
Original Paper

Server-Focused Security Assessment of Mobile Health Apps for
Popular Mobile Platforms

Jannis Müthing1, BSc; Raphael Brüngel1, BSc; Christoph M Friedrich1,2, PhD
1University of Applied Sciences and Arts Dortmund, Department of Computer Science, Dortmund, Germany
2Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany

Corresponding Author:
Christoph M Friedrich, PhD
University of Applied Sciences and Arts Dortmund
Department of Computer Science
Emil-Figge-Straße 42
Dortmund, 44227
Germany
Phone: 49 231 9112 ext 6796
Email: christoph.friedrich@fh-dortmund.de

Abstract

Background: The importance of mobile health (mHealth) apps is growing. Independent of the technologies used, mHealth apps
bring more functionality into the hands of users. In the health context, mHealth apps play an important role in providing information
and services to patients, offering health care professionals ways to monitor vital parameters or consult patients remotely. The
importance of confidentiality in health care and the opaqueness of transport security in apps make the latter an important research
subject.

Objective: This study aimed to (1) identify relevant security concerns on the server side of mHealth apps, (2) test a subset of
mHealth apps regarding their vulnerability to those concerns, and (3) compare the servers used by mHealth apps with servers
used in all domains.

Methods: Server security characteristics relevant to the security of mHealth apps were assessed, presented, and discussed. To
evaluate servers, appropriate tools were selected. Apps from the Android and iOS app stores were selected and tested, and the
results for functional and other backend servers were evaluated.

Results: The 60 apps tested communicate with 823 servers. Of these, 291 were categorized as functional backend servers, and
44 (44/291, 15.1%) of these received a rating below the A range (A+, A, and A−) by Qualys SSL Labs. A chi-square test was
conducted against the number of servers receiving such ratings from SSL Pulse by Qualys SSL Labs. It was found that the tested
servers from mHealth apps received significantly fewer ratings below the A range (P<.001). The internationally available apps
from the test set performed significantly better than those only available in the German stores (alpha=.05; P=.03). Of the 60 apps,
28 (28/60, 47%) were found using at least one functional backend server that received a rating below the A range from Qualys
SSL Labs, endangering confidentiality, authenticity, and integrity of the data displayed. The number of apps that used at least
one entirely unsecured connection was 20 (20/60, 33%) when communicating with functional backend servers. It was also found
that a majority of apps used advertising, tracking, or external content provider servers. When looking at all nonfunctional backend
servers, 48 (48/60, 80%) apps used at least one server that received a rating below the A range.

Conclusions: The results show that although servers in the mHealth domain perform significantly better regarding their security,
there are still problems with the configuration of some. The most severe problems observed can expose patient communication
with health care professionals, be exploited to display false or harmful information, or used to send data to an app facilitating
further damage on the device. Following the recommendations for mHealth app developers, the most regularly observed security
issues can be avoided or mitigated.

(J Med Internet Res 2019;21(1):e9818) doi: 10.2196/jmir.9818

KEYWORDS

mobile health; mobile apps; data security; computer security; confidentiality; health information technology; servers; data protection

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 1https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:christoph.friedrich@fh-dortmund.de
http://dx.doi.org/10.2196/jmir.9818
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

Mobile Health Apps
The ubiquitous availability of the internet and mobile devices
facilitates new and powerful applications. Mobile health
(mHealth) is describing health care–related usage of mobile
devices [1]. Although some apps offer user-tailored health
information, others facilitate easier communication between
patients and health care professionals or offer shop systems for
medication sale. mHealth apps have an inherently higher need
for security. Besides the importance to protect health data of
patients that are collected using apps, by ensuring authenticity
of the communication partner and confidentiality of data in
transit, information coming from apps must also be protected
from unauthorized changes to the content displayed (thus data
integrity must be maintained). In contrast to browser-based
websites or Web apps, the security of connections used by
(native) mobile apps is not transparent to the user. Web browsers
display both the use of a secure connection and, importantly,
display issues with connection security prominently [2].

In earlier research, client-focused transport security concerns
regarding mobile apps were studied [3]; this study focuses on
the security of server infrastructure of mHealth apps.

Server Security
The functionality of most apps relies on communication with
a remote server over the internet. HTTP is the standard when
it comes to client-server communication in the context of mobile
apps [4] and offers no security features [5]. The communication
through public infrastructure can potentially be observed,
modified, or redirected. This endangers the integrity of data
displayed by an app and confidentiality of the data sent to and
received from a server and also could enable a malicious party
to impersonate a server. Furthermore, a publicly reachable server
must also guarantee availability [6].

The infrastructure between client and server represents an
untrusted medium. Any third party in a privileged position
between both communication partners can read and modify all
data exchanged. A privileged position in this context is any hop
on the path between them (bridges, routers, and gateways) [7].
A common attack vector is a technique called address resolution
protocol (ARP) spoofing [7,8]. This enables the attacker to
receive all requests normally intended for the router on the local
network. Attacks where the third party is located between client
and server and can read and modify messages are called
man-in-the-middle (MitM) attacks. Another recent example
enabling MitM attacks against clients of Wi-Fi Protected Access
(WPA) 2 wireless networks is the Key Reinstallation Attack
(KRACK) [9]. Older or unpatched protocols such as WPA and
wired equivalent privacy (WEP) are also vulnerable to attacks,
enabling traffic decryption or MitM setups [10,11]. For attacks
on Wi-Fi infrastructure, physical proximity to the target is
required. An attacker at least needs to be in the range of the
victim’s access point. For the KRACK attack, the attacker needs
to be close to the victim’s device.

To ensure confidentiality and integrity of data sent through an
untrusted medium, the Transport Layer Security (TLS) protocol

is used [12]. It is an important part of today’s internet security
infrastructure. TLS was designed for authenticity, integrity, and
confidentiality protection of the underlying communication
channel by offering secure authentication, data integrity
protection, and confidentiality through asymmetric and
symmetric cryptography. TLS is situated in the application layer
of the transmission control protocol (TCP)/ internet protocol
(IP) stack and can wrap and secure HTTP connections.
TLS-secured HTTP connections are called HTTP Secure
(HTTPS) connections [13].

Given certain server and client configurations, TLS can be set
up to offer forward secrecy [14]. This means if secret keys are
compromised in the future, past communication stays secure
and cannot be decrypted with the compromised credentials
alone.

Without this secure wrapper authenticity of a server,
confidentiality of information exchanged with a server and the
integrity of data sent to an app cannot be guaranteed, and the
app might display arbitrary text, pictures, or video data. Because
an attacker can potentially feed an app arbitrary input, missing
integrity can also be exploited to make the app decode an image,
video, or other data that could exploit vulnerabilities in decoders.
The Stagefright exploit on Android devices, for example, relied
on Android operating system (OS) processing modified media
files [15].

TLS and its predecessor the Secure Socket Layer (SSL) protocol
are not without security flaws. Since its introduction, multiple
vulnerabilities in different layers of the protocols or
implementations of the protocols were found and exploited to
undermine their security [16]. To keep a server (and therefore
patients) secure, special scrutiny and vigilance regarding new
threats are required from server operators [17]. It is crucial to
react quickly to the publication of new vulnerabilities. A
malicious third party only has to test the exploitability of all
known vulnerabilities to find a way to attack the server-client
communication. Some well-known examples are the Padding
Oracle On Downgraded Legacy Encryption (POODLE),
Heartbleed, and the recent Return Of Bleichenbacher's Oracle
Threat (ROBOT) that was made public in December 2017
[18-20]. To address newly found security issues in SSL and its
successor TLS, new versions of the protocol are released
regularly. Use of a newer version protects from known security
flaws of older versions.

TLS relies on digital certificates to authenticate a server to
clients [12,21]. These certificates must be issued (and signed)
by certificate authorities (CAs) and have multiple characteristics
that must be checked for a certificate to be valid for a given
domain. Some characteristics are that a certificate must (1) be
issued for the domain requested, (2) have a valid from date and
must be before the current date, (3) have a valid until date in
the future, and (4) must not be revoked.

A certificate’s revocation status can be checked against a CA’s
certificate revocation list. As CAs are the roots of the chains of
trust, they must operate responsibly. There are some CAs that
offer certificate services for free (eg, the Linux foundation’s
Let’s Encrypt), whereas others charge for certificates issued by
them [22]. The management of the server certificates and

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 2https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

safekeeping of corresponding private keys are also crucial to
the security a server can offer.

A general overview of security threats to internet-connected
systems can be found at the Open Web Application Security
Project (OWASP) [23]. The project collects information, tools,
and best practices to avoid common security issues. The
OWASP Top 10 and the OWASP mobile Top 10 are of great
relevance to the research presented here [24,25]. Although not
all vulnerabilities are relevant, the lists were a valuable starting
point for the design of the tests.

Prior Work
In prior research, the transport security of mHealth apps from
a client’s perspective was investigated [3]. The research
inspected the data exchanged between iOS and Android client
apps and a server and evaluated it under security considerations.
This also included the use of TLS and the TLS version.
Furthermore, it considered the validation of server certificates
by the clients. The study found severe problems with 40% of
all 53 tested apps.

Existing literature also evaluated metadata of mHealth apps
from Google’s Play Store and Apple’s App Store [26]. The
study did not perform tests or technical analysis. A study of
popular mobile apps from China found 97% of apps surveyed
provided no information security [27]. The authors limited their
investigation to the evaluation of available documentation and
availability of auditing reports.

Other research focused on 22 mHealth apps and found that 18
of those apps send data unencrypted over the internet [28].

As mobile apps are not limited to stock HTTP(S)
implementations, the study of HTTPS implementations in
Android apps is relevant [29]. The publication discusses
common flaws in TLS deployments and server configurations.

In the realm of the Internet of Things, existing research analyzed
internet-connected toys for children in regard to security and
privacy concerns [30]. The authors also bring attention to severe
transport security issues of toys when communicating with their
backend servers.

Servers have been in use for many years to serve websites and
interfaces for internet-based services. The servers’ purpose to
supply mHealth apps with data and functionality is only one of
their most recent use cases. Due to their inherent exposure to
public infrastructure (the internet), they always offered an
attractive attack surface. As a consequence, knowledge about
problems and secure configuration of servers is widely available
[5,6,31,32]. An overview of the general landscape of SSL/TLS
security on the internet can be observed on Qualys SSL Lab’s
SSL Pulse website [33].

mHealth apps are getting attention by the media and are covered
in regard to treatment of patient data [34]. There is an initiative
to build a central place to rate apps in regard to privacy matters
(among other criteria) [35]. PrivacyScore has similar objectives
and offers a configurable interface to test for a number of
security and privacy issues of websites [36].

Existing research mostly considers nontechnical characteristics
of mHealth apps, client-side implementations of apps, or solely
the use of any encryption at all. In contrast, this research will
focus on the configuration of servers used by mHealth apps.

The Methods section will describe how the tested apps were
selected. Furthermore, it presents and explains transport security
issues for servers and lists the tools used to test for these issues.
In the Results section, the tested apps are presented. The test
methodology is explained before the aggregated results are
listed. These results will be discussed, and common issues will
be pointed out.

Methods

App Selection
In prior research, free apps from 3 different European app stores
were selected. As differences in behavior between apps from
different European countries were not found without loss of
generality for this study, only free apps from the German app
stores’ top lists were chosen [3]. Many apps from the German
top-downloaded lists are popular across other nations’ app
stores. The difference between internationally available and
popular apps and apps only in the top lists of the German stores
will be discussed in the Results section. To mitigate any
platform-dependent bias, apps for Android and iOS are tested.

Relevant Server Security Considerations
HTTP by itself transmits information as clear text without any
encryption. It is an application layer protocol and can be secured
by being used on top of a secure TLS connection [4,12,13]. TLS
and its predecessor SSL are designed to ensure the authenticity
of communication partners, confidentiality between parties, and
integrity of transmitted data. To achieve this, TLS uses
asymmetric cryptography and public key infrastructure (PKI)
for authentication and exchange of key material. Symmetric
encryption is used for payload data encryption [37,38].

SSL and TLS use version numbers. As earlier versions of the
protocol had serious security issues, this paper will take the
version of SSL or TLS into consideration [16,18]. While SSL
2.0 is considered insecure because of structural vulnerabilities
[39], the POODLE exploit enables third parties to recover
plaintext from SSL 3.0-protected traffic [40,41]. Apart from
SSL 2.0 and SSL 3.0, newer TLS versions do not have known
security vulnerabilities if the server (and client) is properly
configured. Lacking a proper configuration, older versions such
as TLS 1.0 are vulnerable to an improved POODLE attack and
other vulnerabilities [18]. Another TLS 1.0 vulnerability can
only be efficiently mitigated by the clients: the Browser Exploit
Against SSL/TLS (BEAST) [42]. Although most modern
browsers do mitigate the issue, the security of the protocol is
still not controllable on the server side. TLS 1.1 and later
protocols are not vulnerable to such attacks and can be
configured on the server side to use secure ciphers [43]. More
recent versions include improvements that are considered more
secure. The use of SSL/TLS and the lowest supported version
number will be part of the evaluation. We also evaluated support
for the recently approved TLS 1.3 (August 2018) and mentioned
it in the Results section [44].

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 3https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

To ensure the use of HTTPS and prevent protocol downgrade
attacks, HTTP Strict Transport Security (HSTS) can be used
[45]. A downgrade attack is designed to get a client to connect
to the server using an unsecured HTTP connection. This enables
a malicious third party to perform a MitM attack and
consequently read and modify sensitive information. For HSTS
to be used, the server sends a special header in response to a
request. This tells the client to only connect through secure
HTTPS connections. For HSTS to work, both client and server
have to support it. Although HSTS is most important for
browser-based Web apps, many apps include Web components
that use platform browser components. In addition, Web-based
versions of apps often exist. The presence of HSTS headers in
server responses will be listed in the Results section.

To provide a better understanding of the following
considerations, a basic understanding of the TLS handshake is
required [12]. This description will focus on the most common
case of server authentication only.

The client initiates the connection by sending a client hello
message. This includes its highest supported TLS version, a
random value, suggested compression methods, and its
supported cipher suites. The server, in turn, answers with the
chosen protocol version, cipher suite, compression method, and
a random value. In a certificate message, the server also sends
its certificate. The client now creates a premaster secret, encrypts
it with the server’s public key, and sends it to the server. Both
parties generate the master secret and session keys based on the
premaster secret. The client sends a change cipher spec message
to the server to inform the server that it will use the session key
for hashing and message encryption. This is followed by a client
finished message. The server receives this message, switches
to symmetric encryption for further messages, and sends a server
finished message.

During the TLS handshake, the client uses the servers’ public
key from its certificate to encrypt a premaster secret. The
encryption algorithm is dependent on the negotiated cipher suite.
The certificate sent by the server fits the negotiated cipher suite:
if, for example, a cipher suite is chosen that includes the Elliptic
Curve Diffie Hellman Ephemeral (ECDHE) algorithm for key
exchange, the certificate must include an elliptic curve (EC)
public key [46,47]. As explained in the TLS handshake, the
security of the key exchange is essential for the security of the
connection. If an adversary is able to decrypt the premaster key
by brute force, the security of the TLS connection would be
compromised. To make this harder, the algorithm used as well
as the key length of the public key are important. A commonly
used algorithm is the Rivest-Shamir-Adleman (RSA) algorithm
[48]. Key sizes vary from 1024 to 4096 bit. It has been shown
that a 1024 bit key does not offer sufficient security [49].
Moreover, 2048 bit is the commonly recommended lower limit
for RSA keys. The added complexity and negative performance
impact during the TLS handshake are disadvantages of the use
of longer keys. Newer algorithms such as the EC algorithm do
require smaller keys, less computational requirements for clients,
and servers while offering equivalent security [47,49]. The key
algorithm and length are part of this evaluation.

Another aspect related to the handshake is the selection of the
cipher suite. A server has a number of supported cipher suites
[12,50]. When the client sends its list of possible cipher suites,
the server selects one it supports. The most secure cipher suite
should be negotiated between client and server. A server can
be configured to have an order of preference for cipher suites
[17]. If present, the server will choose the suite highest in
priority, which is supported by the client. Whether a server has
a preferred order is part of the results of the study because of
the importance of the chosen cipher suite for the encryption of
user traffic.

For the same reason, the list of supported cipher suites will be
considered. Although uncommon, in the worst case, cipher
suites may define no encryption at all for the TLS traffic. Other
cipher suites define algorithms that can be cryptographically
attacked and should not be used anymore. This section does not
list all ciphers and their vulnerabilities, but the use of insecure
cipher suites is part of the evaluation.

The authentication of the server is based on the server’s
certificate [12,21,51]. A certificate must fit certain criteria to
be considered valid by the client. It must be issued for the
requested domain, must not be expired or revoked, and must
be trusted. In a PKI, a client trusts root certificates issued by
CAs. These CAs use the corresponding private key to sign
certificates of servers (or other sub-CAs). When the client
verifies the validity of a server certificate, it follows this chain
of trust from the server certificate until one of the certificates
in the client’s trusted root certificates is referenced. Certificate
(chain) issues are also part of the research performed for this
study.

Older SSL and TLS versions are vulnerable to certain exploits
undermining their security. In addition to vulnerabilities of older
versions, implementation-dependent issues such as Heartbleed
and others are relevant. Heartbleed is an issue in the popular
OpenSSL cryptographic software library. It enables an attacker
to read memory contents from the server if the library is not
patched. Another recently (December 2017) discovered attack
uses an issue in RSA implementations and makes the key
exchange observable by attackers (ROBOT) [19]. A server that
supports RSA for its key exchange, and that is using a vulnerable
implementation, is at risk to be attacked [52]. A relative of the
BEAST vulnerability discussed earlier also enables attacks
against TLS 1.2. It is named the Compression Ratio Info-leak
Made Easy (CRIME) and works in conjunction with the use of
cookies by protocols that use data compression (such as HTTPS)
[53]. It can be used to observe and use a client’s authentication
cookie to enable further attacks. The vulnerability can be
counteracted on the client as well as on the server side. The
Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext (BREACH) attack is a variant of
CRIME and can be exploited to a similar effect [53]. A
comprehensive overview of known attacks against TLS can be
found as a Request For Comments (RFC) by the Internet
Engineering Task Force (IETF) [53]. Vulnerability to known
attacks is considered during the tests.

Because the physical location of a server has consequences for
applicable law, the server location is considered in this study.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 4https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Specifically, this study lists whether servers are inside the
European Union (EU), as it is considerably harder for service
providers dealing with data belonging to European citizens to
host these data outside the EU and still comply with the General
Data Protection Regulation (GDPR) [54,55]. Explicit exceptions
are GDPR-compliant servers outside the EU covered under the
EU-US privacy shield [54,56]. As mentioned in the Limitations
section, this study does not differentiate GDPR-compliant
servers outside the EU, and servers are simply listed to be
located outside EU territory.

Selection of Appropriate Test Tools
The first step of the tests is to find out which of the apps
communicate with which backend. Similar to prior research,
the BProxy tool was used to facilitate the first test phase [3,57].
This software acts as a proxy between a device running an app
and the internet. It is open source and can be found on GitHub
[57]. All traffic from the device is analyzed by the proxy, and
a report is displayed. As this study is concerned with server-side
transport security aspects, only the domain names of servers an
app communicates with and the use of unsecured connections
are of interest. As the proxy records all traffic to and from the
device, filtering is necessary to find out which domains are part
of the app’s backend. Traffic was inspected to distinguish
between app-related servers and other servers. To facilitate
correct categorizations, the disconnect service was used and the
results were inspected manually, similar to the methodology of
a prior publication [3,58].

To test the servers behind the domains, the testssl script and the
Qualys SSL Labs test suite were chosen [59,60]. The testssl
script uses OpenSSL to perform tests against a targeted server
from the local machine. It generates a comma-separated value
(CSV) file containing all findings for the domain. The script
checks for some relevant characteristics, including all described
relevant concerns. The script is actively developed and
maintained to contain tests for recently discovered
vulnerabilities. At the time of testing, the ROBOT attack was
relatively new and already included in the development version
of the testssl script [19,59]. The SSL Labs test suite is a

Web-based tool for SSL/TLS-related tests. Qualys SSL Labs
also offers a command line reference implementation for test
automation [61]. The results include similar attributes as the
testssl script but importantly assign a graded score A to F. This
score is the result of an automated evaluation of the
characteristics and vulnerabilities observed. A guide on how
this score is calculated and, consequently, how SSL Labs rates
the severity of security characteristics can be found on GitHub
[62]. This rating guide is updated by Qualys on a regular basis,
and a changelog can be found as part of the guide mentioned
previously. The rating consists of multiple considerations and
includes all but the first item in Table 1: (1) validity and trust
of the certificate used by the server, (2) supported protocols
(SSL 1.0 up to TLS 1.3), (3) key exchange algorithms supported
(older algorithms score lower because of security issues), and
(4) cipher suites supported (if no secure, up-to-date cipher suites
are supported, the grade will be lower).

Each category scores between 0 and 100. The scores are
combined, which results in a single overall score for the server.
A 0 in any category will result in an overall score of 0. Although
a low score results in an overall lower result, a 0 in a category
is indicating a fatal security issue. An example for the score
calculation in the supported protocols category according to the
Qualys SSL Labs’ server rating guide looks like this:

1. Start with the score of the best protocol.
2. Add the score of the worst protocol.
3. Divide the total by 2 [62].

Table 2 lists the scores that Qualys SSL Labs assigns each
supported protocol version at the time of writing. A 0 in this
category, for example, can only occur if only SSL 2.0 was
supported. As this is a long outdated and insecure version, a
score of 0 is justified. The other categories are evaluated in a
similar manner.

Server configurations that cannot be captured by a score are
accounted for by special rules to correct the grade calculated
[62]. An example of a server rated B and the scores in each
category can be observed in Figure 1.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 5https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 1. Main considerations evaluated in this study.

DescriptionSecurity considerationsa

The use of any unsecured connectionsUse of secured connections (SSLb/TLSc)

Evaluating the supported versions of SSL/TLSSSL/TLS version

The cryptographic algorithm used to exchange the keys during the handshake for the following sym-
metric encryption

Key exchange support

The cipher negotiated between client and server dictates what symmetric encryption is applied after
the handshake and key exchange

Cipher support

The security characteristics TLS offers rely on the server’s certificate. Any trust issues here are criticalCertificates

Certain attacks are based on specific implementations or the absence of a patch on the serverVulnerabilities

Support HSTS can prevent downgrades to HTTPHSTSd

aAll but the first one (use of unsecure connections) are tested for by the tools presented in later sections.
bSSL: Secure Socket Layer.
cTSL: Transport Layer Security.
dHSTS: Hypertext Transfer Protocol Strict Transport Security.

Table 2. Qualys SSL Labs scoring for protocol support.

Score (%)Protocol

0SSLa 2.0

80SSL 3.0

90TLSb 1.0

95TLS 1.1

100TLS 1.2

aSSL: Secure Socket Layer.
bTLS: Transport Layer Security.

Figure 1. Exemplary rating and scores of a domain in the test pool. The server was downgraded mainly for offering weak Diffie-Hellmann key exchange.
The scores in the distinct categories can be observed to the left. On the right, the offered cipher suites, which include the key exchange algorithms, are
listed and marked as weak points.

The overall score, based on a constantly updated set of rules,
and the added safety of 2 sources for server security assessment
are the reasons why both testssl (Version: 2.9.5dev) and the
Qualys SSL Labs suite (Version: 1.32.6) are used. To determine
the physical location of a server, a Web-based service was used
[63,64]. To aggregate the results, a consistent logic was chosen.

For negative observations (such as a rating below the A range
containing ratings A+, A, and A− from Qualys SSL Labs), the
worst observation in a given category was recorded. For positive
observations, the inverse logic was applied: a category of an
app was counted as supporting the positive characteristic (such

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 6https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

as HSTS and TLS 1.3) when at least one server supported the
feature.

Limitations
The tests performed as part of this research focus on transport
security and weaknesses in TLS configurations on the server
side. The research did not include a full penetration test for
every server that was found. Although availability is an
important characteristic for a server, this attribute was not part
of our tests as testing for denial-of-service (DOS) hardening
would require staging test DOS attacks [6]. This would not be
legally possible without cooperation of every app developer
[65].

As this study focuses on the server side, correct certificate
validation in the apps is not tested, neither is the traffic analyzed
for leaked information of any kind.

Apps that did not function normally made a test of functions
impossible and were removed during app selection. This
includes apps that prevented traffic inspection by our test tool.
It is possible that these apps used certificate pinning to ensure
the servers identity.

The app tests were performed manually. Complete functional
coverage cannot be guaranteed. Especially, functionality behind
paywalls (in-app purchases or similar facilities) remained
untested.

Categorization of servers as functional backends or others was
aided by a Web-based service that keeps a list of known
advertising and tracking servers but, in part, had to be performed
manually [58]. The categorization in uncertain cases was
vigilantly checked but might still contain errors.

The location of a server is hard to pin down. It is possible for
a server to be inside the EU, although our test using a Web-based
service did state a different location. Servers are often used to
answer requests from different locales. A request from within
the EU might be answered from a server in Ireland, whereas a
request from the United States might be handled by a server
located in the United States.

A server based outside the EU might fall under the EU-US
privacy shield [56]. This allows organizations to store data
outside the EU and still comply with applicable EU law [54].
As there is no straightforward way known to the authors to
check if a server is part of privacy shield or complies with the
GDPR in other ways, this differentiation is not made in this
study.

A correct certificate validation depends on a dependable PKI.
Research has shown that domain name system (DNS)–based
domain validation by CAs is not always dependable and can be
abused to have a CA issue certificates for arbitrary domains
[66,67]. An attacker in possession of a valid certificate for the
domain name requested can impersonate an authentic server
even when the client applies correct certificate validation. As
this is a CA’s responsibility and an app provider has no control
in this regard, this issue will not be addressed further in this
study.

Results

App Selection
To select a sample set of mHealth apps, the top-downloaded
lists of free apps from the Android and iOS app stores are
considered as a starting point. The medical category was selected
as it is most likely to contain mHealth apps. In previous research,
similar client security problems in apps from 3 different
countries were found [3]. Differences in behavior between apps
from stores of different countries were not found. In this study,
30 apps from the German Google Play store and 30 apps from
the iOS AppStore are considered (60 apps in total). The
top-downloaded lists were generated from the app store analytics
site AppAnnie on August 31, 2018 [68]. Top lists for a specific
day are available after registration on the website. The medical
category includes apps that fulfill a broad spectrum of functions.
For this reason, apps from both app stores were categorized.
All subcategories found in the medical categories are listed and
defined in Multimedia Appendix 1. The 5 subcategories selected
in this study are (1) fertility, pregnancy, and parenthood; (2)
drug information, shopping, and compliance; (3) reference and
learning; (4) consultation, communication, and interaction; and
(5) health, fitness, and monitoring.

To improve variety, the 6 highest positioned apps from these
categories and both lists were selected. If a selected app was
untestable with test devices, the next most popular app of the
same category was selected. This was the case for 9 apps. Of
all 60 apps, 26 (26/60, 43%) were in at least one other top 500
list in France, the United Kingdom, or the United States,
covering a portion of internationally relevant mHealth apps.
The top positions in the stores, developer information, and
subcategorization of the apps are visible in Multimedia
Appendices 2 and 3.

Performing the Tests
To help parallelize the app testing, iOS and Android apps were
tested separately. All apps for both platforms were downloaded
from their respective app stores and installed on the devices
(iOS 11.4.1 on an iPhone 7 and Android 6.0.1 on a Nexus 7).
Before any test, the apps were stopped and restarted. As
described previously, the devices are set up to use an HTTP
proxy for all HTTP/S traffic. The BProxy tool was used to
compile a list of relevant domains.

Many apps communicate with a plethora of endpoints. In
addition, the Android or iOS OSs also communicate through
HTTP/S connections for multiple purposes, including mail
fetching, checking for updates, and sending analytics data. To
filter the domains observed during the test of an app, multiple
app runs are used to try to distinguish between app traffic and
background traffic not related to the app. In addition, manual
filtering was performed. Service calls from the OS (such as mail
server communication) were disregarded. When necessary, an
account for the app was created and activated for the tests.

A bash script was used to sequentially test each remaining
domain using the testssl script [59]. The Qualys SSL Labs Server
Test Web-based tool offers a bulk application programming
interface (API) to test multiple domains. Both tools return

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 7https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

JavaScript object notation formatted files [59,69]. To reach the
objective to generate informative and easy-to-understand results,
it was decided to distinguish between backend, advertisement
or tracker or analytics, external content, and other servers. The
functional backend category includes servers that directly work
to supply the app with functional content, perform operations
with input from the app, and seem to be under the control of
the app developer. All other servers were sorted into the second
category of other servers, including all servers that serve
advertisements, track user activity, and/or are part of an analytics
service supplying the app provider with information about app
usage. The categorization was performed by evaluating the
domain name and analyzing HTTP/S traffic using the BProxy.

Categorization as an other server was improved using the
disconnect service where 311 of the 532 (58.5%) other servers
were listed [58].

Figure 2 shows a graphical representation of the workflow
described. To help evaluate and compile result summaries, the
R programming language (version 3.4.2) was used [70].
Negative and positive observations were collected separately.
During the compilation of the summaries, a negative or positive
observation for a server during the tests was counted as the
results for the entire functional or other backend category of
the app. For some analyses, these sets have been combined to
obtain results for medical apps in general.

Figure 2. Workflow for tests of mobile health apps. In the app selection phase, the 6 most popular apps from each of the 5 subcategories were selected.
In the app test and server identification phase, the traffic between apps and servers was observed and unique servers recorded. The servers were
categorized or disregarded as facilitating irrelevant background tasks (server classification phase). The relevant servers were used as the input for the
testssl script and the Qualys SSL Labs suite (server test phase). Finally, the results tables were compiled (server results).

Summarized Results
The 60 apps tested communicated with 823 different servers.
The distribution of the number of servers apps communicated
with can be observed in Table 3. All apps communicated with
servers beyond their functional backend. The median number

of other servers the apps across both platforms communicated
with is 18.5. The median number across Android apps is more
than twice (24.5) the amount in comparison with iOS apps (11).
In the most remarkable case, an Android app communicated
with 82 other servers beyond its functional backend.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 8https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

For easier evaluation of the overall results, the findings were
divided into positive and negative results and summarized in
Tables 4 and 5. These list the results for both functional as well
as other backends. As the functional backends serve requests
directly related to an app’s functionality, these are the most
interesting results.

Detailed results of the security tests can be found in Multimedia
Appendices 2 and 3. They list the findings on a per app and per
function basis. For further details, please refer to Multimedia
Appendices 4 and 5. The tables in these appendices contain the
number of connections per apps to servers exhibiting the security
characteristics that are part of this study.

Table 3. Minimum, maximum, and median numbers of functional and other backends for iOS and Android apps.

Overall (others)Overall (functional)iOS (others)Android (others)iOS (functional)Android (functional)Statistics

101210Minimum number of servers

823339822133Maximum number of
servers

18.54.51124.545Median number of servers

Table 4. A summarized table of negative results regarding backends of Android and iOS apps. Negative observations are counted for the functional
or other category on a per-app basis when it was present in at least one of the apps’ servers.

Total (others),
n=60, n (%)

Total (functional),
n=60, n (%)

iOS (others),
n=30

Android (others),
n=30

iOS (functional),
n=30

Android (function-
al), n=30

Security issues

48 (80)28 (47)24241414Qualys SSL Labs non-A
rating

1 (2)8 (13)1035Server only offers TLSa

version <1.2

5 (8)12 (20)1457Server without set cipher
order

20 (33)14 (23)61459Certificate (chain) validation
issues present

15 (25)9 (15)7845Downgrading vulnerabilities

60 (100)45 (75)30302124Servers outside the EUb

2 (3)4 (7)1122Missing forward secrecy
support

18 (30)20 (33)8101010Unsecure connection/s ob-
served

aTLS: Transport Layer Security.
bEU: European Union.

Table 5. A summarized table of positive results regarding backends of Android and iOS apps. One observation of a positive characteristic makes the
functional or other category count for the app.

Total (others),
n=60, n (%)

Total (functional),
n=60, n (%)

iOS (others),
n=30

Android (others),
n=30

iOS (functional),
n=30

Android (function-
al), n=30

Positive findings

38 (63)9 (15)172154TLSa 1.3 support observed

53 (88)27 (45)25281512HSTSb support observed

aTLS: Transport Layer Security.
bHSTS: Hypertext Transfer Protocol Strict Transport Security.

Of the apps tested, 28 (28/60, 47%) used servers where at least
one functional backend received a non-A rating from Qualys
SSL Labs. In contrast, 48 (48/60, 80%) apps used advertisement,
analytics, or external content providers (others) that received a
rating below the A range.

Regarding the support of TLS 1.2, only 8 (8/60, 13%) apps used
functional backend servers that did not offer TLS 1.2 (3 iOS

apps and 5 Android apps). All but one app used only other
servers that offered TLS 1.2.

Functional backend servers without a set cipher order were
observed when using 12 (12/60, 20%) apps. Other servers
without a cipher order were used by 5 (5/60, 8%) apps.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 9https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

It was found that 14 apps (14/60, 23%) used functional backends
that did not offer a valid certificate for the domain requested.
This also includes certificates that fail proper validation for any
reason (certificate chain issues and domain name mismatch).
This issue was also found with other servers for 20 (20/60, 33%)
apps.

It was discovered that 9 (9/60, 15%) apps worked with
functional backend servers that were downgraded by Qualys
SSL Labs because of their vulnerability to an exploit. More
apps communicated with other backends that were downgraded
(15/60, 25%) apps. Vulnerabilities that lead to a downgrade are
related to the support of certain cipher suite or unpatched
implementations on the server side [62]. Vulnerability to the
POODLE attack was the most observed issue that led to a
downgrade. The tables in the Multimedia Appendices 2 and 3
can be consulted for further information.

During the tests, it was found that 45 (45/60, 75%) apps
appeared to use some functional backend servers outside the
EU. The same is true for all 60 (60/60, 100%) apps regarding
other backends.

Forward secrecy was supported by all but 4 (4/60, 7%) apps in
at least one functional backend server. The support was observed
in at least one other backend server for all but 2 (2/60, 3%) apps.

During the tests, we also recorded entirely unsecured
connections by the apps to their servers. This was observed in
20 (20/60, 33%) apps during their communication with a
functional backend server and in 18 (18/60, 30%) apps with
other backend server.

During the evaluation of the test data, some apps showed
especially severe issues and are responsible for many of the
concerns listed in Table 4. Moreover, 1 app provider, for
example, offered 4 apps in total (2 iOS and 2 Android apps).
All these apps communicated with backends that did not support
an up-to-date TLS version. In addition, it was found that the
apps used a mix of unprotected HTTP and protected HTTPS
connections to communicate with their backends, further
undermining the security of the communication.

It was found that of the 291 functional backend servers, 15.1%
received ratings below the A range by Qualys SSL Labs. Of the
532 nonbackend servers tested, 18.8% were rated below the A
range. Qualys SSL Labs’ SSL Pulse website lists popular
security characteristics of servers. They summarize these and
also show the percentage of servers receiving a rating below
the A range. In the statistics from September 2018, of the
139,849 servers, 37.75% received non-A ratings. A conducted
chi-square test (alpha=.05) shows the tested servers of mHealth

apps to be significantly better rated than servers observed by
SSL Pulse in general (P<.001 for both functional backends as
well as others) [33].

Chi-square tests were also conducted between each of the
subcategories regarding the number of apps that communicated
with servers receiving a non-A rating. For these statistical tests,
iOS and Android apps as well as functional and other servers
were not differentiated. It was found that reference and learning
apps received a significantly worse rating when tested against
both fertility, pregnancy, and parenthood (alpha=.05; P=.02)
and drug information, shopping, and compliance (alpha=.05;
P=.01) apps. The other categories showed no significant
differences between each other. Looking at differences between
internationally available apps and apps only present in the
German top lists, the international apps were found to perform
significantly better (alpha=.05; P=.03). For this test, any app
that was also listed in a top 500 list in the United States, the
United Kingdom, or France was considered international.

Looking at regularly contacted domains that can be observed
in Table 6, the services behind these top 10 most contacted
servers receive data from many of the apps tested and will be
able to reconstruct a comprehensive user profile.

Many advertising and analytics companies operate multiple
second-level domains. Using the disconnect.me lists revealed,
a high number of domains requested belonging to Google’s and
Facebook’s services [58]. Google is very much present in the
overview. Almost all (55/60, 92%) apps communicated with
servers under a Google API domain, and 8 of the 10 most
frequently observed second-level domains are attributable to
the company.

Of the 60 apps tested, 17 offered a user-controllable opt-out
option for certain advertisement or tracking services. In earlier
research, these options were mentioned as desirable [3].

As for positive observations, TLS 1.3 support was observed in
9 (9/60, 15%) apps when communicating with their functional
backend servers and 38 (38/60, 63%) with other backend servers.
HSTS support was observed in at least one functional backend
server for 27 (27/60, 45%) apps and at least once for other
backend server in 45 (45/60, 75%) apps. The high percentages
in the others category is partly a result of the way the results
were counted. The number of other servers was regularly higher
than the number of functional backend servers, and the positive
observations were combined using the Boolean or-conjunction.
To gain further insight into how many servers of an app’s
backend were exhibiting which security characteristic, please
refer to Multimedia Appendices 4 and 5.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 10https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Table 6. Number of apps that communicated with a subdomain of the second-level domains listed.

Apps, n=60, n (%)Domain

55 (92)*.googleapis.com

46 (77)*.google-analytics.com

38 (63)*.google.com

37 (62)*.googleapis.com

36 (60)*.doubleclick.net

33 (55)*.gstatic.com

29 (48)*.crashlytics.com

23 (38)*.google.de

23 (38)*.googleadservices.com

11 (18)*.fbcdn.net

Discussion

Principal Findings
Some backends display problematic characteristics. The most
problematic cases exhibit invalid server certificates. In these
cases, a client cannot distinguish between a real server certificate
and a certificate from a third party attempting a MitM attack.
The use of outdated TLS protocol versions can lead to integrity,
authenticity, and confidentiality issues with data displayed or
sent to the server. The implications vary from app to app.
Affected apps did facilitate medical and drug information and
interaction checks and patient to health care professional
communication. The latter case can expose patient information
and enable fabrication of answers from the health care
professional to the patient.

In contrast to browsers, apps on mobile platforms have a
disadvantage: they can (and do) hide transport security issues
from their users. Although private data might be sent to a server
without properly securing the connection, a developer can
choose to ignore the issues. A browser, on the other hand,
displays security warnings when a website can only be
connected to using unsecure connections and will make
interactions harder for the user [71]. Apple’s App Transport
Security effort is a step in the right direction but will still allow
exceptions for app-specified URLs [72]. It could be the objective
of further work to evaluate the possibility for a mobile OS to
monitor all traffic from an app and warn the user about insecure
connections.

Apps that are localized, available, and successful in more than
the German app store suggest bigger organizations with more
resources. These organizations can be expected to also devote
more resources to the (security) maintenance of their servers.
The observation that internationally popular apps performed
significantly better validates this expectation.

As discussed in the study by Müthing et al [3], the use of
advertisement and tracking services in medical apps can pose
as a challenge. These services offer app developers insight into
the usage of their app. But the data are also collected by these
services for further monetization and data mining [73]. As
medical (patient) data are protected under special jurisdiction

and should be protected for ethical reasons, the use of any
third-party services must be met with scrutiny. For many apps,
the tests revealed the use of a great number of servers from
various services. The high number of apps that use the same
services for advertising or analytics can be problematic. These
services can collect user information across multiple apps
[73,74]. Another reason to be aware of the use of third-party
services is the relatively large number of servers used for
advertisements or tracking that received a non-A rating from
Qualys SSL Labs (48% of all apps).

Looking at the results in regard to server locations, all (60/60,
100%) apps used other servers outside the EU. When looking
at the source data, it can be observed that these servers are often
related to tracking, analytics, and advertising.

The data also reveal severe issues not directly visible when only
considering the server setup: apps were observed using entirely
unsecured connections or a mixture of secured and unsecured
connections in communication with the same server. Although
the backend server might be set up to use state-of-the-art TLS
and certificates, this will always undermine potential security
and put user data at risk.

The wide support of forward secrecy (functional: 15% and
others: 63%) can be seen positively, as it prevents unauthorized
decryption of sensitive data in the future and entails a
performance burden for attacks on the connection. The high
number (functional: 45% and others: 88%) in servers supporting
HSTS can help to mitigate against protocol downgrade and
cookie hijacking attacks.

During an earlier phase of the preparation of this study—and
before the tests discussed so far—40 mHealth apps were tested.
The 20 most popular apps from the medical category from the
German iOS and Android app stores were tested with a very
similar methodology as was described in this study. A
description of the 40 apps, their categories, and the summarized
results can be found in Multimedia Appendix 6. Detailed results
per app tested for Android and iOS can be found in Multimedia
Appendices 7 and 8, respectively. Some apps were tested in
both test runs. Although the earlier results showed a lower
number of functional backends receiving a Qualys SSL Labs
grade below the A range (28% in early 2018 vs 47% in

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 11https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

September 2018), there are also positive developments
observable. Vulnerability to the ROBOT attack was observable
in a nonfunctional backend in early 2018 but was fixed in the
later tests. The relative rise of backends receiving a rating below
the A range might be caused by a difference in classification
but can also be attributed to the changes in the Qualys SSL Labs
rating calculation algorithm [62]. This dynamic is characteristic
of the fast-paced nature of the security ecosystem of TLS
deployments. Although servers are maintained by some
providers, the discovery of new vulnerabilities and the
reinvention of old ones leading to new threats make constant
vigilance a necessity for server administrators and (mHealth)
app providers. The apparent security deterioration of servers by
their grades might indicate a slower pace of app providers in
keeping their TLS deployments secure.

Common Security Concerns and Recommendations
Common security concerns are listed and summarized below.
Prevention, mitigation, or alleviation recommendations are
given:

1. Apps were found using a server without valid certificates
both for their functional backend as well as for other
purposes. This is problematic as this implies missing or
erroneous certificate validation in the apps. When a client
does not expect valid credentials from the server, any
attacker can present equally invalid certificates and
impersonate the server. This enables MitM attacks. It is
strongly recommended to use a trusted CA and have a valid
certificate issued for the domains that are to be secured.

2. A number of apps communicate with servers through
unsecured channels. To find and prevent apps and users
from using unsecured connections, a server could be
configured to use HSTS. In addition, client apps should be
inspected and any unsecured URL schemes should be
removed.

3. Insecure server configurations indicated by a low Qualys
SSL Labs’ rating were found in multiple apps’ server
backends. This includes a missing set cipher order and the
support of vulnerable cipher suites. These vulnerabilities
can be exploited to undermine the security supplied by the
use of TLS. Insecure server configurations can change over
time. Any time a new exploit is discovered and/or is widely
exploited, a server operator should update his server’s
configuration. To keep a server configured as securely as
possible, the basic security concerns should be understood
[5], server-side security patches installed, and the domains
should be tested using a service similar to Qualys SSL Labs’
server test [60].

4. Most apps use multiple advertising or analytics servers.
Not only does this add to the data and processor time used
by apps, for medical apps, but can also be especially
problematic as the analytics data can undermine a user’s
or patient’s privacy. A patient looking for pregnancy-related
content, for example, might be pregnant. In addition, most
of these services appear to be located outside the EU, and
most apps used at least one such server that received a rating
below the A range by Qualys SSL Labs. Although the use
of advertising and analytics services is common in mobile
apps, mHealth app developers should thoroughly reconsider
the usage of such third-party services and frameworks
[73-75]. A possible trade-off could be to offer an opt-out
function to the user [3].

Conclusions
Modern mHealth apps from popular subcategories were tested
in depth and their behavior was analyzed. Although servers of
mHealth apps performed significantly better than servers in
general, most apps communicate with a considerable number
of different servers by different operators. It was observed that
these servers and connections to them are regularly not as secure
as connections to the apps’ functional backends. The services
behind some of these servers (advertisement and app analytics)
should also be seen critically in regard to user or patient data
protection. Almost half of all apps communicate with functional
backends that do not offer a secure TLS setup (non-A Qualys
SSL Labs rating).

The most severe problems observed in a small number of apps
can expose patient communication with health care
professionals, be exploited to display false or harmful
information to the user, or used to send data to an app facilitating
further damage to the device. These problems include
communication through entirely unsecured connections, a mix
of secured and unsecured connections, invalid certificates used
by servers, certificate chain validation issues, missing support
for modern TLS versions, and unpatched vulnerabilities.

As made evident by the comparison of the results discussed in
this study with results of previous studies, the security of servers
is heavily dependent on the existence and propagation of
vulnerabilities. A provider of mHealth apps dealing with
(potentially) sensitive information should have an even higher
interest in keeping their servers up-to-date and vulnerabilities
patched.

The recommendations proposed in the previous section can be
used by app developers to improve their transport security setup
and prevent putting patients and/or users at risk.

Acknowledgments
The authors would like to thank Obioma Pelka for the help during the proofreading process.

Authors' Contributions
CMF, RB, and JM designed the setup of the tests and chose the tools for testing. CMF and RB performed the tests. RB evaluated
the results and compiled the results tables. JM drafted the paper. All authors provided corrections and approved the final version.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 12https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Conflicts of Interest
None declared.

Multimedia Appendix 1
Definitions of the subcategories of apps found under the medical category.

[PDF File (Adobe PDF File), 63KB-Multimedia Appendix 1]

Multimedia Appendix 2
Table containing detailed results and information about the Android apps tested.

[XLSX File (Microsoft Excel File), 14KB-Multimedia Appendix 2]

Multimedia Appendix 3
Table containing detailed results and information about the iOS apps tested.

[XLSX File (Microsoft Excel File), 14KB-Multimedia Appendix 3]

Multimedia Appendix 4
Table containing the numbers of connections to servers per app and security characteristic for the Android apps tested.

[XLSX File (Microsoft Excel File), 23KB-Multimedia Appendix 4]

Multimedia Appendix 5
Table containing the numbers of connections to servers per app and security characteristic for the iOS apps tested.

[XLSX File (Microsoft Excel File), 23KB-Multimedia Appendix 5]

Multimedia Appendix 6
App descriptions, apps by categories and summarized results from server security results of popular mHealth apps form early
2018 for both iOS and Android.

[PDF File (Adobe PDF File), 480KB-Multimedia Appendix 6]

Multimedia Appendix 7
Detailed results from server security results of popular mobile health apps from early 2018 for Android.

[XLSX File (Microsoft Excel File), 8KB-Multimedia Appendix 7]

Multimedia Appendix 8
Detailed results from server security results of popular mobile health apps from early 2018 for iOS.

[XLSX File (Microsoft Excel File), 8KB-Multimedia Appendix 8]

References

1. Istepanian R, Laxminarayan S, Pattichis CS, editors. M-Health: Emerging Mobile Health Systems. New York: Springer;
2006.

2. Akhawe D, Felt AP. Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness. In:
Proceedings of the 22nd USENIX conference on Security. 2013 Aug 14 Presented at: SEC'13; August 14-16, 2013;
Washington, DC, United States p. 257-272 URL: https://www.usenix.org/system/files/conference/usenixsecurity13/
sec13-paper_akhawe.pdf

3. Müthing J, Jäschke T, Friedrich C. Client-focused security assessment of mHealth apps and recommended practices to
prevent or mitigate transport security issues. JMIR Mhealth Uhealth 2017 Oct 18;5(10):e147 [FREE Full text] [doi:
10.2196/mhealth.7791] [Medline: 29046271]

4. Fielding R, Irvine UC, Gettys J, Frystyk H, Masinter L, Leach P, et al. IETF Tools.: IETF; 1999. Hypertext Transfer
Protocol--HTTP/1.1 URL: https://tools.ietf.org/html/rfc2616 [accessed 2017-09-18] [WebCite Cache ID 6tZREH58V]

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 13https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app1.pdf&filename=7922d32ece1325c44828a3486f334fbc.pdf
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app1.pdf&filename=7922d32ece1325c44828a3486f334fbc.pdf
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app2.xlsx&filename=e4a4a21750fcda246cdf3e9afef85614.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app2.xlsx&filename=e4a4a21750fcda246cdf3e9afef85614.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app3.xlsx&filename=d9071120d6b5eec85d525f45c7931b5a.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app3.xlsx&filename=d9071120d6b5eec85d525f45c7931b5a.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app4.xlsx&filename=7c45274787656ee54e0ecb79b50a3c38.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app4.xlsx&filename=7c45274787656ee54e0ecb79b50a3c38.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app5.xlsx&filename=704e8722da7fd0070e6ae3d7316d54d6.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app5.xlsx&filename=704e8722da7fd0070e6ae3d7316d54d6.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app6.pdf&filename=ab5334839fc82ef5366a5673fb1809a9.pdf
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app6.pdf&filename=ab5334839fc82ef5366a5673fb1809a9.pdf
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app7.xlsx&filename=c7afa69f53802b2915fb3f61f55b73e8.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app7.xlsx&filename=c7afa69f53802b2915fb3f61f55b73e8.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app8.xlsx&filename=d743ac533117177346bc5e40acafe3a0.xlsx
https://jmir.org/api/download?alt_name=jmir_v21i1e9818_app8.xlsx&filename=d743ac533117177346bc5e40acafe3a0.xlsx
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf
http://mhealth.jmir.org/2017/10/e147/
http://dx.doi.org/10.2196/mhealth.7791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29046271&dopt=Abstract
https://tools.ietf.org/html/rfc2616
http://www.webcitation.org/

 6tZREH58V
http://www.w3.org/Style/XSL
http://www.renderx.com/

5. Ristic I. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and PKI to Secure Servers and Web Applications.
London: Feisty Duck; 2018.

6. Perrin C. TechRepublic. 2008. The CIA Triad URL: https://www.techrepublic.com/blog/it-security/the-cia-triad/ [accessed
2018-05-11] [WebCite Cache ID 6zJlBN5yg]

7. Plummer D. IETF Tools. 1982 Nov. Ethernet Address Resolution Protocol or Converting Network Protocol Addresses to
48bit Ethernet Address for Transmission on Ethernet Hardware URL: https://tools.ietf.org/html/rfc826 [accessed 2018-11-30]
[WebCite Cache ID 74IRcZoIS]

8. Ramachandran V, Nandi S. Detecting ARP Spoofing: An Active Technique. In: Proceedings of the International Conference
on Information Systems Security.: Springer; 2005 Presented at: ICISS'05; December 19-21, 2005; Kolkata, India p. 239-250.
[doi: 10.1007/11593980_18]

9. Vanhoef M, Piessens F. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.: ACM Press; 2017 Presented at: CCS '17; October
30-November 03, 2017; Dallas, Texas, USA p. 1313-1328. [doi: 10.1145/3133956.3134027]

10. Sepehrdad P, Susil P, Vaudenay S, Vuagnoux M. Smashing WEP in a Passive Attack. Berlin, Germany: Springer; 2013
Presented at: International Workshop on Fast Software Encryption; March 11, 2013; Washington, DC, USA p. 155-178.
[doi: 10.1007/978-3-662-43933-3_9]

11. Cassola A, Robertson W, Kirda E, Noubir G. A Practical, Targeted, and Stealthy Attack Against WPA Enterprise
Authentication. 2013 Presented at: NDSS Symposium 2013; February 24, 2013; San Diego, CA, USA.

12. Dierks T, Allen C. The TLS Protocol Version 1.0. 1999. URL: https://www.rfc-editor.org/rfc/pdfrfc/rfc2246.txt.pdf [accessed
2018-05-11] [WebCite Cache ID 6zKmXnHw7]

13. Rescorla E. HTTP Over TLS. 2000. URL: https://www.rfc-editor.org/rfc/pdfrfc/rfc2818.txt.pdf [accessed 2018-05-11]
[WebCite Cache ID 6zKaCoz7G]

14. Huang LS, Adhikarla S, Boneh D, Jackson C. An experimental study of TLS forward secrecy deployments. IEEE Internet
Comput 2014 Nov;18(6):43-51. [doi: 10.1109/MIC.2014.86]

15. Drake JJ. Stagefright: An Android Exploitation Case Study. In: 10th USENIX Workshop on Offensive Technologies
(WOOT). 2016 Presented at: WOOT '16; August 8-9, 2016; Austin, TX, USA.

16. Meyer C, Schwenk J. International Association for Cryptologic Research.: IACR Cryptology ePrint Archive; 2013. Lessons
Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses URL: https://eprint.iacr.org/
2013/049.pdf [accessed 2018-05-11] [WebCite Cache ID 6zL5btUjI]

17. Stanek M. Comenius University.: arXiv; 2017 Aug 24. Secure by default - the case of TLS URL: https://arxiv.org/pdf/1708.
07569.pdf [accessed 2018-11-30] [WebCite Cache ID 74JyxErWt]

18. Möller B, Duong T, Kotowicz K. Google. 2014. This POODLE Bites: Exploiting The SSL 3.0 Fallback URL: https://www.
openssl.org/~bodo/ssl-poodle.pdf [accessed 2018-05-11] [WebCite Cache ID 6zKcsqBIb]

19. Böck H, Somorovsky J, Young C. Return Of Bleichenbacher’s Oracle Threat (ROBOT). In: Proceedings of the 27th
USENIX Conference on Security Symposium.: USENIX Association; 2018 Presented at: SEC'18; August 15-17, 2018;
Baltimore, MD, USA.

20. Synopsys, Inc. 2014. The Heartbleed Bug URL: http://heartbleed.com [accessed 2018-01-22] [WebCite Cache ID
6wemwGqYP]

21. Housley R, Ford W, Polk W, Solo D. Internet X.509 Public Key Infrastructure Certificate and CRL Profile. 1999. URL:
https://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf [accessed 2018-05-11] [WebCite Cache ID 6zKcZKZNa]

22. Let’s Encrypt. San Francisco, CA, USA: Internet Security Research Group (ISRG); 2018. URL: https://letsencrypt.org/
[accessed 2018-05-11] [WebCite Cache ID 6zKUHrmJn]

23. Open Web Application Security Project (OWASP). 2018. URL: https://www.owasp.org/index.php/Main_Page [accessed
2018-01-22] [WebCite Cache ID 6wen4anph]

24. Open Web Application Security Project. 2017. Top 10-2017 Top 10 URL: https://www.owasp.org/index.php/
Top_10_2017-Top_10 [accessed 2018-05-11] [WebCite Cache ID 6zKcCrm8S]

25. Open Web Application Security Project. 2016. Mobile Top 10 2016-Top 10 URL: https://www.owasp.org/index.php/
Mobile_Top_10_2016-Top_10 [accessed 2017-02-09] [WebCite Cache ID 6o9JIoR8V]

26. Dehling T, Gao F, Schneider S, Sunyaev A. Exploring the far side of mobile health: information security and privacy of
mobile health apps on iOS and android. JMIR Mhealth Uhealth 2015 Jan 19;3(1):e8 [FREE Full text] [doi:
10.2196/mhealth.3672] [Medline: 25599627]

27. Hsu J, Liu D, Yu YM, Zhao HT, Chen ZR, Li J, et al. The top Chinese mobile health apps: a systematic investigation. J
Med Internet Res 2016 Dec 29;18(8):e222 [FREE Full text] [doi: 10.2196/jmir.5955] [Medline: 27573724]

28. He D, Naveed M, Gunter CA, Nahrstedt K. Security concerns in Android mHealth apps. AMIA Annu Symp Proc
2014;2014:645-654 [FREE Full text] [Medline: 25954370]

29. Wei X, Wolf M. A survey on HTTPS implementation by Android apps: issues and countermeasures. Prog Adv Comput
Intell Eng 2017 Jul;13(2):101-117 [FREE Full text] [doi: 10.1016/j.aci.2016.10.001]

30. Chu G, Apthorpe N, Feamster N. IEEE Internet Things J. 2018. Security and privacy analyses of internet of things children’s
toys URL: https://arxiv.org/pdf/1805.02751.pdf [accessed 2018-12-06] [WebCite Cache ID 74Si2UYZc]

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 14https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.techrepublic.com/blog/it-security/the-cia-triad/
http://www.webcitation.org/

 6zJlBN5yg
https://tools.ietf.org/html/rfc826
http://www.webcitation.org/

 74IRcZoIS
http://dx.doi.org/10.1007/11593980_18
http://dx.doi.org/10.1145/3133956.3134027
http://dx.doi.org/10.1007/978-3-662-43933-3_9
https://www.rfc-editor.org/rfc/pdfrfc/rfc2246.txt.pdf
http://www.webcitation.org/

 6zKmXnHw7
https://www.rfc-editor.org/rfc/pdfrfc/rfc2818.txt.pdf
http://www.webcitation.org/

 6zKaCoz7G
http://dx.doi.org/10.1109/MIC.2014.86
https://eprint.iacr.org/2013/049.pdf
https://eprint.iacr.org/2013/049.pdf
http://www.webcitation.org/

 6zL5btUjI
https://arxiv.org/pdf/1708.07569.pdf
https://arxiv.org/pdf/1708.07569.pdf
http://www.webcitation.org/

 74JyxErWt
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.webcitation.org/

 6zKcsqBIb
http://heartbleed.com
http://www.webcitation.org/

 6wemwGqYP
http://www.webcitation.org/

 6wemwGqYP
https://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.webcitation.org/

 6zKcZKZNa
https://letsencrypt.org/
http://www.webcitation.org/

 6zKUHrmJn
https://www.owasp.org/index.php/Main_Page
http://www.webcitation.org/

 6wen4anph
https://www.owasp.org/index.php/Top_10_2017-Top_10
https://www.owasp.org/index.php/Top_10_2017-Top_10
http://www.webcitation.org/

 6zKcCrm8S
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
http://www.webcitation.org/

 6o9JIoR8V
http://mhealth.jmir.org/2015/1/e8/
http://dx.doi.org/10.2196/mhealth.3672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25599627&dopt=Abstract
http://www.jmir.org/2016/8/e222/
http://dx.doi.org/10.2196/jmir.5955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27573724&dopt=Abstract
http://europepmc.org/abstract/MED/25954370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25954370&dopt=Abstract
https://doi.org/10.1002/iub.1366
http://dx.doi.org/10.1016/j.aci.2016.10.001
https://arxiv.org/pdf/1805.02751.pdf
http://www.webcitation.org/

 74Si2UYZc
http://www.w3.org/Style/XSL
http://www.renderx.com/

31. Oppliger R. SSL and TLS: Theory and Practice, Second Edition. Norwood, MA: Artech House; 2016.
32. Jiang S, Smith S, Minami K. Securing Web servers against insider attack. In: Proceedings of the 17th Annual Computer

Security Applications Conference. 2001 Dec 10 Presented at: ACSAC '01; December 10-14, 2001; New Orleans, Louisiana,
USA p. 265-276. [doi: 10.1109/ACSAC.2001.991542]

33. Qualys SSL Labs. 2018. SSL Pulse URL: https://www.ssllabs.com/ssl-pulse/ [accessed 2018-01-22] [WebCite Cache ID
6wepClCQS]

34. Zeit. 2018. This app does not help me fall asleep [in German] URL: https://www.zeit.de/wissen/gesundheit/2018-09/
psychische-gesundheit-apps-moodpath-schlafstoerungen-erfahrung [accessed 2018-11-30] [WebCite Cache ID 74Jy0oH3g]

35. HealthOn. HealthOn App Code of Ethics for Health Apps [in German] URL: https://www.healthon.de/ehrenkodex [accessed
2018-10-29] [WebCite Cache ID 73XM1QpoP]

36. Maass M, Wichmann P, Pridöhl H, Herrmann D. PrivacyScore: Improving PrivacySecurity via Crowd-Sourced Benchmarks
of Websites. In: Schweighofer E, Leitold H, Mitrakas A, Rannenberg K, editors. Privacy Technologies and Policy. Cham:
Springer International Publishing; 2017:178-191.

37. Maurer U. Modelling a Public-Key Infrastructure. In: Proceedings of the 4th European Symposium on Research in Computer
Security: Computer Security. UK: Springer-Verlag; 1996 Presented at: ESORICS '96; September 25-27, 1996; Rome, Italy
p. 325-350 URL: https://dl.acm.org/citation.cfm?id=699185 [doi: 10.1007/3-540-61770-1_45]

38. Housley R, Ford W, Polk W, Solo D. Internet X.509 Public Key Infrastructure Certificate and CRL Profile.: IETF; 1999
Jan. URL: https://www.rfc-editor.org/rfc/rfc2459.txt [accessed 2018-11-30] [WebCite Cache ID 74JyCVbS7]

39. Turner S, Polk T. Prohibiting Secure Sockets Layer (SSL) Version 2.0. 2011 Mar. URL: https://www.rfc-editor.org/rfc/
pdfrfc/rfc6176.txt.pdf [accessed 2018-05-11] [WebCite Cache ID 6zKnAWzH3]

40. Barnes R, Thomson M, Pironti A, Langley A. Deprecating Secure Sockets Layer Version 3.0. 2015. URL: https://www.
rfc-editor.org/rfc/pdfrfc/rfc7568.txt.pdf [accessed 2018-05-11] [WebCite Cache ID 6zKeVo47b]

41. Rizzo J, Duong T. Practical Padding Oracle Attacks. In: Proceedings of the 4th USENIX conference on Offensive
technologies. 2010 Presented at: WOOT'10; August 9, 2010; Berkeley, CA, USA p. 1-8 URL: http://dl.acm.org/citation.
cfm?id=1925004.1925008

42. Ristic I. Qualys SSL Labs. 2013. Is BEAST Still a Threat? URL: https://blog.qualys.com/ssllabs/2013/09/10/
is-beast-still-a-threat [accessed 2018-01-22] [WebCite Cache ID 6wepLFf5q]

43. Sheffer Y, Holz R, Saint-Andre P. Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS
(DTLS). 2015. URL: https://www.rfc-editor.org/rfc/pdfrfc/rfc7457.txt.pdf [accessed 2018-05-11] [WebCite Cache ID
6zKac2MmJ]

44. Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.3.: IETF; 2018 Aug. URL: https://www.rfc-editor.org/
rfc/rfc8446.txt [accessed 2018-11-30] [WebCite Cache ID 74JsSwFHr]

45. Hodges J, Jackson C, Barth A. HTTP Strict Transport Security (HSTS).: IETF; 2012 Nov. URL: https://www.rfc-editor.org/
rfc/rfc6797.txt [accessed 2018-11-30] [WebCite Cache ID 74JscC3j5]

46. Barker E, Chen L, Roginsky A, Smid M. Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography. In: NIST special publication 800-56A Revision 2. Gaithersburg, MD, USA: NIST; May 2013.

47. Seroussi G. Elliptic curve cryptography. : IEEE; 1999 Jun 27 Presented at: Information Theory and Networking Workshop;
27 June-1 July 1999; Metsovo, Greece p. 41. [doi: 10.1109/ITNW.1999.814351]

48. Rivest RL, Shamir A, Adleman LM. Cryptographic communications system and method. Washington, DC, USA: U.S.
Patent and Trademark Office; 1983.

49. Barker E, Roginsky A. NIST Special Publication 800-131A Revision 1. Gaithersburg, MD, USA: NIST; 2015. Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths URL: https://www.nist.gov/
publications/transitions-recommendation-transitioning-use-cryptographic-algorithms-and-key-lengths-0[WebCite Cache
ID 75cQFIPp5]

50. Dierks T, Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.2.: IETF; 2008 Aug. URL: https://www.
rfc-editor.org/rfc/rfc5246.txt [accessed 2018-11-30] [WebCite Cache ID 74JtLXOrt]

51. Maurer U. Modelling a public-key infrastructure. In: Proceedings of the 4th European Symposium on Research in Computer
Security: Computer Security. Berlin, Heidelberg: Springer; 1996 Presented at: ESORICS 1996; September 25-27, 1996;
Rome, Italy p. 325-350. [doi: 10.1007/3-540-61770-1_45]

52. Böck H, Somorovsky J, Young C. Robot Attack. 2017. The ROBOT Attack - Return Of Bleichenbacher's Oracle Threat
URL: https://robotattack.org [accessed 2018-10-03] [WebCite Cache ID 72toEp1MS]

53. Sheffer Y, Holz R, Saint-Andre P. Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS
(DTLS).: IETF; 2015 Feb. URL: https://www.rfc-editor.org/rfc/rfc7457.txt [accessed 2018-11-30] [WebCite Cache ID
74JuA4NmD]

54. Official Journal of the European Union. Brussels, Belgium: European Commission; 2016. REGULATION (EU) 2016/679
OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) URL: http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=DE,
[accessed 2018-01-22] [WebCite Cache ID 6wepXOTzy]

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 15https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/ACSAC.2001.991542
https://www.ssllabs.com/ssl-pulse/
http://www.webcitation.org/

 6wepClCQS
http://www.webcitation.org/

 6wepClCQS
https://www.zeit.de/wissen/gesundheit/2018-09/psychische-gesundheit-apps-moodpath-schlafstoerungen-erfahrung
https://www.zeit.de/wissen/gesundheit/2018-09/psychische-gesundheit-apps-moodpath-schlafstoerungen-erfahrung
http://www.webcitation.org/

 74Jy0oH3g
https://www.healthon.de/ehrenkodex
http://www.webcitation.org/

 73XM1QpoP
https://dl.acm.org/citation.cfm?id=699185
http://dx.doi.org/10.1007/3-540-61770-1_45
https://www.rfc-editor.org/rfc/rfc2459.txt
http://www.webcitation.org/

 74JyCVbS7
https://www.rfc-editor.org/rfc/pdfrfc/rfc6176.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc6176.txt.pdf
http://www.webcitation.org/

 6zKnAWzH3
https://www.rfc-editor.org/rfc/pdfrfc/rfc7568.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7568.txt.pdf
http://www.webcitation.org/

 6zKeVo47b
http://dl.acm.org/citation.cfm?id=1925004.1925008
http://dl.acm.org/citation.cfm?id=1925004.1925008
https://blog.qualys.com/ssllabs/2013/09/10/is-beast-still-a-threat
https://blog.qualys.com/ssllabs/2013/09/10/is-beast-still-a-threat
http://www.webcitation.org/

 6wepLFf5q
https://www.rfc-editor.org/rfc/pdfrfc/rfc7457.txt.pdf
http://www.webcitation.org/

 6zKac2MmJ
http://www.webcitation.org/

 6zKac2MmJ
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
http://www.webcitation.org/

 74JsSwFHr
https://www.rfc-editor.org/rfc/rfc6797.txt
https://www.rfc-editor.org/rfc/rfc6797.txt
http://www.webcitation.org/

 74JscC3j5
http://dx.doi.org/10.1109/ITNW.1999.814351
https://www.nist.gov/publications/transitions-recommendation-transitioning-use-cryptographic-algorithms-and-key-lengths-0
https://www.nist.gov/publications/transitions-recommendation-transitioning-use-cryptographic-algorithms-and-key-lengths-0
http://www.webcitation.org/

 75cQFIPp5
http://www.webcitation.org/

 75cQFIPp5
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
http://www.webcitation.org/

 74JtLXOrt
http://dx.doi.org/10.1007/3-540-61770-1_45
https://robotattack.org
http://www.webcitation.org/

 72toEp1MS
https://www.rfc-editor.org/rfc/rfc7457.txt
http://www.webcitation.org/

 74JuA4NmD
http://www.webcitation.org/

 74JuA4NmD
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=DE,
http://www.webcitation.org/

 6wepXOTzy
http://www.w3.org/Style/XSL
http://www.renderx.com/

55. European Commission.: European Commission; 2016. Privacy Code of Conduct on mobile health apps URL: https://ec.
europa.eu/digital-single-market/en/privacy-code-conduct-mobile-health-apps [accessed 2018-01-22] [WebCite Cache ID
6wepa89cD]

56. Official Journal of the European Union. Brussels, Belgium: European Commission; 2016 Apr 27. COMMISSION
IMPLEMENTING DECISION (EU) 2016/1250 pursuant to Directive 95/46/EC of the European Parliament and of the
Council on the adequacy of the protection provided by the EU-U.S. Privacy Shield URL: https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016D1250&from=EN [accessed 2018-11-30] [WebCite Cache ID 74JuwyjwB]

57. Müthing J. Github. BProxy URL: https://github.com/j4nnis/bproxy [accessed 2018-01-22] [WebCite Cache ID 6weprpw1R]
58. Disconnect. 2018. URL: https://disconnect.me [accessed 2018-09-28] [WebCite Cache ID 72lxKBy6i]
59. Wetter D. Test SSL. 2018. Testing TLS/SSL encryption URL: https://testssl.sh [accessed 2018-01-22] [WebCite Cache ID

6wepvH2Jd]
60. Qualys SSL Labs. 2018. SSL Server Test URL: https://www.ssllabs.com/ssltest/ [accessed 2018-01-22] [WebCite Cache

ID 6wepy1keE]
61. Qualys SSL Labs. 2018. ssllabs-scan URL: https://github.com/ssllabs/ssllabs-scan [accessed 2018-01-22] [WebCite Cache

ID 6weq0ynxY]
62. Qualys SSL Labs. 2017 May 08. Qualys SSL Server Rating Guide URL: https://github.com/ssllabs/research/wiki/

SSL-Server-Rating-Guide [accessed 2018-01-22] [WebCite Cache ID 6weq5XAMB]
63. IP-API. 2018. IP Geolocation API URL: http://ip-api.com [accessed 2018-11-30] [WebCite Cache ID 74JwHDsIj]
64. Shavitt Y, Zilberman N. A geolocation databases study. IEEE J Select Areas Commun 2011 Dec;29(10):2044-2056. [doi:

10.1109/JSAC.2011.111214]
65. Rasch M. Security Current.: security current; 2013 Nov 26. Legal Issues in Penetration Testing URL: https://securitycurrent.

com/legal-issues-in-penetration-testing/ [accessed 2018-09-29] [WebCite Cache ID 72nS3BAlU]
66. Son S, Shmatikov V. The Hitchhiker’s Guide to DNS Cache Poisoning. Berlin, Heidelberg: Springer; 2010 Presented at:

International Conference on Security and Privacy in Communication Systems; September 7-9, 2010; Singapore, Singapore
p. 466-483. [doi: 10.1007/978-3-642-16161-2_27]

67. Herzberg A, Shulman H. Security of Patched DNS. Heidelberg, Berlin: Springer; 2012 Presented at: European Symposium
on Research in Computer Security (ESORICS); September 10-12, 2012; Pisa, Italy p. 271-288. [doi:
10.1007/978-3-642-33167-1_16]

68. App Annie. 2018. URL: https://www.appannie.com [accessed 2018-11-30] [WebCite Cache ID 74JxBE6BG]
69. Qualys SSL Labs. 2018. SSL Labs APIs URL: https://www.ssllabs.com/projects/ssllabs-apis/index.html [accessed 2018-10-29]

[WebCite Cache ID 73XMSSddH]
70. R Core Team. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

The R Project for Statistical Computing URL: https://www.r-project.org/ [accessed 2018-12-01] [WebCite Cache ID
74JxPQXSy]

71. Reis C, Barth A, Pizano C. Browser security: lessons from Google Chrome. Commun ACM 2009 Aug 01;52(8):45-49.
[doi: 10.1145/1536616.1536634]

72. Apple. Cupertino, CA, USA: Apple; 2018. Cocoa Keys URL: https://developer.apple.com/library/archive/documentation/
General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33, [accessed
2018-09-10] [WebCite Cache ID 72nSFR3OB]

73. Razaghpanah A, Nithyanand R, Vallina-Rodriguez N, Sundaresan S, Allman M, Kreibich C, et al. Apps, Trackers, Privacy,
and Regulators-A Global Study of the Mobile Tracking Ecosystem. 2018 Presented at: Network and Distributed Systems
Security (NDSS) Symposium; February 18-21, 2018; San Diego, CA, USA. [doi: 10.14722/ndss.2018.23353]

74. Binns R, Lyngs U, van Kleek M, Zhao J, Libert T, Shadbolt N. Third Party Tracking in the Mobile Ecosystem. In: Proceedings
of the 10th ACM Conference on Web Science. New York, NY, USA: ACM; 2018 Presented at: WebSci '18; May 27-30,
2018; Amsterdam, NL p. 23-31. [doi: 10.1145/3201064.3201089]

75. Thurm S, Kane YI. The Wall Street Journal.: The Wall Street Journal; 2010 Dec 17. Your Apps Are Watching You: A
WSJ Investigation finds that iPhone and Android apps are breaching the privacy of smartphone users URL: https://www.
wsj.com/articles/SB10001424052748704694004576020083703574602 [accessed 2018-09-29] [WebCite Cache ID
72nLyoV6U]

Abbreviations
API: application programming interface
ARP: address resolution protocol
BEAST: Browser Exploit Against Secure Socket Layer/Transport Layer Security
CA: certificate authority
CRIME: Compression Ratio Info-leak Made Easy
CSV: comma-separated value
DNS: domain name system

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 16https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://ec.europa.eu/digital-single-market/en/privacy-code-conduct-mobile-health-apps
https://ec.europa.eu/digital-single-market/en/privacy-code-conduct-mobile-health-apps
http://www.webcitation.org/

 6wepa89cD
http://www.webcitation.org/

 6wepa89cD
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016D1250&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016D1250&from=EN
http://www.webcitation.org/

 74JuwyjwB
https://github.com/j4nnis/bproxy
http://www.webcitation.org/

 6weprpw1R
https://disconnect.me
http://www.webcitation.org/

 72lxKBy6i
https://testssl.sh
http://www.webcitation.org/

 6wepvH2Jd
http://www.webcitation.org/

 6wepvH2Jd
https://www.ssllabs.com/ssltest/
http://www.webcitation.org/

 6wepy1keE
http://www.webcitation.org/

 6wepy1keE
https://github.com/ssllabs/ssllabs-scan
http://www.webcitation.org/

 6weq0ynxY
http://www.webcitation.org/

 6weq0ynxY
https://github.com/ssllabs/research/wiki/SSL-Server-Rating-Guide
https://github.com/ssllabs/research/wiki/SSL-Server-Rating-Guide
http://www.webcitation.org/

 6weq5XAMB
http://ip-api.com
http://www.webcitation.org/

 74JwHDsIj
http://dx.doi.org/10.1109/JSAC.2011.111214
https://securitycurrent.com/legal-issues-in-penetration-testing/
https://securitycurrent.com/legal-issues-in-penetration-testing/
http://www.webcitation.org/

 72nS3BAlU
http://dx.doi.org/10.1007/978-3-642-16161-2_27
http://dx.doi.org/10.1007/978-3-642-33167-1_16
https://www.appannie.com
http://www.webcitation.org/

 74JxBE6BG
https://www.ssllabs.com/projects/ssllabs-apis/index.html
http://www.webcitation.org/

 73XMSSddH
https://www.r-project.org/
http://www.webcitation.org/

 74JxPQXSy
http://www.webcitation.org/

 74JxPQXSy
http://dx.doi.org/10.1145/1536616.1536634
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33,
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33,
http://www.webcitation.org/

 72nSFR3OB
http://dx.doi.org/10.14722/ndss.2018.23353
http://dx.doi.org/10.1145/3201064.3201089
https://www.wsj.com/articles/SB10001424052748704694004576020083703574602
https://www.wsj.com/articles/SB10001424052748704694004576020083703574602
http://www.webcitation.org/

 72nLyoV6U
http://www.webcitation.org/

 72nLyoV6U
http://www.w3.org/Style/XSL
http://www.renderx.com/

DOS: denial-of-service
EC: elliptic curve
ECDHE: Elliptic Curve Diffie Hellman Ephemeral
EU: European Union
GDPR: General Data Protection Regulation
HSTS: Hypertext Transfer Protocol Strict Transport Security
HTTPS: HTTP Secure
IETF: Internet Engineering Task Force
IP: internet protocol
KRACK: Key Reinstallation Attack
mHealth: mobile health
MitM: man-in-the-middle
OS: operating system
OWASP: Open Web Application Security Project
PKI: Public Key Infrastructure
POODLE: Padding Oracle On Downgraded Legacy Encryption
ROBOT: Return Of Bleichenbacher’s Oracle Threat
RSA: Rivest-Shamir-Adleman
SSL: Secure Socket Layer
TCP: transmission control protocol
TLS: Transport Layer Security
WEP: wired equivalent privacy
WPA: Wi-Fi Protected Access

Edited by M Stanley, E Perakslis; submitted 22.01.18; peer-reviewed by T Dehling, M Abdelhamid, S Albakri, A Ferreira; comments
to author 08.05.18; revised version received 03.10.18; accepted 01.11.18; published 23.01.19

Please cite as:
Müthing J, Brüngel R, Friedrich CM
Server-Focused Security Assessment of Mobile Health Apps for Popular Mobile Platforms
J Med Internet Res 2019;21(1):e9818
URL: https://www.jmir.org/2019/1/e9818/
doi: 10.2196/jmir.9818
PMID: 30672738

©Jannis Müthing, Raphael Brüngel, Christoph M Friedrich. Originally published in the Journal of Medical Internet Research
(http://www.jmir.org), 23.01.2019. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information
must be included.

J Med Internet Res 2019 | vol. 21 | iss. 1 | e9818 | p. 17https://www.jmir.org/2019/1/e9818/
(page number not for citation purposes)

Müthing et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2019/1/e9818/
http://dx.doi.org/10.2196/jmir.9818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30672738&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

