide range of health care stakeholders is necessary to enable its meaningful implementation.

Conclusions: If the implementation science community is to facilitate the adoption of ML in ways that stand to generate
widespread benefits, the issues raised in this paper will require substantial attention in the coming years.

(J Med Internet Res 2019;21(7):e13659) doi: 10.2196/13659
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Introduction

Artificial intelligence (AI) has become a topic of central
importance to the ways in which health care will change in the
coming decades, with recent commentaries addressing potential
transformations in clinical care [1,2], public health [3], and
health system planning [4]. AI is a general purpose technology
(GPT), which means it represents a core set of capabilities that

can be leveraged to perform a wide variety of tasks in different
contexts of application [5]. Understanding the core capabilities
of AI as a GPT, and the ways in which it stands to be
incorporated into health care processes, is essential for the
implementation research community to contribute to promoting
a positive place for AI in the future of health care. We believe
that AI has the potential to substantially reconfigure health care,
with implications that reach beyond enhancing the efficiency
and effectiveness of care delivery. Due to this potential, we

J Med Internet Res 2019 | vol. 21 | iss. 7 | e13659 | p. 1https://www.jmir.org/2019/7/e13659/
(page number not for citation purposes)

Shaw et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:jay.shaw@wchospital.ca
http://dx.doi.org/10.2196/13659
http://www.w3.org/Style/XSL
http://www.renderx.com/


suggest that implementation science researchers and
practitioners make a commitment to more fully consider the
wider range of issues that relate to its implementation, which
include health system, social, and economic implications of the
deployment of AI in health care settings.

We suggest that the most appropriate language for discussions
of AI in health care is actually to discuss machine learning (ML),
which is the specific subfield of AI that is currently making the
most impact across industries. We then focus on 2 questions
about the deployment of ML in health care. First, how should
ML be understood in terms of its actual use cases in health care?
This question addresses the nature of ML as an implementation
object [6,7] in health-related contexts. We present a basic
framework for thinking about use cases of ML in terms of
decision support versus automation and elaborate clinical,
operational, and epidemiological categories of these use cases.

Second, what are the unique challenges posed by ML that may
require consideration during an implementation initiative? As
opposed to focusing on strategies for the adoption of digital
technologies in general, which has been addressed extensively
in other literature [8-10], we focus on what we understand to
be the most important risks arising from the implementation of
ML in health care. Our discussion of the risks associated with
implementing ML in health care is guided by the work of
Greenhalgh et al in the framework for theorizing and evaluating
Nonadoption, Abandonment, and Challenges to the Scale-Up,
Spread, and Sustainability (NASSS) of health and care
technologies [8].

The NASSS framework is based on the premise that when
considering influences on whether and how a technology is
successfully taken up and used, it is important to keep in mind
that “it is not individual factors that make or break a technology
implementation effort but the dynamic interaction between
them” [8]. The NASSS framework outlines a range of
considerations that are relevant to understanding how a
technology might be adopted across an entire region or health
system, ranging from a focus on the particular health condition
in the clinical scenario to the wider political, regulatory, and
sociocultural system in which it is to be embedded. In our paper,
we examine ML as a GPT that has the potential to apply across
clinical conditions and focus our analysis on elements of the
NASSS framework: the technology, its value propositions, and
the adopters, organizations, and systems into which it might be
introduced. We emphasize the evolutionary nature of ML as a
GPT and explicitly acknowledge that it will continue to develop
and change over the coming years, which is also an important
feature of the NASSS framework. We conclude by advocating
for further research on the risks posed by ML from an
implementation science perspective.

AI has been described in many ways. Using the framing in
Agrawal et al, we emphasize that recent advances in AI can be
best understood as “prediction technology” [11]. Quite simply,
prediction is defined for this purpose as “taking information
you have, often called ‘data’, and using it to generate
information you don’t have” (PM, p. 24). This newly generated
information estimates the true information that is missing,
leading to the potential for people and technology to take actions

that may have otherwise been based on less accurate
information.

Predicting illness episodes that might be experienced in the
future is an obvious application of AI in this sense, but
prediction as we have defined it has many other uses as well.
Examples include an automatic translator predicting the phrases
of Spanish that correspond to a particular set of phrases in
English or a chat bot predicting the most appropriate cluster of
words in response to a given query. These examples might not
represent the very intuitive understanding of prediction that we
have become used to in everyday usage or the way we tend to
think of prediction of health-related events and outcomes in
health care. However, they represent the prediction of
information that we do not have based on information we do
have and point toward the potentially widespread applications
of AI as a GPT.

The phrase “predictive analytics” is very intuitive with regard
to defining AI as a prediction technology, using advanced
computer algorithms to predict health-related events from
existing data in ways that exceed the ability of individual
researchers applying individual analyses [12]. However, AI
opens new opportunities for prediction beyond the familiar
predictive analytics for hospital admissions, length of stay, and
patient survival rates. As a process of filling in missing
information, better and cheaper prediction is already being used
in new areas, from transcribing audio to enhancing security to
informing diagnoses.

At its core, current applications of AI bring statistical modeling,
computer code, and advanced computing power to bear on large
amounts of representative data. In his recent commentary on
the potential of deep learning (a form of AI) to transform health
care, Hinton gave the example of deciding whether a patient
has a particular disease and explained that a common approach
would be to use a simple logistic regression (using data to
predict a binary outcome: the patient has the disease or does
not). However, he suggested that if there are extremely high
numbers of potential influences or predictors of whether the
person has the disease, many of which may interact with one
another, the prediction challenge becomes much more complex.
This is especially the case where we have imperfect knowledge
of the causes and correlates of a particular disease. This example
also pertains only to binary queries specifically about whether
a patient has a single disease, which is different from the typical
reasoning processes involved in differential diagnosis among
clinicians, where multiple confounding, interdependent
outcomes must be considered [13,14].

Specific applications of AI can fall under distinct categories,
with AI serving as an umbrella concept, covering more specific
frameworks. In this paper, we are primarily concerned with the
subdomain of AI referred to as ML in which statistical models
are automatically (or semiautomatically) induced from data
according to some criterion (eg, best expected discriminative
power or maximum likelihood given to training data). This
means that complex statistical models capable of executing
advanced predictions are generated in part by using data to train
the model to achieve a particular goal.
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Often, ML involves supervised methods that categorize data
points, for example, as images of skin cancer or otherwise given
datasets in which all data points (or at least a substantial subset)
are associated with a label, ordinal, or category that is meant to
be predicted or inferred [15]. This process requires datasets that
have the appropriate labels indicating what the data means; in
the example of images of skin cancer, each data point would be
labeled according to its representation of a mass as malignant
or benign or some variation thereof. Given these labels and the
statistical models they help to train, ML can be very effective
at determining the category in which any newly available
individual data point belongs, thereby being useful in the effort
to, for example, identify malignant cancers based on particular
images [16].

Much of the power of modern ML also derives from
unsupervised pattern recognition, in which hidden (or latent)
aspects of the data are automatically identified by the algorithms
and exploited according to the aforementioned criteria.
Unsupervised ML can often identify patterns in the data that
humans do not even think to look for. Often, these hidden
aspects are nonlinear combinations of many parts of the input.

ML can also improve its ability to take actions according to
these induced hidden patterns and particular functions of cost
and reward in a process called reinforcement learning. For
example, ML can dynamically adapt survey questions to more
quickly identify possible diseases [17], dynamically avoid
potential communication breakdowns during speech
conversation in the assessment of dementia [18], and even
recommend treatments directly when using structured
institutional data [19]. As so much health care information can
be represented digitally, the potential of ML to improve health
care practices is profound.

Methods

Use Cases of Machine Learning in Health Care
In the remainder of our paper we refer primarily to ML as
opposed to AI, focusing our analysis on the concrete possibilities
of ML in health care. We can think about use cases of ML in
health care in 2 broad ways. The first is through decision
support, wherein ML algorithms are used to provide some form
of input into human decision making. An example is where an
algorithm is used to provide more accurate predictions of the
outcome of a particular procedure given a particular clinical
presentation. This helps to inform a human decision about
whether a given procedure is the best course of action. The
second is through automation, wherein algorithms are used not
only to predict an output but also to take action to achieve a
particular outcome. An example is the automatic transcribing
of a clinical note when dictated into a computer program,
resulting in a complete note being added to a patient’s record
(technically referred to as Automated Speech Recognition).

These 2 broadly defined categories of use cases can be thought
of as applying to various types of tasks in health care, and we
suggest it is instructive to consider 3 types of tasks as most
relevant for the implementation of ML for health: clinical,
operational, and epidemiological.

Clinical tasks refer to health-related assessment, intervention,
and evaluation, generally performed by qualified health care
providers, for example, determining a differential diagnosis.
Operational tasks are those related to activities that are ancillary
to clinical tasks but necessary or valuable in the delivery of
services, such as generating, storing, and retrieving medical
records. Finally, epidemiological tasks are those related to more
accurately identifying the health needs and outcomes of a set
of people within a given population. An example is the
development of a warning system for disease outbreak. As
epidemiological use cases of ML are related to enhancing the
ability of humans to make decisions in the other categories
described here (clinical or operational), there are no examples
of pure automation for epidemiological tasks that contain an
output other than informing a human decision. Hypothetical
examples of both decision support and automation are given
under each of these categories in Table 1.

This table presents a basic framework for thinking about use
cases of ML in health care as falling into 2 primary categories:
decision support and automation. These use cases apply in
categories of clinical, operational, and epidemiological tasks.
As no examples of pure automation exist for epidemiological
tasks, no example is presented in that cell.

The considerations most pertinent to the implementation of ML
will depend on the particular use case being proposed in a given
implementation initiative, and the categories outlined in Table
1 provide a framework for understanding those use cases. The
NASSS framework and other work in implementation science
for digital health technologies emphasize the importance of
attending to the particular value proposition that a new
technology offers for health care stakeholders [8,9]. The value
proposition of digital technology might be different for different
stakeholder groups, and implementation frameworks direct
attention to the implications of newly introduced technologies
for patients, health care providers, managers, health
policymakers, and others [8,25,26]. The clinical, operational,
and epidemiological task types presented in Table 1 will
correspond to different value propositions for different
stakeholder groups, meaning that specific applications of ML
might preferentially benefit one group over another, for example,
identifying a scheduling process to maximize efficiency in
operating costs might preferentially benefit managers over health
care providers inconvenienced by a new system. Understanding
how value propositions differ for the various stakeholders
implicated in a given implementation of ML is an essential
consideration for successful adoption and use.

J Med Internet Res 2019 | vol. 21 | iss. 7 | e13659 | p. 3https://www.jmir.org/2019/7/e13659/
(page number not for citation purposes)

Shaw et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Examples of use cases in each category of application.

EpidemiologicalcOperationalbClinicalaType of use case

Warning systems for disease outbreak
[22]

Identifying potential staff scheduling
changes related to forecasted emergency
room volumes [21]

Producing a more accurate prediction of
the likely outcome of a particular inter-
vention [20]

Decision support

N/AdUse of robotics for operational tasks in
dementia care, such as meal delivery [24]

Automatically altering insulin treatment
in response to monitored glucose-insulin
dynamics [23]

Automation

aTasks related to the assessment, intervention, and evaluation of health-related issues and procedures, generally performed by qualified health care
providers.
bTasks related to activities that are ancillary to clinical tasks but necessary or valuable in the delivery of services.
cTasks related to more accurately identifying the health needs and outcomes of people within a given population.
dNot applicable.

The potential value propositions of an ML technology offering
decision support versus one offering automation are very
different and bring along different sorts of implementation
issues. The implementation of decision support systems in health
care that do not include applications of ML have been well
studied and the difficulties include perceived challenges to
autonomy, lack of time, and dissatisfaction with user interfaces
[27,28]. Implementation initiatives involving decision support
applications of ML will need to consider this past work to
develop implementation strategies that more effectively address
known challenges.

Implementation initiatives involving automation are likely to
face some similar and some different challenges. For example,
stakeholder views on the introduction of automated robotics
into a variety of health care settings found a widespread lack
of interest and understanding and fear of the ways in which
work would be disrupted and distributed [29]. Although
automation has existed in health care for decades through
technologies such as heart rate monitors, the question of how
acceptable stakeholders will perceive new forms of automation
to be remains an important issue. This point raises the
overarching issue of the extent of automation that is possible
through applications of ML, linked to speculation about whether
ML will mostly augment or actually replace health care
providers’ work [1,30].

Augmentation and Replacement of Health Care Work
We agree with a growing chorus of health care providers and
researchers who suggest that ML will primarily serve to augment
as opposed to replace the work of humans in the provision of
health care in the near term [31], despite applications of
automation in health care. This is because the role of ML in the
current generation of capabilities functions at the level of the
task, and not at the level of an entire job. Agrawal et al explained
that “the actual implementation of AI is through the development
of tools. The unit of AI tool design is not ‘the job’ or ‘the
occupation’ or the ‘the strategy’, but rather ‘the task’.” (p. 125).
Therefore, for a health care provider to be entirely replaced,
every single task performed by that provider would need to be
automated by an ML tool or handed off to a different human.

The complete automation of the full range of human tasks
involved in providing clinical care is not yet possible; activities
such as making treatment decisions based on a differential

diagnosis that integrates data from laboratory investigation,
visual observation, and patient history are still too complex for
automation. In emphasizing this point, we are suggesting that
although much of the hype about AI (and specifically ML) in
health care has focused on its potential role in automating
processes of health service delivery, it is more likely that
near-term applications of ML will fall under the category of
decision support.

Further comments about prediction tasks and decision tasks will
help to clarify this point. As stated earlier, ML applications
fundamentally perform some form of prediction. The specific
instance of prediction that the application is performing may
be thought of as the prediction task, which may be paired with
a complementary decision task. The decision task is where the
newly generated information is used to select a particular action
in a given context. In applications of ML that function as
decision support, the decision task is performed by a human.
As ML diffuses, an important new challenge for health care
providers is to make choices using the predictions that arise
from decision support applications of ML, involving new forms
of input to clinical thought processes related to risks, benefits,
and previously unrecognized influences on health. The examples
of decision support in Table 1 involve generating better
information to inform human decision making.

In applications of ML that function as automation, both the
prediction task and the decision task are accomplished by
machines. A clear example is self-driving cars. The sensors
surrounding the car enable predictions of the best direction in
which the car should travel. However, it is the selection from
a predetermined set of actions and execution of one action over
another that makes self-driving cars an example of automation
as distinct from one of decision support. ML is not yet
sophisticated enough to complete these selection and execution
functions for many health care tasks, across both clinical and
operational levels.

As prediction tasks become more amenable to being performed
by ML, decision tasks become more valuable [5,32]. This is
because predictions are improved, meaning that decisions can
be made with greater confidence and impact. The enhanced
value of these decisions represents the potential value of ML
as a decision support tool and illustrates the potential breadth
of value propositions that could arise from this technology with
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a wide range of implications for the implementation process.
However, for decision support to be valuable in health care, the
outputs of algorithms must have a clear entryway into the human
decision-making processes that pervade health service delivery.
This points us toward one of a series of important issues raised
from an implementation science perspective on the introduction
of ML in health care settings, which we turn to next.

Results

Unique Considerations for Implementation Science
We have described use cases (and attendant value propositions)
of ML in health care as more likely relating to decision support
and less likely to automation, which begins to illustrate the
implementation object of focus in ML initiatives [6,7]. In many
cases of decision support, the implementation object is actually
not all that different from the statistical tools that are already
used as part of common practice, such as risk prediction. In
cases of automation, there are similarly many examples of
technologies that have already been successfully implemented
in health care settings (such as automatic transcription
mentioned earlier). However, ML as a GPT raises a number of
issues that run across use cases and might be anticipated as
unique in comparison with implementation projects for other
digital technologies.

Best practices of implementation for digital innovations [8,9,33]
will be fundamental to the adoption of ML in health care. Here,
we discuss considerations that might appear in implementation
projects involving ML that may be less likely to appear in
implementation projects involving other digital technologies
and yet stand to have a potentially strong influence on the
success of such projects. We organize this section based on
distinct levels of consideration that are presented in the NASSS
framework that we have not yet addressed [8,26]: health care
providers, patients and the public, health care organizations,
and health policy and systems. Although we consider the
primary considerations of health technology vendors working
on the development of ML application in health care to be
outside the scope of this paper, we acknowledge this is a gap
in the literature that requires attention.

Health Care Providers
Health care providers are those responsible for doing the actual
work of health care delivery and are being increasingly expected
to adopt and use new technologies in health care environments.
We suggest that the core considerations or risks of the
implementation of ML for health care providers will fall into
the categories of meaningful decision support and explainability.

Meaningful Decision Support
For ML to function as decision support in a way that is valuable
to health care stakeholders, the outputs of algorithms must have
a meaningful entryway into decision making. From an
operational or epidemiological perspective, isolated analyses
of risk prediction may help to inform resource allocation and
subsequent analysis decisions fairly simply. However, from a
clinical perspective, algorithms that perform isolated risk
prediction may be less useful. Clinical decision making is a
complex process involving the integration of a variety of data

sources, incorporating both tacit and explicit modes of
intelligence [34-36]. To inform this decision-making process
more intuitively, attention is increasingly being devoted to
communication tools such as data visualization [37]. The nature
and value of these communication tools are central to the
implementation process, helping to determine whether and how
algorithmic outputs are incorporated in everyday routine
practices. This point primarily relates to the decision support
use case across clinical, operational, and epidemiological tasks.

Explainability
There is a growing concern in the AI community related to the
explainability of the results achieved by ML algorithms, wherein
the ways in which algorithms enhance the performance of
prediction can often not be understood [38]. As a result of the
processes described earlier in this paper, the ways in which data
are being used to train algorithms cannot be traced out in
sequential, logical detail. Hence, the actual ways in which
models achieve their results are in some instances not knowable
even to the computer scientists who create them. Evidence-based
medicine rests on a foundation of the highest standards of
explainability; medical decision making aspires to incorporate
a sound understanding of the mechanisms by which diseases
and their treatments function and the particular treatments that
have demonstrated the greatest benefits under particular
experimental circumstances (in addition to patient needs and
values [35,39,40]). The lack of understanding of those
mechanisms and circumstances poses challenges to the
acceptability of ML to health care stakeholders. Although the
issue of explainability relates clearly to decision support uses
cases of ML as explained here, the issue may apply even more
profoundly to automation-focused use cases as they gain
prominence in health care.

Patients and the Public
The issues of public trust and public input into the governance
of ML initiatives in health care have been widely discussed as
the popularity of AI has grown, with advocates suggesting that
future developments of AI ought to be explicitly supporting a
broader public interest. We suggest that 2 pairs of issues frame
the risks of ML related to patients and the public. The first pair
is privacy and consent and the second is representative data and
algorithmic bias.

Privacy and Consent
The training of ML models requires large amounts of data,
which means that applications of ML in health will likely rely
on health-related data from patients and the public. As
governments and other actors internationally become interested
in developing applications of ML, health-related data are
increasingly made available to private entities with the capability
of producing AI applications that are relevant to peoples’health
[41-43]. Currently, data from wearable devices such as smart
watches and mobile apps are not widely covered by health
information legislation [44], and many health-related apps have
unclear consenting processes related to the flow of data
generated through their use [45]. Furthermore, data that are
de-identified may be reidentifiable when linked with other
datasets [46]. These considerations create major risks for
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initiatives that seek to make health data available for use in the
development of ML applications, potentially leading to
substantial resistance from health care providers such as that
seen in primary care in Denmark in recent years [42]. This will
be particularly important for population and public health use
cases that require data from very large segments of the
population. The meaning of consent and strategies to maintain
patient privacy are central considerations to ML implementation
initiatives. The related issues of privacy and consent pertain
especially to clinical and epidemiological use cases of ML in
both decision support and automation categories, as data from
patients /or the public are essential to train algorithms in these
areas (whereas operational use cases may only rely on other
forms of data, such as clinical scheduling histories).

Representative Data and Algorithmic Bias
Algorithms are only as good as the data used to train them. In
cases where training data are partial or incomplete or only reflect
a subset of a given population, the resulting model will only be
relevant to the population of people represented in the dataset
[47]. This raises the question about data provenance [30,48]
and represents a set of issues related to the biases that are built
into algorithms used to inform decision making. One high profile
example was the hiring bias exhibited when algorithms were
used to make hiring decisions at Amazon, resulting in only men
being advanced to subsequent stages of hiring [49]. This is
notable in part because the algorithm performed extremely well
based on the available data, simply extending the bias that
already existed in hiring practices at the company. When applied
to health care of public health, data provenance and potential
bias in training data represent important issues that are likely
to be of major concern for the stakeholders involved in the
implementation of an ML initiative. Public health has health
equity as a primary goal, and representativeness in terms of
which populations can be addressed by an ML initiative will
be a central consideration.

A further challenge with the nature of the data on which
algorithms are trained relates to concept drift, a phenomenon
where data on which an algorithm is trained change over time
(or become out of date), which changes the performance of the
algorithm as new data are acquired [50]. The possibility of
concept drift means that those overseeing the performance of
ML-based technologies in health care must identify strategies
to determine how well the algorithm deals with new data and
whether concept drift is occurring. Applications to support this
effort are emerging in the literature [51].

The issues addressed here apply most clearly to ML applications
that use patient data to inform clinical and epidemiological use
cases that enhance clinical care and health system planning.
And although the use of public data will likely be the most
contentious issue in this domain, the challenges of
representativeness and bias apply to all ML use cases across
decision support and automation domains.

Health Care Organizations
Health care and public health systems are composed of
independent organizations that need to develop and execute
strategies within the limits of the resources available to them.

Organizations have been the driving force behind the adoption
of many innovations in health care and have a collection of
considerations that are unique from the broader systems of
which they are a part. We suggest that the issue of security and
computational resources become particularly important for
organizations as they adopt ML initiatives in health care and
public health.

Security
As data are collated and stored for training ML models, the risk
and potential severity of security breaches grows. The global
attack of health care organizations using WannaCry ransomware
in May 2017 shows the vulnerabilities of even well protected
health data to malicious interests. This particular attack is
estimated to have affected 200,000 systems in over 150
countries, indicating the potential scope of security problems
as the value of data grows [52]. Strategies to prevent such
security breaches on Web accessible health data are now being
proposed in the literature [53,54], and the high profile of security
issues makes this a particularly important issue as ML
applications develop in health care and public health. The issue
of security transcends any particular use case of ML and
includes any applications or analysis that relies on big data more
generally.

Computational Resources
Advanced applications of ML require substantial computing
power, with some predictive analyses and training models
requiring up to several weeks to run. The more extensive the
computing support, the more efficient ML applications will
become, raising the question of the cost and availability of such
advanced computing power for health care organizations. Health
care is publicly funded in many countries around the world, and
public support to secure the resources to fund the necessary
computing power may not be present. Cloud-based analytics
present an opportunity and a challenge for health-related
organizations in relation to the issue of computational resources.
Cloud-based data analysis means that organizations would not
need to own computational resources directly [55] but also
introduces the potential challenges of data safety. These issues
are relevant to the training phase of a newly developed
algorithm, but of course, less computing power is required to
simply apply algorithms that have been generated and trained
elsewhere. How data are stored and processed is thus also an
important consideration in ML implementation initiatives. The
issue of computational resources also applies more generally
than any given ML use case, related to the development and
functioning of many kinds of AI algorithms.

Health Policy and Systems
The challenges associated with ML initiatives at the level of
health policy and systems are extensive. These include broad
legislative frameworks related to emerging health-related
technologies more generally [56] and to the innovation
procurement systems that vary across health system settings
[57,58]. The policy issues presented by ML in health care are
beginning to garner more attention [42,43], but here we present
one issue that we have not seen addressed in health care or
public health literature: the challenge of scalability.
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Scalability and Normal Accidents
A major challenge that extends beyond any single
implementation of ML, and therefore requires a system-wide
view, relates to the scalability of ML. Scalability in this sense
refers to the unanticipated effects of the appearance of multiple
ML technologies that will inevitably interact with one another
by some means. As applications of ML proliferate across health
care and public health, eventually some algorithmic outputs
will confront others. The effects of this interaction are
impossible to predict in advance, in part because the particular
technologies that will interact are unclear and likely not yet
implemented in the course of usual care.

Health care represents what Charles Perrow referred to as a
complex system or a system in which processes are tightly
linked to one another and interact in unintended ways in the
effort to achieve the goals of the system [59]. This
acknowledgement has led to the high reliability movement in
health care and other industries [60], intending to implement
management strategies that could mitigate against the risk of
disasters arising from such immense complexity. Perrow’s work
was titled Normal Accidents: Living with High Risk
Technologies, suggesting that in systems characterized by
complexity and the use of advanced technologies, accidents are
bound to happen [59]. This basic point about the seeming
inevitability of accidents in the context of complex systems and
new technologies underscores the significance of the scalability
challenge of ML in health care. We suggest that implementation
scientists will need to consider the unintended consequences of
the implementation and scale of ML in health care, creating
even more complexity and greater opportunity for risks to the
safety of patients, health care providers, and the general public.
ML safety will likely need to become a dedicated focus of
patient safety research internationally. This point about
scalability frames the broader challenge for implementation
scientists who are committed to a system-wide perspective on
health innovations and relates not only to each type of use case
identified in our framework but also to the interactions between
them as well.

Discussion

Intersecting Issues in the Future of Health Care
In our brief Discussion section, we outline 2 overarching issues
that we consider to frame the challenges facing health care
systems that are hoping to adopt ML in the coming years. The
discussion here is informed by the explicit recognition in the
NASSS framework that both the technology and context in
which innovations are being introduced shift and change over
time. Greenhalgh et al suggest that although the levels of the
framework can be distinguished analytically, “at an empirical
level they are inextricably interlinked and dynamically evolving,
often against a rapidly shifting policy context or continued
evolution of the technology” (p. 14). Our assessment of the 2
issues we address here is intended to represent the connections
between the changes that will be required as the policy context
and technology evolve concurrently. The first is the issue of the
role of corporations in health-related applications of ML, and

the second is the issue of the role of ML in the evolving nature
of health care.

The Role of Corporations
As the innovations enabled by ML have taken on a more
powerful role in driving global economies, corporations have
strategically sought to acquire larger amounts of more diverse
data to boost their capacity to develop ML algorithms [61]. The
shifting focus of many large corporations to the collection and
manipulation of data characterizes what Zuboff refers to as
surveillance capitalism, a relatively recent phenomenon in the
global economy that relies on data for innovation and corporate
success. The more that large corporations enter the health care
industry with the power to collect, store, and use data, the more
intertwined health care will become with the corporate realities
of these large, multinational companies [62].

As large corporations acquire more data and develop more
sophisticated forms of ML that transcend any individual
geographical region, the implications for domestic health care
policy are at risk of being overlooked. Although recent efforts
to create regional protections around data collection and use
have appeared to make an impact, such as the General Data
Protection Regulation in Europe, health care policy is well
behind. In cases where health-related data are already being
stored in a country other than where the user is living, what are
the regulations on how those data can be used? Where users
voluntarily engage with technologies that collect their data for
explicit health-related use by a corporation outside of their
political jurisdiction, what legislative frameworks apply to
protect patients and the public? These issues represent the
important challenge of making health policy matter when
conventional political boundaries are less able to contain the
potential of large corporations to develop and use their
technological capabilities.

The Changing Nature of Artificial
Intelligence–Enabled Health Care
AI applications represent a potential impetus for major change
in the institutions that constitute health care. In this sense, the
term institution refers not just to the organizations in which
health care providers work but to a complex collection of
cognitive, cultural, regulative, and moral influences that shape
the way that health care workers see their work and their lives
[63]. The social sciences have worked to provide clear
definitions of institutions through decades of research and theory
[63-65]. Scott explained that institutions are combinations of 3
pillars: norms of the way things are usually done around here
(cultural-cognitive influences), laws and regulations (regulative
influences), and assumed moral codes (normative influences)
[63]. Health care represents a confluence of institutions
understood in this sense, many of which are naturally oriented
toward maintaining some version of the status quo. Particularly
for members of institutions who maintain power over resources,
such as the medical profession, embracing institutional change
is a point of resistance and difficulty.

We suggest that ML will confront the realities of entrenched
institutions through issues such as meaningful decision support
and explainability described earlier. These 2 issues represent
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the authority of health care providers over the decisions that
come to define health care as a multi-institutional field, both in
terms of their rightful positions within the system and the fabric
of decision making that has always defined health care
processes. These issues point toward an important challenge
that we suggest implementation scientists must grapple with:
the changing nature of health care work. In Prediction Machines,
the authors explain that as AI technology develops, “the value
of substitutes to prediction machines, namely human prediction,
will decline. However, the value of complements, such as the
human skills associated with data collection, judgment, and
actions, will become more valuable.” (p. 81). As the
implementation science community considers how to encourage
the adoption of ML technologies, it will also need to consider
how such technologies stand to change the ways in which health
care planning, decision making, and delivery are understood
and the evolving role of human health care providers within
that context.

The challenges described here refer to unique considerations of
ML that pose novel challenges to implementation beyond the
work of promoting the routine use of technologies among health
care providers. We suggest that the hype and high stakes of ML
make these issues more prominent in the mindsets of health
care stakeholders and therefore more likely to impact upon an
ML implementation project. The implementation science
community will need to establish strategies to address these

issues as ML becomes more prominent, each of which requires
ongoing work to be adequately addressed.

Conclusions
In this paper, we have provided an overview of ML for
implementation scientists informed by the NASSS framework,
outlining the use cases of ML as falling into the categories of
decision support and automation. We suggest these use cases
apply to clinical, operational, and epidemiological tasks and
that the primary ways in which ML will enter into health care
in the near term will be through decision support. We then
outlined unique implementation issues posed by ML initiatives
from 4 perspectives, those of health care providers, patients and
the public, health care organizations, and health policy and
systems.

Ultimately, we suggest that the future of ML in health care
remains positive but uncertain, as support from patients, the
public, and a wide range of health care stakeholders is necessary
to enable its meaningful implementation. However, as
applications of ML become more sophisticated and investment
in communications strategies such as data visualization grows,
ML is likely to become more user-friendly and more effective.
If the implementation science community is to facilitate the
adoption of ML in ways that stand to benefit all, the issues raised
in this paper will require substantial attention in the coming
years.
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