
Tutorial

Building a Secure Biomedical Data Sharing Decentralized App
(DApp): Tutorial

Matthew Johnson1,2, MS; Michael Jones1,2, MS; Mark Shervey1,2, BA; Joel T Dudley1,2, PhD; Noah Zimmerman1,2,
PhD
1Center for Biomedical Blockchain Research, Icahn School of Medicine at Mount Sinai, Redwood City, CA, United States
2Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York City, NY, United States

Corresponding Author:
Noah Zimmerman, PhD
Center for Biomedical Blockchain Research
Icahn School of Medicine at Mount Sinai
Suite 10
234 Marshall St
Redwood City, CA
United States
Phone: 1 650 352 3879
Email: noah.zimmerman@mssm.edu

Abstract

Decentralized apps (DApps) are computer programs that run on a distributed computing system, such as a blockchain network.
Unlike the client-server architecture that powers most internet apps, DApps that are integrated with a blockchain network can
execute app logic that is guaranteed to be transparent, verifiable, and immutable. This new paradigm has a number of unique
properties that are attractive to the biomedical and health care communities. However, instructional resources are scarcely available
for biomedical software developers to begin building DApps on a blockchain. Such apps require new ways of thinking about how
to build, maintain, and deploy software. This tutorial serves as a complete working prototype of a DApp, motivated by a real use
case in biomedical research requiring data privacy. We describe the architecture of a DApp, the implementation details of a smart
contract, a sample iPhone operating system (iOS) DApp that interacts with the smart contract, and the development tools and
libraries necessary to get started. The code necessary to recreate the app is publicly available.

(J Med Internet Res 2019;21(10):e13601) doi: 10.2196/13601

KEYWORDS

blockchain; geolocation; tutorial; mobile health; privacy; DApp; iOS; biomedical research; decentralized application; smart
contract

Introduction

Background
Decentralized apps (DApps) are computer programs that run
on a distributed computing system. These have been popularized
recently by distributed ledger technologies underlying projects
such as Bitcoin and Ethereum. Unlike the client-server
architecture that powers most internet apps, DApps interact
with app logic deployed on a blockchain enabling transparent,
verifiable, and immutable records of each transaction. When
built on blockchain networks, DApps can contain their own
suite of associated smart contracts that are used to encode
business logic and allow persistent storage of state [1].

Over 150 blockchain projects in the health care industry alone
have raised more than US $660 million in private and
blockchain-funded markets [2,3]. Despite this massive
investment in blockchain technologies over the last 3 years, the
DApp ecosystem remains immature. At the time of writing, the
most popular DApp had 5628 daily active users [4]. By
comparison, Facebook, a popular centralized app, reported 1.5
billion daily active users in Q4 of 2018 [5]. Documentation and
tooling for developers to build on new platforms is sparse [6,7].
As a result, the technical hurdles currently required to develop
a DApp restrict more widespread experimentation.

Self-contained sample projects [6-10] can help jump-start
development, allowing those new to the field to focus on the
logic and app instead of the myriad technical decisions required
to get started. This tutorial too walks through the development

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 1https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:noah.zimmerman@mssm.edu
http://dx.doi.org/10.2196/13601
http://www.w3.org/Style/XSL
http://www.renderx.com/

of a complete working DApp prototype, including smart contract
and iPhone operating system (iOS) client apps, and is
specifically motivated by a real use case that requires data
privacy in biomedical research. All of the code necessary to
recreate this app has been made publicly available [11,12]. Our
hope is that this project will be forked, remixed, and combined
to catalyze the ecosystem of biomedical blockchain DApp
development.

This tutorial is organized as follows: (1) a discussion around
the traditional approach to data privacy in research as well as
the rationale for a blockchain approach; (2) the motivation for
a geolocation sharing use case for biomedical research; (3) an
overview of the software architecture proposed, including a
brief description of security properties; (4) a description of the
client app; (5) a description of the smart contract; (6) details on
the development environment; (7) details on the deployment of
the DApp; and (8) a discussion of advantages, limitations, and
future directions.

The aim of this paper is to serve as a tutorial for developing a
working prototype of a DApp (as shown in the demo video in
Multimedia Appendix 1) and to highlight the specific benefits
of using a DApp as a method for participants in research to
share features of their raw data, while preserving the
participant’s privacy by not revealing the raw data itself.

Traditional Data Protection and Its Shortcomings
Traditionally, data collected in research is managed using a
database that is implemented in a client-server network
architecture. In this architecture, a database is connected to a
backend server, which can then be accessed by researchers
(clients). An example of this architecture is an iOS app,
functioning as the front end (client), which makes calls to
backend code and the database (server) [13]. This database
requires some central authority, typically the researcher or
research organization, to set permissions and control access
resulting in a centralized app. It is the responsibility of the
researchers to ensure the privacy and protection of the collected
data; this architecture is convenient for researchers in that
regard, as they technically have full autonomy over all the data
they collect.

Researchers having full access and control over all collected
data from participants, however, is not necessarily in the best
interest of either party. This approach can place undue burden
on researchers who are only interested in nonidentifiable features
of the data and would rather not bear the liability of collecting
and managing data that is unnecessary to their analysis. On the
contrary, participants must blindly trust that the researchers will
responsibly manage and protect their raw data, which, by malice
or negligence, is not always the case. This becomes increasingly
concerning as longitudinal research and high-frequency data
collection is becoming more prevalent, exposing participants
to greater privacy risks [14].

Although the reduction of data collection and management
liability is realizable in any traditional hosted environment, the

party hosting the environment will still have access to the raw
data. To avoid this, one could employ data minimization and
perform all data-processing and feature extraction on the client
so that the host never has access to the raw data itself.

For example, researchers could be interested in the points in
time that the heart rate of participants went above 60 beats per
minute (bpm). Rather than recording, posting, and storing all
the heart rate data of participants, the heart rate could be
preprocessed on the participant’s mobile device for heart rate
data above 60 bpm. However, this would eliminate the ability
for researchers or future collaborators who are interested in
heart rate data above 70 bpm to use the previously collected
data as there is no way to determine the heart rates for the
previously collected time points. To collect new heart rate data
above 70 bpm would require an update to the client app.

Unlike the traditional, centralized approach of data privacy
where the backend code and database are on a centralized server,
DApps have backend code running on a decentralized
peer-to-peer network, such as a blockchain network [13]. When
deployed on a blockchain, the backend code is referred to as a
smart contract. A smart contract is what the client uses to
interact with a blockchain network. DApps that are built on
smart contracts offer unique advantages over centralized
client-server alternatives [15] and in the right situations can
serve as a trusted intermediary for data management between
participants and researchers. As further detailed in Table 1,
transparency, autonomy, immutability, and self-sufficiency are
some of the core features of blockchain technology and therefore
DApps.

As smart contracts are transparent and immutable, it is possible
to verify and guarantee the behavior when the smart contract
source code is made publicly available by comparing the binary
code of the deployed contract against the open-source code.
This may, in part, alleviate the participants’ concern that their
data could be mishandled or mismanaged. On the contrary, there
are no guarantees that traditional database implementations do
not secretly collect and log information, or that the data access
policies remain private for all time.

Researchers can rely on smart contracts to self-execute for
example, to return relevant features of interest from participant
data without the researcher having any awareness of the raw
data. This allows for the collection of more raw data, while still
limiting the exposure of these data to the researcher. In the heart
rate example mentioned earlier, all of the heart rate data could
be posted to a smart contract, which can be written in such a
way that would allow participants to control access to these
data. For example, participants could update researcher access
from limiting access to heart rate data above 70 bpm to allowing
access for heart rate data above 60 bpm. Using only data
minimization, researchers would not be able to access previous
heart rate data above 60 bpm. Using smart contracts, researchers
could achieve data minimization and reduction of liability, while
maintaining a degree of flexibility when accessing private data.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 2https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 1. Smart contract properties: benefits and trade-offs.

Trade-offsBenefitsDescriptionProperty

Requires careful implementation to avoid
exposure of sensitive data; Vulnerabilities
can more easily be identified and exploited.

App functionality can be audited and
validated; Public nature of code incites
collaboration.

The state of the app is public and inspectable.Transparent

No customer service: transactions cannot
be reversed, and corrections cannot be
made.

No need for middleman or external ar-
biter. No external control or manipula-
tion of app behavior.

Can be designed and deployed such that it
does not require any further interaction with
the agent that deployed it.

Autonomous

Cannot update smart contract with security
fixes; requires new contract deployment.

Guarantees that data policy will not
change.

The code defining the contract cannot be
modified.

Immutable

Lack of control over deployed malicious
contracts; users of the smart contract pay
transaction costs.

A deployed contract stays deployed on
blockchain; does not require developer
to pay for maintaining a server.

Has the ability to coordinate and incentivize
resources, in the form of tokens, to execute
functions.

Self-sufficient

It is important to note that there are several alternative
approaches that strive to provide guarantees of data privacy
preservation. Many of these approaches rely on trusted third
parties, cryptographic, secure hardware, or blockchain-based
techniques and are actively being researched and are under
development. A full examination of these approaches is out of
scope for this tutorial, but a forthcoming article that accompanies
this study provides a detailed comparison of techniques based
on ability to preserve data privacy and on the practicality of
implementation [16]. One of the primary findings is that
blockchain-based techniques, particularly when combined with
other techniques such as secure hardware, can provide high
levels of data privacy, verifiability, and practicality of
implementation.

Use Case: Sharing Location Data for Biomedical
Research
This tutorial presents a mobile iOS DApp that allows a research
study participant (participant) to share useful features of their
location data derived from global positioning system (GPS)
coordinates, or geocoordinates, with a research team (third
party), without revealing their raw GPS coordinates. Location
data have proven diversely useful in biomedical research where
it has improved disease management and treatment delivery,
been used to monitor behavioral and environmental risk factors,
and even has informed public health policy in substance abuse
[17-20].

Although geolocation data hold significant promise for a variety
of health care apps, location data are also one of the most
sensitive pieces of personal information [21]. It is in the interest
of both the researchers and the research participants that the
collection of these data has been restricted to the stated goal of
the research project, and this study aims to show that blockchain
technology can be deployed in such a way to attain these ends.

Decentralized App Architecture and Use
The DApp consists of a client app for the participant and the
third-party researcher and a smart contract (Figure 1). A smart
contract is a collection of code and data that encapsulate the
business logic of the DApp [1]. Smart contracts are written in
a high-level programming language, compiled into bytecode,
and deployed to a unique address on a blockchain. The
development and execution of smart contracts are supported by
a variety of blockchain platforms such as Ethereum, EOS, Tron,

POA, and Oasis [4,22]. Each blockchain implementation offers
different features and trade-offs based on their purpose and
protocol; therefore, it is important to consider the features when
considering a blockchain platform solution. For additional
blockchain related terms and definitions mentioned throughout
this study, see Multimedia Appendix 2.

As shown in Table 2, we compare features of a traditional
database against Ethereum, a popular public open-source
blockchain platform, and against Oasis Devnet, a
privacy-preserving blockchain solution.

Data privacy is critical when dealing with biomedical data.
However, most public blockchains lack confidentiality and
privacy of state variables and data. Smart contracts deployed
on Ethereum, for example, allow for the state and data stored
within them to be read by anyone. Therefore, public blockchains
that lack data privacy and confidentiality would not be a suitable
standalone solution for storing and handling sensitive biomedical
data [23,24].

The Oasis Devnet addresses this critical gap in blockchain’s
lack of confidentiality by combining blockchains with trusted
execution environments (TEEs) [25]. The Oasis Devnet is based
on Ekiden, a system anchored in a formal security model
expressed as a cryptographic ideal functionality [25,26]. The
underlying blockchain in Oasis is encrypted, which prevents
the dedicated storage of the contract data and state to be read,
unlike public blockchains. Within Ekiden, anyone with a
TEE-enabled platform can participate as a compute node to
execute contracts within the contract TEE. To create or retrieve
the keys required to run the contract, the contract TEE must
reach out to the key management committee, a quorum of
compute nodes that manage the keys needed to run the contract.
This system prevents a malicious node from forking the
blockchain and acting as a compute node, as they would not
have the necessary keys from the key management committee
to run the contract.

Additional technical details involving the security and
privacy-preserving features underlying the Oasis platform can
be found in the study by Cheng et al [25].

Therefore, we selected the Oasis Devnet to deploy this DApp
because it (1) prioritizes privacy preservation, (2) has a
functional and supported developer network, and (3) is
compatible with the Ethereum toolkit.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 3https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 1. Decentralized application architecture and workflow—Smart contracts consist of self-executing code run on a blockchain protocol. Data
flow directly between the smart contract and the clients: (1) Participant submits timestamped geolocation data; (2) Participant grants/revokes permission
to share that data, to the smart contract; (3) A third party assigns geolocations of interest a matching category (ie, hospital, gym, pharmacy, or none)
and deploy that mapping to the smart contract; (4) Participant can view the timestamp of each of their previously written geolocations and the category
of that geolocation, if there exists a mapping between that geolocation and a category that was previously written to the smart contract by a third party;
and (5) A third party can view timestamped data that the participant has chosen to share.

Table 2. Features of traditional databases compared with Ethereum and the Oasis Devnet.

Oasis DevnetEthereum (public)Traditional databaseFeatures

Yes, dependent on smart contract logicNo, data is publicYesData read access control

Pseudo-anonymousPseudo-anonymousYes, if host is honestAnonymity

Free on developer network, will be variable
in production mainnet

VariableFixedCost

Yes, dependent on smart contract logicNo, data is publicYes, if host is honestData privacy

Devnet gets reset, but the production mainnet
will be immutable

ImmutableMutable, but can be immutable via
role permissions

Data mutability

Not yet. Intercontract calls are plannedYesYesCode can be updated

Yes, the public can verify smart contract

codea
Yes, the public can verify smart

contract codea
No, the public cannot verify stored
procedures

Publicly verifiable

YesYesYesWidely accessible

aFor both Ethereum and Oasis Devnet, the smart contract source code must be made public to verify that the contract is doing what is claimed.

The Oasis Devnet supports several runtimes, allowing
developers to choose between popular languages. Here we use
Solidity, an object-oriented programming language for writing
and implementing smart contracts, because of its existing
development frameworks and interoperability with Ethereum,
the second largest blockchain network [27]. It should be noted
that the Oasis Devnet was used, as the mainnet was not yet
available at the time of this writing. In contrast to an open
testnet, the Oasis Devnet is hosted by Oasis Labs and was
created specifically for developers to make an easy-to-use,
developer friendly environment to develop and test on Oasis
[28].

Using a blockchain that supports private states, such as Oasis,
allows the handling of raw data to shift from that of a central

party to a blockchain platform that provides a combination of
transparency and privacy via verifiable smart contracts and a
system by which no party can view or access the raw data.

Client App
To simplify the tutorial codebase, the iOS app can toggle
between a participant mode and a third-party mode; in practice
the two views would be implemented as separate apps that only
display the functionality relevant to that user type. Multiple
participant users and third-party researcher users could use the
client app at once, depending on the desired enrollment and
collaboration goals of the research study design.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 4https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Participant Mode
The participant tab presents a participant user with the common
functionalities and user interface that a participant in a research
study would expect (Figure 2). These include posting the user’s
current location, toggling data sharing, and viewing the user’s
previously posted data.

This view also presents the user with the device’s geocoordinates
and local time to display the human-readable data that are posted
to the smart contract, should the user decide to share their
location. The geocoordinates are represented as the latitude and
longitude of the device with a precision of 4 decimal degrees,
approximately 11.132 meters at the equator. This precision was
chosen to provide sufficient granularity between establishments,
without requiring several adjacent coordinates to represent a
single establishment. When posting to the smart contract, these

geocoordinates are multiplied by a factor of 104 to represent the
decimal degrees as signed integers. If the user has not previously
posted a location, a new participant identifier (ID) for the user
is created, and the associated sharing status is enabled and set
to true.

The participant can toggle whether or not to continue sharing
their current and previous data anytime. If sharing is enabled
then all third parties are able to view the number of previously
submitted locations by the participant, along with the
timestamped category. If sharing is disabled, third parties can
only see that participant’s ID and that they have chosen not to

share data at this time. A design decision was made to make
the default sharing status opt-out, for 3 reasons: (1) The primary
participant user action is to “share location,” which itself informs
the participant that their data will be shared; (2) Participant data
privacy is provided regardless of the sharing status, but is
available because we believe participants own their data and
should have the ability to revoke access; and (3) To maximize
benefit to third parties who want to access to participant location
feature data.

A third party can benefit from seeing the ID of participants that
have revoked data access to better understand how many
participants exist and how many of them continue to share data
over time. Showing all participant IDs was included primarily
as a demonstration to easily show how access can be granted
and revoked; however, the smart contract could be easily written
in such a way that no longer allows third parties visibility into
the participant IDs who have revoked access. This may be an
important security consideration in scenarios where there are
few participants. As additional participant IDs are revealed to
third parties, regardless of sharing status, this could provide
some level of data to malicious third parties that may attempt
to extrapolate a participant’s wallet address from the participant
ID by examining the history of transactions with the smart
contract. Fortunately, the method that is called by a transaction
is concealed, so there is no direct means of differentiating
between a participant and a third party based on examining the
transaction history.

Figure 2. Simulator running the iPhone operating system app displaying the participant mode.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 5https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

The participant is also presented with a table containing
previously posted locations ordered by the time posted. Each
location displays its corresponding category and timestamp.
These previously posted locations will always be visible to the
participant that posted them, even if sharing is disabled at that
time. This allows a user to view the data that will be shared if
they choose to do so.

Third-Party Mode
The third-party view presents views and functionality for a third
party, such as a research coordinator (Figure 3). These include
categorizing a geolocation and viewing participant feature data.

Within this view, a third-party user is able to search for
map-based addresses and places of interest. The places of
interest are centered around the location of the device, through
Apple’s MapKit Framework, where the geoencoding service is

performed by Apple. It should be noted that the geoencoding
service is done solely as a convenience to the third party and is
not done for the participant nor identifies the participant’s
location. Once the user has selected a location and selected its
associated category, they can post to the smart contract.

The view also presents a summary of participant data, such as
the number of participants who have posted at least one location,
the percentage of participants who have enabled sharing, as well
as the total number of locations that are available and being
shared. For specific information on each participant, the third
party is shown a table view of all participants and whether the
participant has enabled the sharing of their data. If a participant
has enabled the sharing of their data, third parties are able to
view how many locations a participant has posted and can view
the timestamp and location category of each entry.

Figure 3. Simulator running the iPhone operating system app displaying the third-party mode.

Smart Contract
The smart contract manages participant enrollment in the
research study and allows participants to share their
geocoordinates with the study. The smart contract also
determines whether the geocoordinates correspond to a
predefined location type and whether or not to allow third parties
to view the data participants commit to the smart
contact. Importantly, raw geolocation data are not stored within
the smart contract, nor are the geolocation data directly linked
to the participant.

Decentralized App Development

Tools and Libraries
Many tools and libraries exist for the development of DApps.
The tools and libraries used to develop this DApp are briefly
introduced and summarized and will be expanded upon further
throughout the discussion of development (Table 3). Certain
resources in this tutorial are platform-dependent, such as Oasis
Contract Kit, whereas others are generally useful for DApp
development such as ConsenSys AG’s MetaMask and Truffle.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 6https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 3. Decentralized app–related resources used in this tutorial.

DescriptionsTools and Libraries

Browser extension that serves as a Web3 wallet that can create and manage identities. It also injects the web3.js library into
the browser to allow read and write requests to be made on blockchain networks, such as Ethereum or other networks by
specifying a remote procedure call URL.

MetaMask

Docker environment with a preconfigured set of tools for developing contracts on Oasis.Oasis Contract Kit

Privacy-focused blockchain platform for developers to build and test confidential smart contracts; the platform used in this
tutorial.

Oasis Devnet

Web browser–based integrated development environment that allows developers to write, deploy, and run smart contracts
written in Solidity.

Remix

An object-oriented programming language for writing and implementing smart contracts on various blockchain platforms.Solidity

A development environment testing framework and asset pipeline for blockchains using the Ethereum Virtual Machine; included
in Contract Kit.

Truffle Framework

Open-source iOS library written in Swift. It provides web3.js functionality in Swift, native ABI parsing, and smart contract
interactions.

Web3swift

Client App
The client is a native iOS app, written in Swift 4.2 using XCode
10.1. The iOS app interacts with the smart contract deployed
on the Oasis Devnet via the open-source web3swift library
written by Matter, Inc. This library allows for the interaction
with a remote node of the Oasis Devnet via JavaScript object
notation (JSON) remote procedure call (RPC) as well as smart
contract interaction [29]. The web3swift library also provides
local keystore management, which assists the app user in
creating and importing a wallet as well as the creation and
management of public/private keys. This eliminates an
additional burden and barrier to entry for users unfamiliar with
wallets and key management. When implementing the
web3swift library, the web3 instance was bound to the RPC
URL provided in the Oasis documentation [22]. The contract
instance within the iOS app was initialized from the app binary
interface, or ABI, string in JSON format and was obtained from
the Ethereum Foundation’s Remix integrated development
environment (IDE) or whichever IDE was used to develop the
smart contract. The ABI is a data encoding and decoding scheme
and is the standard way to interact with smart contracts in
Ethereum for interfacing with smart contracts.

It should be noted that as the client app is a proof-of-concept,
there are many improvements which can and should be made
in production. Currently, none of the data read from the smart
contract are persistently stored on the device, which hinders
performance. Similarly, none of the raw geolocation data are
persistently stored on the device. If any data were to be
persistently stored, it should be encrypted. Currently, the only
data that are persistently stored on device includes the public

wallet address, whether that address has been registered, and
the encrypted private key of said address with a user provided
password via AES-128-CBC. In practice, access to data should
require authentication whenever the app is left in an inactive
state for a given amount of time.

Smart Contract
The smart contract is developed in Remix, a Web browser–based
IDE that allows developers to write, deploy, and run smart
contracts written in Solidity [30]. Remix allows for contract
deployment in various types of environments, including: a
JavaScript virtual machine (VM) in which transactions are
executed in a sandbox blockchain in the browser, an Injected
Provider in which Remix will connect to an injected Web3
provider such as MetaMask, and finally a Web3 provider in
which Remix will connect to a remote blockchain node [31].
Initially, the smart contract was developed in the JavaScript
VM environment in Remix for its simplicity.

Figure 4 illustrates how raw geolocation data are not stored
within the smart contract and also not directly linked to the
participant. This design was selected because Oasis Devnet
offers Ethereum backward compatibility with support for
existing Ethereum wallets. This allows for existing Ethereum
wallets to be imported into the app or for newly created wallets
within the app to also be used on Ethereum. Although
convenient, this could result in the exposure of identifying
information on the Ethereum network being effortlessly
correlated to the same address on the Oasis Devnet, should the
same address be used on both networks. Therefore, a
participant’s wallet address is not revealed to third parties, and
instead, third parties have access to the participant ID.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 7https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 4. Solidity method written to post the location of the participant. This method (postParticipantLocation), when called by the client, (1) checks
to see if the sender is a new participant by checking to see if there exists a mapping for the sender’s address to an existing participant ID
(addressToParticipant). (2) If one does not exist, the total number of participants is incremented (numberOfParticipants). (3) The senders address is
then mapped to a participant ID that is equal to the count of participants.

Considering that geolocation data should not be directly linked
to the participant, the participant ID is used to identify a
participant. Once the sender address has been assigned and
mapped to a participant ID, the keccak256 function is used to
compute the Ethereum-SHA-3 (Keccak-256) hash of the latitude
and longitude input parameters (_lat, _long) as a convenient
encoding. This hash is stored as a private variable, not accessible
outside of the smart contract, and later used to uniquely identify
this particular geolocation within the smart contract. The hashed
geolocation is mapped to the timestamp input parameter
(_dateTime), which is subsequently mapped to the respective
participant ID. This hashed geolocation is also used to compare
with other hashed geolocations, to determine if that particular
geolocation matches a category type posted by a third party.
The timestamp input parameter (_dateTime) is then appended
to a mapped array of the participant ID (participantDateTimes).
This allows third parties to assign a category to a particular
geolocation. It is important to note that the privacy of these
input variables, hashed geolocations, and mappings within the
smart contract are made possible by the Oasis Devnet as it
supports private data that can only be accessed by the smart
contract themselves. Descriptions of additional variables and
functions within the smart contract can be found in Multimedia
Appendices 3 and 4.

A similar method exists for both storing a mapping of the
particular category type to the Ethereum-SHA-3 (Keccak-256)
hash of the geolocations and storing a mapping of an array of
the hashed locations to the category type.

It is worth noting that these category types were deliberately
predefined as enum types on contract creation to prevent third
parties from creating and storing new and custom categories
that could be used to identify particular locations (eg, by posting
a custom category that labels the accompanying geolocation
with a postal address or geocoordinate pair.) This provides a
way for third parties to add new locations that match the
predefined category types into the future, whereas at the same
time holding them responsible for the transaction cost of adding
these new locations.

Decentralized App Deployment

Wallet and Funding
Before the deployment of the smart contract onto the Oasis
Devnet, a hierarchical deterministic (HD) wallet was created
and funded from the Oasis faucet. MetaMask was installed and
set up to be used as this wallet [32]. When creating the wallet,
the mnemonic phrase, or seed words, used to generate the HD
wallet was safely stored and made easily accessible, as it was
later needed for deploying the contract. Once the wallet and
account were created, the network within MetaMask was
changed to the custom RPC URL, chainID, symbol, and
nickname provided by Oasis Labs to connect MetaMask to the
Oasis Devnet [28].

Funds were acquired via the Oasis Devnet Faucet by following
the onscreen instructions [33]. Once the funds were received,
the wallet within MetaMask updated to show the amount funded
in DEV. DEV, the symbol for Oasis Devnet tokens, were used
to pay the transaction fees needed to deploy the contract [22].
DEV have no value and work only on the Oasis Devnet, as they
will not transfer to the Oasis mainnet [22]. It was important that
the first account created by MetaMask was the one that was
funded, otherwise deployment of the contract to the Oasis
Devnet would have failed. If a different account was funded by
mistake, DEV could have been transferred from the funded
account to the first account.

Contract Deployment
The contract was deployed using Oasis Contract Kit. The Oasis
Contract Kit is a Docker environment with a preconfigured set
of tools to provide developers with an environment that provides
tools for developing, testing, and deploying confidential smart
contracts. Following the steps provided by Oasis, the geolocation
smart contract was deployed as both a confidential and
nonconfidential smart contract on the Oasis Devnet (procedure
described in Multimedia Appendix 5) [12,34].

iPhone Operating System App and Deployed Smart
Contract
To interact with the nonconfidential smart contract, the iOS app
was set, by default, to initialize a web3 instance using the RPC

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 8https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

URL provided by Oasis, as well as initialize an instance of the
deployed smart contract using the ABI and contract address.
Unlike Ethereum and other standard Web3 platforms,
transactions to confidential smart contracts on the Oasis platform
are encrypted end-to-end, where only the caller and the smart
contract can decrypt transaction contents [35]. Communication
with the Oasis Devnet occurs via hosted nodes by Oasis, and
the client iOS app uses HTTPS, an encrypted communications
protocol using Transport Layer Security, to protect data in
transit. Oasis also provides a web3c.js client library that wraps
underlying RPC calls with encryption and decryption, which
allows one to securely communicate with smart contracts. Due
to a lack of web3swift support for web3c, a web3 extension for
confidential transactions, the iOS app was unable to interact
with the deployed confidential smart contract at the time of this
writing. Although the nonconfidential implementation is
sufficient for the purposes of a working demonstration, it should
be stressed that the nonconfidential implementation does not
provide the participant any privacy of their posted location data.

Creating/Importing a Wallet
If there is no stored wallet on the first launch of the app, the
user is presented with an option to create a new wallet or to
import an existing wallet. When creating a wallet, the user is
prompted to enter a user-generated password, which is later
used to access the wallet private key and perform transactions
that cost DEV, such as posting participant location data. Once
set, the user-generated password cannot be recovered so it is
recommended that it be written down or stored in a safe place.
In the case of importing a wallet, the user would use their
previously recorded password and would also have to provide

their private key either manually keying it in or, for convenience,
using the device’s camera to scan a QR code encoded with the
private key. Once a wallet is in place, the user will be presented
with 3 tabs: third party, participant, and wallet [36].

Funding the Wallet
The wallet view presents the user with views and functionalities
associated with managing a wallet on a blockchain and is
required for both user types (Figure 5). These include allowing
the user to view their wallet address and providing a link to
fund the wallet. Regardless of whether the user is a third party
or participant, the user would first have to add funds to their
wallet, which is done within this tab. To make any changes to
the state of the smart contract, such as a participant posting their
geolocation or a third party assigning a new geolocation a
location type, the user is still required to have funds to pay the
transaction fees.

To add funds, a user would first navigate to the wallet tab to
obtain their wallet address. For convenience, a button has been
added that will copy the wallet address to the clipboard and
open the URL for the Oasis Devnet Faucet in the default Web
browser [33]. Once the user fills out their information to request
funds for the Oasis Devnet, they will receive a confirmation
email. Upon email confirmation, the user can return to view the
updated balance of DEV for their wallet address. Within this
tab, the user can also find a QR code with their embedded wallet
address. As a security measure, any function resulting in a state
change to the contract requires password reauthentication to
gain access and view their wallet’s private key. If the device is
lost or the app deleted from the device, the only way to recover
the wallet and access to the account is to import the private key.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 9https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Simulator running the iPhone operating system app, displaying the user’s wallet information.

Discussion

To assess DApps and blockchain as a potential solution to the
pitfalls of traditional data privacy preservation in research, a
geolocation sharing use case was proposed. An iOS DApp and
smart contract were developed as a proof-of-concept to illustrate
the advantages and disadvantages that accompany this approach.

Although data privacy in research has typically been managed
by a trusted third party, there are key areas in which this
centralized approach falls short. Participants must trust third
parties/researchers to properly use their data but also trust that
their data are protected and secure from others who may misuse
the data. As blockchains present an alternative method for data
management and app logic that does not rely on a trusted third
party, there is an opportunity where DApps could be explored
as an alternative method for preserving data privacy.

Advantages

Smart Contract Properties
Smart contracts allow for transparency as the code can be made
public and easily verified against the deployed smart contract
(Table 1). As a result, users can trust that a validated smart
contract does what it claims to do, such as not revealing raw
location data in our case, proving it is able to act as a trusted
intermediary for data management between participants and
third parties. This public and open nature invites collaboration,
allowing others to test the smart contract as well as share code

of their own to improve the DApp community. Smart contracts
are immutable; thus, participants can be confident that once a
smart contract used by the DApp is verified and proven to be
secure, the resulting management of data will also remain
unchanged for the lifetime of the contract.

Costs
With traditional client-server architecture, there is a fixed cost
in maintaining a backend database. Even if the database is no
longer in use, or hardly ever accessed, there is still typically a
cost for keeping it functioning and accessible. With a DApp,
however, the only costs associated with hosting are the
transaction cost of deploying the smart contract and the
individual user costs incurred when modifying states within the
contract.

An example of a state change in the example DApp is when a
participant posts their location data to the smart contract. This
is incurred because the smart contract is storing new data, and
the state of the contract has changed. However, viewing data
that exists in the smart contract can be done at no cost to a third
party; for example, viewing how many participants are in a
study. Depending on how the smart contract is written, viewing
data could also come at a cost. This can be particularly useful
in aligning and incentivizing different users toward a mutually
beneficial goal. In the example DApp, the smart contract could
be written in such a way that third parties pay a small fee, in
DEV, to the participant, to view the category of each location

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 10https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

that the participant has visited. This may incentivize more
participants to share more data with third parties.

Access Control
This DApp illustrates how a third party that is interested in a
particular feature, such as a location category, could determine
the feature without accessing any raw data. Limiting the scope
of data shared with a third-party research team helps protect the
participant’s data from being misused outside the context of the
study [14].

If, at any time and for any reason, the participant decides to stop
sharing feature data with the third party, they are able to revoke
third-party access to their data. As the source code governing
the smart contract can be made public and can be verified to
prove that the contract executes as claimed, participants can be
assured that access to third parties is in fact revoked. Traditional
databases, however, could continue to provide access to third
parties unbeknown to a participant as access control cannot be
publicly verified. Empowering the participant with control over
their data may encourage participation and sharing of data by
participants by explicitly addressing data privacy concerns.

Participant Identity
One advantage to using this DApp is the ability for the smart
contract to create and maintain a private mapping between the
participant ID and the participant’s wallet address. This is
advantageous as only the smart contract has access to this
identifying and sensitive data, thus further safeguarding
participants’ identities. This also obviates the need for a separate
party to manage the pseudonymization of the participants’
identities.

Data Exposure
Traditional approaches may use external parties and services
to perform feature extraction in an attempt to limit exposure to
the raw location data. In this example, a third party may use a
service, such as Google Places, to accomplish categorizing past
locations. If such a service were used, that service could collect,
store, and share a participant’s raw geocoordinates and
potentially identify the participant unbeknown to the third party
or participant. Even if the raw location data is anonymized
before using these external services, this increases privacy risks
as it has been shown that deanonymization based on location
data is possible [37,38]. This DApp provides an alternative to
external services by potentially sourcing multiple interested
third parties who are able to contribute to the mapping of
locations to particular categories. Utilizing a DApp to perform
feature extraction on the raw data provides one less potential
entity in possession of participants’ raw data.

Disadvantages and Limitations

Smart Contract Properties
Although there are several advantages to this DApp framework,
there are also several limitations. Making smart contracts public
and verifiable inherently allows for the discovery and
exploitation of vulnerabilities. Should vulnerabilities be
discovered, the smart contract cannot be updated in the same
way a backend server would; instead it would require the
deployment of a new smart contract. Smart contracts cannot be

changed once deployed, so mistakes made by either a participant
or third party cannot be reversed or corrected, except in the case
where it was written into the smart contract. In blockchains that
offer cross-contract calls, such as Ethereum, an upgradable
smart contract design could be implemented. This design would
offer the ability to deploy new smart contract versions by
redirecting the contract address, thus allowing an upgradable
contract. However, smart contracts within Oasis are unable to
interact with one another at the time of this writing, not making
it possible to implement in the context of the Oasis Devnet. In
the future, however, Oasis plans to add support for cross-contract
calls [39]. Additional design considerations during smart
contract development can be found in Multimedia Appendix 6.

Transaction Costs
To make any state changes to the smart contract such as a
participant posting their location or a third party posting a new
location, the DApp user must pay a transaction fee. To pay this
fee, the DApp user must have a minimum amount of funds in
their wallet, which requires an additional task of obtaining funds.
In the case of this DApp, the network is the Oasis Devnet, the
fee is paid for in DEV, and funds can be requested free from
the Oasis Devnet Faucet [33]. It is important to note that at the
time of this writing, obtaining funds for use within the Oasis
Devnet requires identifying information from the user; however,
it is assumed that this is only during the early stages of
development of the Oasis platform.

Onboarding and Usability
Most users are unfamiliar with activities required for DApp
interaction, such as wallet creation, private key storage, and
obtaining tokens. As DApps and smart contracts are built on
blockchain technology, this requires user actions that are not
required by traditional client-server architecture. As the
technology matures, we anticipate these activities will become
more streamlined, similar to how these functions and interactions
have matured on the World Wide Web. Blockchain DApp
transactions can appear quite slow in comparison with traditional
client-server architecture, but this is an issue that is actively
being worked on by the blockchain community.

Malicious Users and Decentralized App Design
DApp users are identified by their wallet’s unique public key.
Public blockchains, on which most DApps are built, are typically
not permissioned, and so anyone can create an infinite number
of wallets and unique public keys. As users are able to remain
pseudonymous and hide their true identities by proxy of their
unique public key, this makes it difficult to ban or blacklist
malicious users from accessing the DApp. Similarly, without
being able to verify a user’s true identity, a malicious user is
able to falsely act as another type of user. For example, a
malicious participant could pose as a third party or vice versa.

This DApp was designed to allow third parties to continue to
add new locations that match the predefined category types into
the future. However, these new locations may conflict with
previous locations, especially in very dense areas. As the latitude
and longitude are rounded to the nearest 4th degree of precision,
this results in an accuracy of approximately 11.132 meters with
an error of half that distance. Very dense population areas, such

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 11https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

as cities, may have multiple categories of location for that
particular area. For example, a gym may exist within less than
11.132 meters of a hospital resulting in more than just one
possible category per location. To address this, the DApp was
designed to allow future posted categories to overwrite previous
ones. However, a malicious user acting as a third party can post
an incorrect category for a given location and would be able to
overwrite a previously posted category. This would allow the
malicious user to iterate through a given location area, post a
particular category, and then identify the participants’ previous
location categories that have changed, which implies that the
particular location is the same as that location just posted by
the malicious third party. However, because of the transaction
costs associated with posting new categories, this iterative
process could become prohibitively expensive and thus, may
disincentivize this activity. There are also several ongoing
blockchain projects working towards the verification of location
data in an attempt to combat malicious users [40,41].

Future Improvements

Informed Consent
User onboarding and informed consent are tasks that would
require careful design tailored to the particular study and data
that are being collected and are out of scope for this tutorial.
An informed consent would explain to users that only features
of their data were being collected (eg, location category from
geocoordinate data) and would take into consideration the legal
aspects related to the collection and ownership of data. Although
the consent could be managed outside of DApp, a better user
experience would be to include a digital informed consent screen
within the app, which could also illustrate how the data are used,
which parties are involved, and the ability to revoke data
sharing.

Expanded Data Features
This DApp provides a basic example of feature extraction for
the category of the location from the raw GPS data. One could
easily envision more advanced feature extraction for this use
case using geolocation data. Additional metadata such as the
total distance traveled in a day, variance in the number of
locations visited, or the travel radius of participants could be
computed by the smart contract, if the smart contract were
redesigned to securely store the raw geocoordinates of the
locations.

Additional Data Sharing Use Cases
As the source code of the smart contract is publicly available,
the smart contract could easily be adapted and shared to fit a
variety of needs beyond geolocation data. Other data commonly
stored on iOS devices, such as heart rate and steps walked within
Apple’s HealthKit, could be posted to the smart contract and
could make features of the data viewable to interested third
parties. Moreover, various data streams could be combined and
used within the same smart contract to output additional features,
all while safeguarding the sensitive raw data used to create them.

This software has been made publicly available on GitHub at
HD2i/GeolocationSmartContract and HD2i/Geolocation-iOS.
It was the intention of the authors that improvements, via forks
or pull requests, would be made to improve this tutorial. Our
goal with this tutorial is to inspire new and unforeseen
improvements that would help advance the community as a
whole [11,12].

Through this simple use case we have intended to highlight the
potential of privacy preservation using smart contracts on
blockchain networks such as Oasis. It also illustrates how using
a native mobile DApp, privacy-preserving smart contracts could
be used to ensure the confidentiality of sensitive health data and
at the same time provide researchers with the feature-rich data
embedded within.

Acknowledgments
This work was supported by the Institute for Next Generation Healthcare at the Icahn School of medicine at Mount Sinai, and a
gift from the Harris Family Charitable Foundation (to JT Dudley).

Conflicts of Interest
None declared.

Multimedia Appendix 1
Demo video.
[MOV File , 27516 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Terms and definitions.
[PDF File (Adobe PDF File), 35 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Smart contract state variables.
[PDF File (Adobe PDF File), 33 KB-Multimedia Appendix 3]

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 12https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app1.mov&filename=9e489424670cf9dc2bd88c0b2a2fd4a8.mov
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app1.mov&filename=9e489424670cf9dc2bd88c0b2a2fd4a8.mov
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app2.pdf&filename=39f6a53804515ba88e12ab8c96fe43f6.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app2.pdf&filename=39f6a53804515ba88e12ab8c96fe43f6.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app3.pdf&filename=4a31e8e27c512b591d55620d7f8612b4.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app3.pdf&filename=4a31e8e27c512b591d55620d7f8612b4.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/

Multimedia Appendix 4
Smart contract functions.
[PDF File (Adobe PDF File), 42 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Steps to deploy geolocation smart contract.
[PDF File (Adobe PDF File), 66 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Design considerations.
[PDF File (Adobe PDF File), 42 KB-Multimedia Appendix 6]

References

1. Ethereum Homestead 0.1 Documentation. Dapps URL: http://ethdocs.org/en/latest/contracts-and-transactions/developer-tools.
html [accessed 2019-02-01] [WebCite Cache ID 75s1dBrVh]

2. Coravos A, Zimmerman N. Stat. 2018. Blockchains for Biomedicine and Health Care Are Coming. Buyer: Be Informed
URL: https://www.statnews.com/2018/07/25/blockchains-biomedicine-health-care-buyer-be-informed/ [accessed 2019-05-01]
[WebCite Cache ID 783C3E14r]

3. Biomedical Blockchain Initiative Index. 2019. Healthcare and Biomedical Blockchains: Project Landscape URL: https:/
/db.biomedicalblockchain.org/ [accessed 2019-01-31] [WebCite Cache ID 75qSnenbY]

4. State of the State of the DApps. 2019. Ranking the Best DApps of Ethereum, EOS & Steem URL: https://www.
stateofthedapps.com/rankings [accessed 2019-02-01] [WebCite Cache ID 75s6JIGMJ]

5. Statista. 2019. Number of Daily Active Facebook Users Worldwide as of 2nd Quarter 2019 (in Millions) URL: https://www.
statista.com/statistics/346167/facebook-global-dau [accessed 2019-01-31] [WebCite Cache ID 75sPvmW48]

6. Griggs KN, Ossipova O, Kohlios CP, Baccarini AN, Howson EA, Hayajneh T. Healthcare blockchain system using smart
contracts for secure automated remote patient monitoring. J Med Syst 2018 Jun 6;42(7):130. [doi:
10.1007/s10916-018-0982-x] [Medline: 29876661]

7. Singhal B, Dhameja G, Panda PS. Beginning Blockchain: A Beginner's Guide to Building Blockchain Solutions. New York
City: Apress; 2018.

8. GitHub. 2018. Angular-seed — the Seed for AngularJS Apps URL: https://github.com/angular/angular-seed [accessed
2019-02-01] [WebCite Cache ID 75s6tBxXt]

9. Bootstrap. 2019. URL: https://getbootstrap.com/ [accessed 2019-02-01] [WebCite Cache ID 75s73ZbRR]
10. Truffle Suite: Sweet Tools for Smart Contracts. 2019. URL: https://truffleframework.com/ [accessed 2019-02-01] [WebCite

Cache ID 75s7AD85I]
11. GitHub. 2019. HD2i: Geolocation-iOS URL: https://github.com/HD2i/Geolocation-iOS [accessed 2019-02-01] [WebCite

Cache ID 75s534uIq]
12. GitHub. 2019. HD2i: GeolocationSmartContract URL: https://github.com/HD2i/GeolocationSmartContract [accessed

2019-02-01] [WebCite Cache ID 75s4vJTip]
13. BlockchainHub. 2019. Decentralized Applications – dApps URL: https://blockchainhub.net/decentralized-applications-dapps/

[accessed 2019-05-09] [WebCite Cache ID 78ElGp27o]
14. Altman M, Wood A, O'Brien DR, Gasser U. Practical approaches to big data privacy over time. Int Data Priv Law 2018

Mar 12;8(1):29-51 [FREE Full text] [doi: 10.1093/idpl/ipx027]
15. Swan M. Blockchain: Blueprint for a New Economy. First Edition. Sebastopol, CA: O'Reilly Media; 2015.
16. Jones M, Johnson M, Shervey M, Dudley JT, Zimmerman N. Privacy-preserving methods for feature engineering using

blockchain: review, evaluation, and proof of concept. J Med Internet Res 2019 Aug 14;21(8):e13600 [FREE Full text] [doi:
10.2196/13600] [Medline: 31414666]

17. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, et al. Mobile phone sensor correlates of depressive
symptom severity in daily-life behavior: an exploratory study. J Med Internet Res 2015 Jul 15;17(7):e175 [FREE Full text]
[doi: 10.2196/jmir.4273] [Medline: 26180009]

18. Sano A, Picard RW. Stress Recognition Using Wearable Sensors and Mobile Phones. In: Humaine Association Conference
on Affective Computing and Intelligent Interaction. 2013 Presented at: ACII'13; September 2-5, 2013; Geneva, Switzerland
p. 671-676. [doi: 10.1109/ACII.2013.117]

19. Müller AM, Blandford A, Yardley L. The conceptualization of a just-in-time adaptive intervention (JITAI) for the reduction
of sedentary behavior in older adults. Mhealth 2017;3:37 [FREE Full text] [doi: 10.21037/mhealth.2017.08.05] [Medline:
29184889]

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 13https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app4.pdf&filename=3ad91fd85ecff52286d06c156dabe6e1.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app4.pdf&filename=3ad91fd85ecff52286d06c156dabe6e1.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app5.pdf&filename=7b6019b8ff235011dd9bc020e24b69b4.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app5.pdf&filename=7b6019b8ff235011dd9bc020e24b69b4.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app6.pdf&filename=7b1256d1053c8598e05146760f9f95f8.pdf
https://jmir.org/api/download?alt_name=jmir_v21i10e13601_app6.pdf&filename=7b1256d1053c8598e05146760f9f95f8.pdf
http://ethdocs.org/en/latest/contracts-and-transactions/developer-tools.html
http://ethdocs.org/en/latest/contracts-and-transactions/developer-tools.html
http://www.webcitation.org/

 75s1dBrVh
https://www.statnews.com/2018/07/25/blockchains-biomedicine-health-care-buyer-be-informed/
http://www.webcitation.org/

 783C3E14r
https://db.biomedicalblockchain.org/
https://db.biomedicalblockchain.org/
http://www.webcitation.org/

 75qSnenbY
https://www.stateofthedapps.com/rankings
https://www.stateofthedapps.com/rankings
http://www.webcitation.org/

 75s6JIGMJ
https://www.statista.com/statistics/346167/facebook-global-dau
https://www.statista.com/statistics/346167/facebook-global-dau
http://www.webcitation.org/

 75sPvmW48
http://dx.doi.org/10.1007/s10916-018-0982-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29876661&dopt=Abstract
https://github.com/angular/angular-seed
http://www.webcitation.org/

 75s6tBxXt
https://getbootstrap.com/
http://www.webcitation.org/

 75s73ZbRR
https://truffleframework.com/
http://www.webcitation.org/

 75s7AD85I
http://www.webcitation.org/

 75s7AD85I
https://github.com/HD2i/Geolocation-iOS
http://www.webcitation.org/

 75s534uIq
http://www.webcitation.org/

 75s534uIq
https://github.com/HD2i/GeolocationSmartContract
http://www.webcitation.org/

 75s4vJTip
https://blockchainhub.net/decentralized-applications-dapps/
http://www.webcitation.org/

 78ElGp27o
https://doi.org/10.1093/idpl/ipx027
http://dx.doi.org/10.1093/idpl/ipx027
https://www.jmir.org/2019/8/e13600/
http://dx.doi.org/10.2196/13600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31414666&dopt=Abstract
https://www.jmir.org/2015/7/e175/
http://dx.doi.org/10.2196/jmir.4273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26180009&dopt=Abstract
http://dx.doi.org/10.1109/ACII.2013.117
https://doi.org/10.21037/mhealth.2017.08.05
http://dx.doi.org/10.21037/mhealth.2017.08.05
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29184889&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

20. Bertz JW, Epstein DH, Preston KL. Combining ecological momentary assessment with objective, ambulatory measures of
behavior and physiology in substance-use research. Addict Behav 2018 Aug;83:5-17 [FREE Full text] [doi:
10.1016/j.addbeh.2017.11.027] [Medline: 29174666]

21. Madden M. Pew Research Center. 2014. Public Perceptions of Privacy and Security in the Post-Snowden Era URL: https:/
/www.pewinternet.org/2014/11/12/public-privacy-perceptions/ [accessed 2019-02-01] [WebCite Cache ID 75qnMH4B6]

22. Oasis Dev Docs. 2019. URL: https://docs.oasiscloud.io/en/latest/quickstart-guide/ [accessed 2019-02-01] [WebCite Cache
ID 75s2Ga8WQ]

23. Kuo TT, Kim HE, Ohno-Machado L. Blockchain distributed ledger technologies for biomedical and health care applications.
J Am Med Inform Assoc 2017 Nov 1;24(6):1211-1220 [FREE Full text] [doi: 10.1093/jamia/ocx068] [Medline: 29016974]

24. Angraal S, Krumholz HM, Schulz WL. Blockchain technology: applications in health care. Circ Cardiovasc Qual Outcomes
2017 Sep;10(9):e003800. [doi: 10.1161/CIRCOUTCOMES.117.003800] [Medline: 28912202]

25. Cheng R, Zhang F, Kos J, He W, Hynes N, Johnson N, et al. Ekiden: A Platform for Confidentiality-Preserving, Trustworthy,
and Performant Smart Contracts. In: Proceedings of the European Symposium on Security and Privacy. 2019 Presented at:
EuroS&P'19; June 17-19, 2019; Stockholm, Sweden. [doi: 10.1109/eurosp.2019.00023]

26. Canetti R. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Proceedings 42nd IEEE
Symposium on Foundations of Computer Science.: IEEE; 2001 Presented at: FOCS'01; October 8-11, 2001; Newport
Beach, CA, USA URL: https://eprint.iacr.org/2000/067 [doi: 10.1109/sfcs.2001.959888]

27. Ethereum Community. Guia Homestead de Ethereum - Read the Docs. 2018. Contracts URL: http://ethdocs.org/en/latest/
contracts-and-transactions/contracts.html [accessed 2019-02-01] [WebCite Cache ID 75s27lzpk]

28. Oasis Dev Docs. 2018. Introducing the Oasis Devnet URL: https://medium.com/oasislabs/oasis-devnet-launch-d580f9e4c800
[accessed 2019-02-01] [WebCite Cache ID 75s33RKv6]

29. GitHub. 2019. Matter-Labs: Web3Swift URL: https://github.com/matterinc/web3swift [accessed 2019-02-01] [WebCite
Cache ID 75s2SuA03]

30. Remix - Ethereum IDE. URL: https://remix.ethereum.org [accessed 2019-02-01] [WebCite Cache ID 75s3C1GVd]
31. Remix - Ethereum IDE. 2018. Running Transactions URL: https://remix.readthedocs.io/en/latest/run_tab.html [accessed

2019-02-01] [WebCite Cache ID 75s3MYZgE]
32. MetaMask. 2017. URL: https://metamask.io/ [accessed 2019-02-01] [WebCite Cache ID 75s2uRWC2]
33. Oasis Dev Docs. 2018. Oasis Devnet: Faucet URL: https://faucet.oasiscloud.io/ [accessed 2019-02-01] [WebCite Cache

ID 75s2gsKpd]
34. Oasis Dev Docs. 2019. Oasis Contract Kit - Oasis Documentation URL: https://docs.oasiscloud.io/en/latest/contract-kit/

[accessed 2019-02-01] [WebCite Cache ID 75s3fDR2x]
35. Oasis Dev Docs. Web3cjs - Oasis Documentation URL: https://docs.oasiscloud.io/en/latest/web3c.js/ [accessed 2019-06-27]

[WebCite Cache ID 75s4IMOwT]
36. GitHub. 2018. Peepeth Client (Unofficial) URL: https://github.com/matterinc/PeepethClient [accessed 2019-02-01] [WebCite

Cache ID 75s2Zz3N7]
37. Zang H, Bolot J. Anonymization of Location Data Does Not Work: a Large-Scale Measurement Study. In: Proceedings of

the 17th Annual International Conference on Mobile Computing and Networking. 2011 Presented at: MobiCom'11; September
19-23, 2011; Las Vegas, Nevada, USA p. 145-156. [doi: 10.1145/2030613.2030630]

38. Freudiger J, Shokri R, Hubaux JP. Evaluating the Privacy Risk of Location-Based Services. In: Proceedings of the
International Conference on Financial Cryptography and Data Security. 2012 Presented at: FC'11; February 28-March 4,
2011; Gros Islet, Saint Lucia p. 31-46. [doi: 10.1007/978-3-642-27576-0_3]

39. Oasis Dev Docs. 2019. Developing Confidential Smart Contracts - Oasis Documentation URL: https://docs.oasiscloud.io/
en/latest/confidentiality-develop/ [accessed 2019-02-01] [WebCite Cache ID 75s4IMOwT]

40. Trouw A, Levin M, Scheper S. The XY Oracle Network - White Paper - XYO Network. 2018. The XY Oracle Network:
The Proof-of-Origin Based Cryptographic Location Network URL: https://docs.xyo.network/XYO-White-Paper.pdf
[accessed 2019-02-01] [WebCite Cache ID 75s45lstf]

41. Foam Space. 2018. FOAM Whitepaper URL: https://www.foam.space/publicAssets/FOAM_Whitepaper.pdf [accessed
2019-02-01] [WebCite Cache ID 75s4C7tCr]

Abbreviations
bpm: beats per minute
DApp: decentralized app
GPS: global positioning system
HD: hierarchical deterministic
ID: identifier
IDE: integrated development environment
iOS: iPhone operating system
JSON: JavaScript object notation

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 14https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://europepmc.org/abstract/MED/29174666
http://dx.doi.org/10.1016/j.addbeh.2017.11.027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29174666&dopt=Abstract
https://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
https://www.pewinternet.org/2014/11/12/public-privacy-perceptions/
http://www.webcitation.org/

 75qnMH4B6
https://docs.oasiscloud.io/en/latest/quickstart-guide/
http://www.webcitation.org/

 75s2Ga8WQ
http://www.webcitation.org/

 75s2Ga8WQ
http://europepmc.org/abstract/MED/29016974
http://dx.doi.org/10.1093/jamia/ocx068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29016974&dopt=Abstract
http://dx.doi.org/10.1161/CIRCOUTCOMES.117.003800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28912202&dopt=Abstract
http://dx.doi.org/10.1109/eurosp.2019.00023
https://eprint.iacr.org/2000/067
http://dx.doi.org/10.1109/sfcs.2001.959888
http://ethdocs.org/en/latest/contracts-and-transactions/contracts.html
http://ethdocs.org/en/latest/contracts-and-transactions/contracts.html
http://www.webcitation.org/

 75s27lzpk
https://medium.com/oasislabs/oasis-devnet-launch-d580f9e4c800
http://www.webcitation.org/

 75s33RKv6
https://github.com/matterinc/web3swift
http://www.webcitation.org/

 75s2SuA03
http://www.webcitation.org/

 75s2SuA03
https://remix.ethereum.org
http://www.webcitation.org/

 75s3C1GVd
https://remix.readthedocs.io/en/latest/run_tab.html
http://www.webcitation.org/

 75s3MYZgE
https://metamask.io/
http://www.webcitation.org/

 75s2uRWC2
https://faucet.oasiscloud.io/
http://www.webcitation.org/

 75s2gsKpd
http://www.webcitation.org/

 75s2gsKpd
https://docs.oasiscloud.io/en/latest/contract-kit/
http://www.webcitation.org/

 75s3fDR2x
https://docs.oasiscloud.io/en/latest/web3c.js/
http://www.webcitation.org/

 75s4IMOwT
https://github.com/matterinc/PeepethClient
http://www.webcitation.org/

 75s2Zz3N7
http://www.webcitation.org/

 75s2Zz3N7
http://dx.doi.org/10.1145/2030613.2030630
http://dx.doi.org/10.1007/978-3-642-27576-0_3
https://docs.oasiscloud.io/en/latest/confidentiality-develop/
https://docs.oasiscloud.io/en/latest/confidentiality-develop/
http://www.webcitation.org/

 75s4IMOwT
https://docs.xyo.network/XYO-White-Paper.pdf
http://www.webcitation.org/

 75s45lstf
https://www.foam.space/publicAssets/FOAM_Whitepaper.pdf
http://www.webcitation.org/

 75s4C7tCr
http://www.w3.org/Style/XSL
http://www.renderx.com/

RPC: remote procedure call
TEE: trusted execution environment
VM: virtual machine

Edited by P Zhang, K Clauson; submitted 02.02.19; peer-reviewed by A Corovos, M Hölbl, R Hylock; comments to author 25.04.19;
revised version received 14.05.19; accepted 06.08.19; published 23.10.19

Please cite as:
Johnson M, Jones M, Shervey M, Dudley JT, Zimmerman N
Building a Secure Biomedical Data Sharing Decentralized App (DApp): Tutorial
J Med Internet Res 2019;21(10):e13601
URL: https://www.jmir.org/2019/10/e13601
doi: 10.2196/13601
PMID: 31647475

©Matthew Johnson, Michael Jones, Mark Shervey, Joel T Dudley, Noah Zimmerman. Originally published in the Journal of
Medical Internet Research (http://www.jmir.org), 23.10.2019. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is
properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this
copyright and license information must be included.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e13601 | p. 15https://www.jmir.org/2019/10/e13601
(page number not for citation purposes)

Johnson et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2019/10/e13601
http://dx.doi.org/10.2196/13601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31647475&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

