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Abstract

Background: For many years, clinicians have been seeking for objective pain assessment solutions via neuroimaging techniques,
focusing on the brain to detect human pain. Unfortunately, most of those techniques are not applicable in the clinical environment
or lack accuracy.

Objective: This study aimed to test the feasibility of a mobile neuroimaging-based clinical augmented reality (AR) and artificial
intelligence (AI) framework, CLARAi, for objective pain detection and also localization direct from the patient’s brain in real
time.

Methods: Clinical dental pain was triggered in 21 patients by hypersensitive tooth stimulation with 20 consecutive descending
cold stimulations (32°C-0°C). We used a portable optical neuroimaging technology, functional near-infrared spectroscopy, to
gauge their cortical activity during evoked acute clinical pain. The data were decoded using a neural network (NN)–based AI
algorithm to classify hemodynamic response data into pain and no-pain brain states in real time. We tested the performance of
several networks (NN with 7 layers, 6 layers, 5 layers, 3 layers, recurrent NN, and long short-term memory network) upon
reorganized data features on pain diction and localization in a simulated real-time environment. In addition, we also tested the
feasibility of transmitting the neuroimaging data to an AR device, HoloLens, in the same simulated environment, allowing
visualization of the ongoing cortical activity on a 3-dimensional brain template virtually plotted on the patients’ head during
clinical consult.

Results: The artificial neutral network (3-layer NN) achieved an optimal classification accuracy at 80.37% (126,000/156,680)
for pain and no pain discrimination, with positive likelihood ratio (PLR) at 2.35. We further explored a 3-class localization task
of left/right side pain and no-pain states, and convolutional NN-6 (6-layer NN) achieved highest classification accuracy at 74.23%
(1040/1401) with PLR at 2.02.

Conclusions: Additional studies are needed to optimize and validate our prototype CLARAi framework for other pains and
neurologic disorders. However, we presented an innovative and feasible neuroimaging-based AR/AI concept that can potentially
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transform the human brain into an objective target to visualize and precisely measure and localize pain in real time where it is
most needed: in the doctor’s office.

International Registered Report Identifier (IRRID): RR1-10.2196/13594

(J Med Internet Res 2019;21(6):e13594) doi: 10.2196/13594
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Introduction

Background
Accurate pain assessment is crucial across a wide range of acute
and chronic pain conditions to provide proper diagnosis and
treatment, especially when patients have limitations to express
their ongoing suffering. The estimated economic impact of pain,
from direct medical costs to loss of productive time, is US $560
to $635 billion every year [1]. Despite this, we are still heavily
relying on the following measure: “From 0 to 10—0 being no
pain and 10 being the worst pain—what is your pain level?”
All of our clinical and research decisions on the efficacy of
current or new potential pain therapies and, most importantly,
our patients’ ongoing pain levels, are biased by the inaccuracy
of that scale, independent of how rigorous, complex, and costly
our protocols are.

The pain field has progressed by quantifying the patients’
suffering with more holistic pain questionnaires and measure
scales (eg, McGill Pain Questionnaire and Face Rating Pain
Scale), which are prevalent, useful, and convenient. However,
the subjective reports still carry limitations: first, they are
inconsistent among different patient groups regarding age and
cultures. For instance, words used by patients nowadays to
express the severity of their pain have also evolved with time
and might be different from the ones articulated by past
generations [2]. Second, those tools cannot be applied during
procedures or surgeries that impair patients’ communication,
including the minimally conscious or cognitively impaired.
Finally, self-report provides limited value for understanding the
neurophysiological processes underlying different types of pain,
thereby, blurring the treatments to the underlying
neuropathologic conditions [3].

To address these limitations, researchers have started to analyze
the neurological signature of pain using neuroimaging [3,4].
Wager and colleagues developed a system using machine
learning technology on data collected with functional magnetic
resonance imaging (fMRI), showing the possibility of detecting
a robust neurological signature of pain at the level of the
individual person. Other researchers have demonstrated the
possibility of detecting even temporomandibular disorder using
multivoxel pattern analysis on fMRI signal. Such MRI-based
gold rush to report new brain-pain biomarkers forced the field
to recommend standards of evidence [5]. Indeed, fMRI objective
assessments of pain have provided a great step ahead in the path
of dissecting brain mechanism of pain, but the size and cost of
the MRI scanner and other conventional neuroimaging tools
(eg, positron emission tomography) prevent its application in
the clinical office. This impediment has sparked the interest of

portable neuroimaging devices with similar technical benefits
as fMRI. Functional near-infrared spectroscopy (fNIRS) detects
concentration variations of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR), such as blood oxygen level
dependent signal in fMRI. It measures the absorption of
near-infrared light at wavelengths between 700 and 1000 nm,
noninvasively through the skull [6,7]. Compared with the MRI
scanner, the portability and compatibility to
ferromagnetic/electrical components provide researchers an
option to monitor, localize, and analyze functional brain activity
in the surgical and clinical environment [8-12].

Objectives
In previous studies, our group studied the hemodynamic cortical
responses detected by fNIRS in patients with hypersensitive
teeth in the dental chair [13]. We found well-defined
hemodynamic cortical activity in the primary sensory (S1) and
prefrontal cortices (PFCs) elicited by thermal stimulation to the
affected tooth from expectation to pain detection. Interestingly,
the patients’ clinical pain experience was predicted
concomitantly by their baseline functional connectivity between
S1 and PFC, as well as a well-defined stepwise sequence of
hemodynamic responses. This sensory-discriminative and
cognitive-emotional cascade of brain responses initiated during
the expectation of the clinical pain (prepain phase), with
activations in the contralateral S1 orofacial homuncular region
and also in the bilateral PFC. Such activations were followed
by flat or PFC deactivation and further S1 responses when the
cold stimuli crossed noxious levels (pain phase) [14]. Herein,
following our earlier findings, we aimed to develop an in-house
framework technology that can visualize, measure, and decode
in real time the ongoing cascade of spread cortical activities
into when and where there is clinical pain. This was successfully
achieved through 3-step experiments integrating optical
neuroimaging (fNIRS), augmented reality (AR), and a neural
network (NN)–based artificial intelligence (AI).

Methods

Data Acquisition
The University of Michigan Institutional Review Board approval
was obtained before study initiation. We recruited 21
participants (8 male; age: mean 27.6, SD 3.5 years) with
hypersensitive teeth. We collected neuroimaging data from a
thermal stimulation session [13,14]. In this session, the
participants underwent 20 thermal stimulation trials, in which

the thermal probe cycled from 32oC to 0oC at a rate of

–2o/second. Subjects controlled the cooling unit by clicking a
computer mouse when clinical pain was achieved, causing the
stimulation to stop.
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The data were acquired with a TechEN-CW6 fNIRS (Milford,
MA, United States) system at a 20 Hz sampling rate. The setup
included 8 emitters of near-infrared light and 28 detectors spaced
3 cm apart, yielding 40 data channels deployed at bilateral PFC
and S1. The probe set was designed based on the international
10-10 transcranial positioning system [15] and further validated
with automatic anatomical labeling database [16]. The collected
raw data were examined by a 2-step data quality control steps,
filtered with a band-pass filter at 0.01-0.3 Hz and then converted
to HbO and HbR concentration change data. Such preprocessing
was completed using scripts from Homer2 software (Huppert
et al) [17] and several custom MATLAB (MathWorks, MA,
United States) scripts.

In this study, we employed 2 experiments for testing the
feasibility of pain/no-pain prediction as well as left/right pain
localization (Figure 1). In addition, we conducted a third
experiment of designing an AR-based data visualization
terminal. The entire study framework is presented in Figure 2.

The NN design, training, and testing were completed in a
Python-based toolbox, Keras (Chollet et al) [18], with
Tensorflow backend (Google Brain Team) [19] and Scikit-learn
(Cournapeau et al) [20] toolbox for cross-validation. The data
displaying terminal on the AR device were designed through
HoloBrain (Microsoft, WA, United States), an in-house
developed software at University of Michigan.

Figure 1. Experiment flow chart. The green line indicates the convolutional neural network with 7 layers (CNN-7), the blue line indicates the CNN
network with 6 layers, the orange line indicates the CNN network with 5 layers (CNN-5), the red line indicates the long short-term memory network,
the dark blue line indicates the recurrent NN, and the yellow line indicates the artificial NN with 3 layers for experiment 1—pain/no-pain prediction
and experiment 2—left/right pain localization task. Experiment 1 included the data collected from N=12 participants, 239 trials in total, whereas
experiment 2 included the data collected from N=2 participants, 20 trials in total. CNN: convolutional neural network.
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Figure 2. Study framework.

Experiment 1: Pain Detection
The aim of the experiment was to test the feasibility of
pain/no-pain prediction at individual patient level. We tested
convolutional NN (CNN) configurations at 3 different depths,
respectively, 7 layers (CNN-7), 5 layers (CNN-5), and 3 layers
(artificial NN, ANN) to evaluate their performance on same
datasets (Figure 1). In addition, we also tested a recurrent NN
and a long short-term memory network on our dataset
considering the possible temporal connection within fNIRS
time series. Prior studies suggested that including data history
as feature can improve classification performance [9,21]. In our
most recent research, we reported the cascade of brain events
during clinical pain that demonstrated interactive pain
expectation evoked responses at bilateral prefrontal cortices as
well as a 2-peak response at contralateral sensory cortex [13].
Using that knowledge in this study, we assembled 2 types of
feature for the input layer: (1) a 40 × 40 × 2 data cube, by
including 40 samples (2-second data history block sampled at
20 Hz) and 40 channels with 2 types of data (HbO/HbR) in the
third dimension and (2) a 80 × 40 × 2 data cube, by including
80 samples (2 × 2-second data history blocks before and after
patients’ pain threshold). Given that there were more no-pain
than pain samples in the dataset within the multiple clinical
stimulation trials in each individual, we balanced the 2 sample
sets by reweighting their loss functions during the training
process [22]. Specifically, we defined a dictionary for the
pain/no-pain labels with associated weights of 10:1 and assigned
such weight during training in the Keras toolbox using a
class_weight variable. In addition, we used 10-fold
cross-validation to validate each model [23] and calculated the
averaged classification accuracy, sensitivity, specificity, positive
likelihood ratio (PLR), positive predictive value, negative
predictive value, and kappa value to evaluate the classification
performance.

Experiment 2: Pain Localization
The aim of the experiment was to further test the feasibility of
left/right pain and no-pain states prediction (3-class
classification) on merged and permuted patients’data (data were
collected from patient 3 and 19, separately, left/right tooth
stimulated). We permuted the merged data by randomly
including and excluding data cubes along time course. We tested
all networks applied in experiment 1, and in addition a 6-layer
CNN (CNN-6) on type I data cube, with time series preprocessed
with a custom real-time normalization algorithm (Figure 1).
Specifically, we used a divided by the mean [24] scheme to
normalize the data in real time, where the mean was updated
by a windowed data along the time course. To retain the
uniformity in the data, we did not run cross-validation in this
scenario.

Experiment 3: Augmented Reality—Pain Visualization
and Decoding Using Augmented Reality and Artificial
Intelligence
We developed a displaying terminal for the framework using
an AR device, HoloLens (Microsoft, WA, United States). AR
is a computer vision–based technology that expands our real
world by adding a layer of virtual and digital information to it.
It is becoming prevalent in different fields including, for
example, construction, gaming, and medicine. The Hololens is
a headset-shaped AR computer developed by Microsoft, which
allows users to visualize 3-dimensional (3D) holographic images
on top of the real physical world. In this study, the functional
hemodynamic response data acquired from the patient’s brain
at multiple cortical regions of interest were wirelessly
transmitted to the HoloLens device. Afterwards, we used an
in-house–developed software to display the ongoing patient’s
cortical function updating in real time on the brain template
modeled in the software (Multimedia Appendix 1; video section
1 and 2). This software is an application adapted from an
in-house 3D rendering engine developed at the University of
Michigan 3D Lab. In active development for over 10 years, this
platform allows for the rapid development and displaying of
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complex interactive 3D scenes including advanced materials,
lighting, physical responses, and detailed meshes. In this study,
we first registered the 40 data acquisition channels to an MNI
152 nonlinear brain template. Afterwards, we reconstructed this
virtual brain with the registered functional regions using this
software to display and adjust its appearance based on incoming
data from the NIRS device. Furthermore, the software decoded
and displayed the brain activity from experiments 1 and 2 in
clinical pain/no-pain status and localization by mapping the
ongoing results on a virtually reconstructed digital body within
the field of AR view (Multimedia Appendix 1; video section
2). In addition, the CLARAi displaying of ongoing cortical
activity in volunteers was also tested in real time using a
NIRSport fNIRS system with 16 source-detector density (NIRx,
NY, United States) to facilitate the use of our CLARAi concept
in real clinical environment (Multimedia Appendix 1; video
section 1).

Results

Experiment 1 and 2
Of the 21 participants, 12 were further preprocessed to enter
the feasibility testing in experiment 1 (Table 1). Within these
12 participants, we had a total 180,580 data cubes; among these
cubes, 23,900 (13.24%, 23,900/180,580) were labeled as pain
and 156,680 (86.76%, 156,680/180,580) were labeled as
no-pain. A total of 2 participants’data were tested in experiment
2; there were 30,820 data cubes in total, with 2000 (6.49%,
2000/30,820) labeled as right-side pain, 2000 (6.49%,
2000/30,820) labeled as left side pain, and 26,820 (87.02%,
26,820/30,820) labeled as no pain. Figure 3 shows representative
averaged HbO and HbR responses across all channels under
pain and no-pain statues, respectively, collected from patient
3.

Table 1. Participant demographics with classification performance.

Stimulation sideReported NRSaClass accuracyNo-pain (points)Pain (points)Participant

Right5.584.58 (%)14,98020003

Right3.976.83 (%)13,08020005

Right5.878.84 (%)12,140200010

Left1.980.98 (%)11,520200011

Left3.481.53 (%)13,320200012

Right8.576.25 (%)13,700200013

Left5.876.12 (%)11,480200015

Left6.679.55 (%)12,600200016

Left2.680.74 (%)14,360190017

Left3.882.29 (%)13,020200018

Left5.181.00 (%)11,840200019

Left3.385.78 (%)14,640200020

aNRS: numerical rating scale.
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Figure 3. Representative averaged oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) heat map from all data channels. The upper
and lower panels, respectively, indicated the hemodynamic responses during pain and no-pain statues. The left and right panels, respectively, indicated
the HbO and HbR responses. The red and blue circles, respectively, highlighted 2 regions of interest, sensory and prefrontal cortices. HbO: oxygenated
hemoglobin; HbR: deoxygenated hemoglobin; PFC: prefrontal cortex.
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Table 2. Performance of different network setups in experiment 1.

KappaPLRcNPVbPPVaSpecificitySensitivityOverall accuracyNetwork setup

0.041.390.8720.1690.8960.14479.62 (%)CNNd-7

0.051.40.8720.1830.8910.15379.25 (%)CNN-5

0.081.650.8770.2050.8840.19279.17 (%)ANNe

0.172.350.8930.2660.8610.32680.37 (%)ANN+2 portion

0.162.060.8980.2420.8010.40975.93 (%)ANN+2 portion + oversample

0.162.100.8950.2450.8190.37977.19 (%)ANN+2 portion + oversample

(HbOf only)

0.111.800.8880.2110.8150.33276.31 (%)RNNg+2 portion + oversample

0.121.860.8870.2200.8280.31977.29 (%)LSTMh+2 portion + oversample

aPPV: positive predictive value.
bNPV: negative predictive value.
cPLR: positive likelihood ratio.
dCNN: convolutional neural network.
eANN: artificial neural network.
fHbO: oxygenated hemoglobin.
gRNN: recurrent neural network.
hLSTM: long short-term memory.

Table 3. Performance of different network setups in experiment 2.

KappaPLRcNPVbPPVaSpecificitySensitivityAccuracyNetwork

0.201.990.8440.3390.7770.44370.88 (%)ANNd

0.081.350.8240.2500.7230.37565.37 (%)CNNe-5

0.152.020.8230.3420.8620.27974.23 (%)CNN-6

0.282.480.8680.3890.7820.54073.23 (%)CNN-7

aPPV: positive predictive value.
bNPV: negative predictive value.
cPLR: positive likelihood ratio.
dANN: artificial neural network.
eCNN: convolutional neural network.

ANN performed on split data history segments achieved the
best results, with a prediction accuracy at 80.37 %
145,210/180,580), and a PLR at 2.35 (sensitivity=0.326,
specificity=0.861). ANN performed on split data history blocks
with reweighted loss function achieved the highest sensitivity
at 0.409 and specificity of 0.801, with a PLR at 2.06. In addition,
CNN-7 achieved the highest specificity at 0.896, however, with
a PLR at 1.39 and a sensitivity of 0.144. A detailed performance
summary of experiment 1 for different network setups can be
found in Table 2. In addition, a patient-wise classification
accuracy was listed in Table 1. The 3-class prediction achieved
an optimal classification accuracy at 74.23% (1040/1401) with
CNN-6, with a PLR at 2.02 in real time, whereas CNN-7 had
a highest sensitivity at 0.540 with a PLR at 2.48. A detailed

performance summary of experiment 2 can be found in Table
3.

Experiment 3
Figure 4 shows the developed data displaying interface
“HoloBrain.” The collected functional HbO and HbR data were
displayed and updated on an MNI152 brain template in real
time (Multimedia Appendix 1; video section 1). The 3D virtual
brain activation image, through HoloLens, was superimposed
onto a participant’s head. Beside the 3D brain activation, an
animated human body with modulated red areas were indicating
pain regions prediction by side—either left or right
cranio-orofacial regions (Multimedia Appendix 1; video section
2).

J Med Internet Res 2019 | vol. 21 | iss. 6 | e13594 | p. 7https://www.jmir.org/2019/6/e13594/
(page number not for citation purposes)

Hu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. CLARAi framework that integrated clinical real-time neuroimaging, augmented reality, and artificial intelligence provides an augmented
clinical environment by displaying neuroimaging data with predicted and localized pain of patient. The classification codes for no-pain, right side pain,
and left side pain was defined as 0, 1, and 2, respectively, for model training purposes.

Discussion

In our previous study, we observed, respectively, clinical pain
expectation and pain-related responses at PFC and S1 cortices
[13]. Further in our successive report, we discovered the
sequential connections among those cortical responses, meaning
the cascade of cortical events in the brain before, during, and
after the clinical pain experience [14]. In this feasibility study,
we assembled that pattern for data signature for objective clinical
pain prediction using fNIRS data collected directly from the
bilateral PFC and S1 cortices. Previous studies achieved
promising results in attempting to classify different level of
thermal stimulation (potentially indicating pain vs no-pain)
based on hemodynamic response data collected from sensory
cortex [25,26]. These studies also examined the performance
of several prevalent machine learning methods including support
vector machine, linear discriminant analysis, and K-nearest
neighbor. In our study, we chose to examine the performance
of different NN setups, given our data were collected from
multiple regions of interest bilaterally including PFCs and S1
cortices at a relatively high sampling rate. On the basis of our
trilogy of experiments, our CLARAi model gained not only
information from spatial pattern but also temporal sequence in
the data by including up to 10-second data history counting
back from each data frame to get the contrast between clinical
pain expectation and pain experience per se in real time.

Herein, in experiment 1, we tested several NNs on different
reorganized brain activation data to predict pain and no-pain

conditions. We first tested 3 networks on data including
2-second data history block and found that CNN-7 achieved
the highest general classification accuracy. In recent years,
CNNs became deeper and deeper, with state-of-the-art networks
going from 7 layers AlexNet [27] to a thousand layers Residual
Nets [28] in a 4-year period. The reason behind the boost is that
a deeper network can usually learn a more complex nonlinear
function. Our results on type I data cube complied with such
trend that CNN-7 achieved slightly higher accuracy. However,
the CNN-7 results emphasized much more specificity than
sensitivity, meaning we were likely to better define if the patient
had no-pain than pain. Such results may be because of several
potential reasons: (1) The collected data were unbalanced,
meaning we had much more no-pain than pain samples in the
training set from each patient; (2) We did not have enough data
to train the large number of parameters for CNN; and (3) The
pattern contained within the 2-second data history may not be
informative enough for discriminating pain from no-pain
condition. Therefore, to improve sensitivity, we employed a
simpler ANN network, reweighted the loss function relevant to
the pain condition samples, and assembled data feature with 2
split history blocks to include pain expectation evoked responses
[29]. When the preceding pain expectation (prepain) phase is
also taken into consideration in the algorithm [29], the results
indicated that the real time sensitivity was significantly increased
to detect pain, from 0.144 to 0.409, while not losing too much
specificity, from 0.896 to 0.861. Such improvement in pain
detection (sensitivity) suggested that the pain expectation phase
was crucial to encode the magnitude of the immediate pain and
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is highly driven by the activation of the left dorsolateral PFC
[14,30]. In addition, we tested the same NN setup on only HbO
data. We found a slight increase in general classification
accuracy and specificity (0.013 and 0.018), whereas a decrease
in sensitivity (0.029). As sensitivity was generally lower than
specificity in this study, we selected combined HbO and HbR
data as features for classification. Finally, we examined whether
there was a potential correlation between the individual level
classification accuracy and the reported numerical rating scale
of pain, but we did not find any statistical significance.

Considering the relatively high-spatial resolution of fNIRS
imaging, in experiment 2, we further tested the feasibility of
localizing pain. We introduced a 3-class pain localization
problem by merging the data from 2 selected patients, one with
left side tooth pain hypersensitivity and the other one with same
clinical condition on a right tooth during cold stimulation. To
eliminate baseline and signal magnitude difference, we applied
a simulated real-time normalization algorithm to the data. We
then tested this dataset with several NNs with different depth
and found that CNN-6 achieved the best general classification
accuracy. Though there is need for further validation, the
preliminary discrimination result demonstrated a strong potential
of our framework in localizing pain at different body regions.
Moreover, the results demonstrated the feasibility of training a
universal model that can localize pain condition across patients
based on the S1 homuncular activation by side and major body
regions. This is biologically feasible because the somatotopic
homuncular S1 representation for pain in the orofacial region
is quite large, like other major functional body regions including
the thumb/hand, trunk, and feet [31].

Combined with the pain prediction module, we developed a
clinical AR-based data displaying interface for the framework.
The data collected in this study with the predicted result were
transferred to a HoloLens device. The magnitudes of
hemodynamic response changes at multiple locations on a 3D
brain template were superimposed on the participants’ head in

reality via HoloLens (Multimedia Appendix 1; video 1). The
predicted painful locations were indicated by the red flickering
parts on the animated body beside the virtual brain. In a true
clinical environment, with such framework, clinicians can better
understand in an objective way to determine when/where the
patients are suffering from pain, especially when they cannot
express themselves. In addition, the potential idea is to even
decide the level of pain, and further a “prepain” phase using
PFC activation evoked by pain-associated anxiety or
expectation. Such information will help clinicians decide when
to intervene for addressing the pain or the immediate likelihood
of it to occur (eg, anesthesia and brain stimulation). Afterwards,
the entire framework becomes closed loop by including a pain
intervention module, for instance pain neuromodulation.

Finally, all selected data preprocessing, classification,
transmitting, and displaying methods in this study can be
implemented in real time. However, the CLARAi framework
is in its initial stages. Future improvements of this work include:
(1) optimizing the framework sensitivity by potentially adding
short-separation channels during data acquisition to model
interfering physiological signals in a better way, (2) expansion
of the current participant-specific model to a general model with
learning ability that will only require individualization to
precisely adapt to variations in each patient, and (3) further
expansion of the model to fit other types of pain conditions and
neurologic disorders including depression and anxiety. In
summary, we tested the feasibility of a prototype of a mobile
neuroimaging-based clinical AR and AI (CLARAi) framework
for objective pain detection and localization in the clinical
environment in real time. Such framework predicted when and
where there was physical pain based on the brain statuses in our
data study and displayed neuroimaging data interactively in real
time. Although extensive validation work still needs to be done,
the CLARAi framework might turn into reality the goal of
precisely “seeing and believing” the biologic pain suffering of
our patients in the doctor’s office.
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template in real time. Section 2, the 3-dimensional (3D) virtual brain activation image, through HoloLens, was superimposed
onto a participant’s head. Beside the 3D brain activation, an animated human body with modulating red areas indicated pain
regions prediction by side—either left or right cranio-orofacial regions.

[MP4 File (MP4 Video), 141MB-Multimedia Appendix 1]
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