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Abstract

Background: Wearable and mobile devices that capture multimodal data have the potential to identify risk factors for high
stress and poor mental health and to provide information to improve health and well-being.

Objective: We developed new tools that provide objective physiological and behavioral measures using wearable sensors and
mobile phones, together with methods that improve their data integrity. The aim of this study was to examine, using machine
learning, how accurately these measures could identify conditions of self-reported high stress and poor mental health and which
of the underlying modalities and measures were most accurate in identifying those conditions.

Methods: We designed and conducted the 1-month SNAPSHOT study that investigated how daily behaviors and social networks
influence self-reported stress, mood, and other health or well-being-related factors. We collected over 145,000 hours of data from
201 college students (age: 18-25 years, male:female=1.8:1) at one university, all recruited within self-identified social groups.
Each student filled out standardized pre- and postquestionnaires on stress and mental health; during the month, each student
completed twice-daily electronic diaries (e-diaries), wore two wrist-based sensors that recorded continuous physical activity and
autonomic physiology, and installed an app on their mobile phone that recorded phone usage and geolocation patterns. We
developed tools to make data collection more efficient, including data-check systems for sensor and mobile phone data and an
e-diary administrative module for study investigators to locate possible errors in the e-diaries and communicate with participants
to correct their entries promptly, which reduced the time taken to clean e-diary data by 69%. We constructed features and applied
machine learning to the multimodal data to identify factors associated with self-reported poststudy stress and mental health,
including behaviors that can be possibly modified by the individual to improve these measures.

Results: We identified the physiological sensor, phone, mobility, and modifiable behavior features that were best predictors
for stress and mental health classification. In general, wearable sensor features showed better classification performance than
mobile phone or modifiable behavior features. Wearable sensor features, including skin conductance and temperature, reached
78.3% (148/189) accuracy for classifying students into high or low stress groups and 87% (41/47) accuracy for classifying high
or low mental health groups. Modifiable behavior features, including number of naps, studying duration, calls, mobility patterns,
and phone-screen-on time, reached 73.5% (139/189) accuracy for stress classification and 79% (37/47) accuracy for mental health
classification.

Conclusions: New semiautomated tools improved the efficiency of long-term ambulatory data collection from wearable and
mobile devices. Applying machine learning to the resulting data revealed a set of both objective features and modifiable behavioral
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features that could classify self-reported high or low stress and mental health groups in a college student population better than
previous studies and showed new insights into digital phenotyping.

(J Med Internet Res 2018;20(6):e210) doi: 10.2196/jmir.9410
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Introduction

Background
Recent advances in wearable and mobile technologies have
enabled individuals to monitor their daily lives and enabled
scientific investigators to passively collect real-time data without
disrupting people’s habitual routines. Two examples of such
devices are wrist-wearable devices that collect activity and other
physiological data (eg, activity or sleep; heart rate; skin
conductance, SC; blood pressure; and blood sugar level) and
mobile phones (eg, smartphones) that monitor location, activity,
social interaction over calls and texts (short message service,
SMS), app use, screen on or off, and environmental data such
as ambient light exposure and humidity.

Leveraging data from wearable and mobile devices to gain
meaningful information about human health has been called
digital phenotyping [1-3]. Digital phenotyping is defined as the
moment-by-moment quantification of the individual-level human
phenotype in situ using data from personal digital devices. Data
from personal digital devices may be used to understand health
and behaviors with a goal of preventing or minimizing disorders
and diseases. For example, current health status, behavior
history, and potential future health trajectories information might
help (1) individuals become more aware of their risk profiles
and enable them to make better informed decisions and take
actions to change their behaviors to reduce potential negative
physical and mental outcomes and (2) clinicians monitor
changes in their client’s or patient’s status.

Mobile phones have been used to monitor stress and mental
health [4-10]. The pioneering Student Life study that monitored
48 college students across a 10-week term using objective
Android mobile phone sensors and usage investigated the
relationship between well-being measures such as self-reported
stress, depression, flourishing and loneliness, and academic
performance [4]. Lower Perceived Stress Scale (PSS) score was
correlated with higher conversation frequency during the day
(9 AM-6 PM: the time frame participants might be in classes)
and the evening (6 PM-0 AM), longer conversation duration
during the day, and longer sleep duration. One study that
evaluated self-reported depression using mobile phones for 2
weeks (N=28) [8] showed that mobility patterns (ie, regularity
in 24-hour mobility patterns, as well as location variance) from
Global Positioning System and phone usage features including
usage duration and frequency were correlated with depressive
symptom severity on a self-reported depression survey, the
Patient Health Questionnaire-9 (PHQ-9) [8]. Another mobile
phone–based study that lasted 12 weeks (N=73) identified
mobile phone features that predicted clinically diagnosed
depressed mood with 0.74 area under the curve; these features

including the total count of outgoing calls, the count of unique
numbers texted, absolute distance traveled, dynamic variation
of the voice, speaking rate, and voice quality [10].

The combination of wearable sensor and mobile phone data has
also been used to study self-reported stress in daily life [11-14].
Muaremi et al, using both wearable sensors and mobile phones,
developed a way to automate the recognition of self-reported
daily stress levels using sleep parameters and 37 physiological
responses (including heart rate, heart rate variability (HRV) and
SC) from wearable sensors (N=10, 19 days), or mobile phone
usage and sleep HRV from wearable sensors (N=35, 4 months).
They showed 61% 3-class stress level classification accuracy
with a combination of phone usage and sleep HRV features and
73% accuracy using sleep duration, upper body posture, and
sleep HRV features [11,12]. Sano et al also investigated 5-day
self-reported high or low stress recognition (N=18) and 1-month
high or low stress recognition (N=66) using wearable sensor
and mobile phone data; they showed 75% and 90% accuracy
using leave-one participant-out or 10-fold cross-validation,
respectively [13,14].

Objectives
These previous studies focused on only mobile phone usage or
on phone usage plus wearable sensor data only during sleep and
have not taken advantage of 24/7 multimodal phone + wearable
data during wake and sleep to understand behaviors and
physiology for long-term study of self-reported stress and mental
health. We chose to approach this goal beginning with college
students, most of whom report high stress, and some of whom
are at risk of low or declining mental health [15,16]. According
to the 2017 National College Health Assessment that examined
data from 47,821 college students at 92 schools in the United
States, more than half of the respondents said that their stress
levels were higher than average, more than one-third had
difficulty functioning because of depression, and two-thirds
said they felt overwhelming anxiety in the last year [15].
Students’ high stress and low mental health could negatively
impact their academic performance [17]. Moreover, one-tenth
of the students had a plan for suicide. Suicide rate is increasing,
and suicide is the second leading cause of death for college
students [18]. More students are seeking help, and 34% of
counseling centers have a treatment waitlist [19]. Under these
conditions, development of improved tools for screening,
monitoring, and intervening for self-reported stress and poor
mental health through wearable sensors and mobile phones in
daily life settings will be beneficial. We aim to ultimately detect
stress and mental health changes before clinical interventions
are required and provide personalized early warnings together
with data-driven suggestions of individualized behaviors that
might promote better mental health outcomes.
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Our SNAPSHOT study was designed to collect and examine
rich multimodal information in participants’everyday life using
wearable sensors and mobile phones for phenotyping sleep,
stress, and mental health, all of which are major health issues
in modern society. This paper has three main elements. First,
we introduce a methodology and tools to capture long-term,
large-scale ambulatory data on physiological and behavioral
characteristics using sensors installed in wearable devices and
mobile phones. The dataset from the SNAPSHOT study is one
of the first large multimodal datasets that contains continuous
physiology from a healthy college student population. The
dataset currently includes approximately 145,000 hours of data
from 201 participants at one university. Second, as real-world
ambulatory data are messy, we describe tools we developed and
deployed to improve the integrity and quality of the collected
data and to reduce the time experimenters spend checking for
and fixing errors. Third, we identify objective physiological
markers and modifiable behaviors that successfully classify
self-reported high or low stress and mental health and examine
the separate contributions of wearable sensors and mobile phone
data.

Methods

The 1-month SNAPSHOT study is a long-term and large-scale
study developed to measure Sleep, Networks, Affect,
Performance, Stress, and Health using Objective Techniques.
Our aim was to investigate how daily behaviors and social
networks influence sleep, self-reported stress, mood,
performance, and other well-being-related factors. For each of
five Fall and Spring semesters starting in Fall 2013, we collected
approximately 1 month of data per person from college students
who were socially connected and at a single New England
university. Students were only allowed to participate in the
study once. There was a total of 201 participants; Fall 2013: 20,
Spring 2014: 48, Fall 2014: 46, Spring 2015: 47, Fall 2015:40;
ages 18 to 25 years; 129 male, 72 female; 70 freshman, 49
sophomore, 44 junior, 36 senior, and 2 unreported. The
approximately 1 month of data collection was between the start
of semester and midterms.

Recruitment
We intentionally recruited college students from a single
academic institution who were socially connected because of
our interest in how social networks affect sleep and health
behaviors. Our definition of socially connected was making a
call or SMS at least once a week with each other. Each semester,
we recruited groups of at least 5 people who knew each other
and interacted socially. We posted our study advertisement to
undergraduate students’ mailing lists. Potential participants
filled out screening questionnaires to determine eligibility. Our
exclusion criteria were as follows: (1) non-Android phone users,
(2) inability to wear wrist sensors (eg, irritated skin on wrist),
(3) pregnant women, (4) travel across more than one time zone
1 week before the study or have plans to travel more than one
time zone away during the study, and (5) age <18 years or >60
years. In our study, we targeted only Android phone users
because other mobile phones (eg, iPhone) did not allow us to
monitor phone usage as needed for this study.

Eligible participants attended information and consent sessions.
For each session, we invited approximately 15 participants and
explained in detail the study and tasks that participants would
perform during the study. After participants gave written
informed consent, they completed prestudy questionnaires,
started wearing devices, and installed an Android app (described
below) on their phone. The study obtained a National Institutes
of Health Certificate of Confidentiality so that potentially
sensitive information such as drug or alcohol use provided by
the participants could not be revealed for legal purposes; this
was important protection for the students as the daily diary
included requests for such information.

The participants received financial compensation at the end of
the study; the amount depended on the number of days they
completed diaries, wore the sensors, and completed other
protocol tasks.

Study protocols were approved by the Massachusetts Institute
of Technology and Partners HealthCare Institutional Review
Boards. The study was registered on clinicaltrials.gov
(NCT02846077).

Data Collection
All data were deidentified before analysis, although location
information could potentially be used to reidentify people. Phone
numbers, email addresses, and actual names from the social
network surveys were hashed.

Start of the Study Questionnaires
At the start of the study, participants completed the
Morningness-Eveningness Questionnaire [20], the Pittsburgh
Sleep Quality Index [21], the Myers Brigg Personality test, the
Big Five Inventory Personality Test [22], the PSS [23], the
12-Item Short Form Health Survey (SF-12) for physical and
mental component summary (MCS) scores [24], and a set of
social network surveys assessing with whom participants spent
their time to help map their social networks. We also collected
age, sex, academic major, and living situation (eg, dorm name
and whether single or multiple occupancy room) information.

Ambulatory Monitoring

Wearable Sensors

Participants wore two sensors on their wrists: a Q-sensor
(Affectiva, Boston, MA, United States) to measure SC, skin
temperature (ST), three-axis acceleration (ACC) on their
dominant wrist and a Motion Logger (AMI, Ardsley, NY, United
States) on their nondominant wrist to measure acceleration and
ambient light data. ACC can be used to estimate activity levels
and sleep or wake patterns. SC reflects autonomic arousal during
the day, providing a stress index during wakefulness; SC
increases during sleep are highly likely to occur in either
non-rapid eye movement (non-REM) stage 2 sleep or slow-wave
sleep (SWS) [25]. The sensor data were logged into the flash
memory of the sensors. Participants were instructed to remove
sensors only in instances when the sensor could become wet or
risked being broken.
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Mobile Phone App

We wrote a custom Android phone app based on funf [26] that
monitored location, receivers, senders, and timings of calls and
SMS text messages, screen on or off timings, and phone app
usage. No content of emails, calls, or SMS text messages was
recorded. Phone usage was measured for two main reasons.
First, phone usage and location data give clues to social
interactions. The timing of calls, SMS, and screen on provide
an estimate of how often participants interact with their phone
during the day and the night, whereas the number of calls, SMS,
and the number of people they interact with helps quantify their
social interaction. Second, lighting from the interaction with
mobile phones or emailing late at night could disturb the
biological circadian clock and increase alertness, both of which

can influence sleep patterns [27,28]. We asked our participants
not to use third-party messaging apps, if possible, during the
study for the last two cohorts.

Twice-Daily Electronic Diaries

Participants completed electronic diaries (e-diaries): upon
awakening and at bedtime each day. These diaries contained
questions about sleep and wake times; naps; exercise; academic
and extracurricular activity times; social interactions; caffeine,
alcohol, and drug intake; overall health condition; sleep; mood;
and self-reported stress (Figure 1). Participants received emails
that included a URL to the morning and evening diaries. They
could complete the diaries using computers, tablets, or mobile
phones.

Figure 1. An example evening e-diary. For some questions, if yes is chosen, additional questions are presented.
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Poststudy Questionnaires and Other Measurements

At the end of the month of intensive data collection:

1. Academic performance as measured by grade point average
was self-reported by each participant for the semester
previous to the study and the current study semester.

2. Email usage during the experiment (ie, to, from, cc, and
time stamps) was collected through the Massachusetts
Institute of Technology (MIT) website Immersion [29].

3. On the basis of their phone call, SMS, and email usage
objectively measured during the experiment, participants
were asked to self-report whether they had positive or
neutral or negative interactions with each frequent contact
as a whole over the month. Participants also indicated to
which category each frequent contact belonged to (ie,
family, social, work, others).

4. The PSS, the SF-12, the set of social network surveys, and
the State-Trait Anxiety Index [30] were completed.

Data Preprocessing
Ambulatory data measured with wearable sensors, mobile
phones, and surveys tend to be noisy. Examples include (1) AM
vs PM errors when participants complete survey items about
their sleep and activity times; (2) participants forgetting to
charge or wear sensors; (3) sensors breaking or the signals
becoming noisy; and (4) mobile phone connectivity, hardware
sensor functionality, and mobile software updates, which can
break and interfere with data integrity. To address these issues,
various techniques have been applied, such as data cleaning
before data analysis [31]: data quality evaluation [32], detecting
faulty data, noise reduction [33], and interpolating faulty or
missing values [34,35]. To reduce the occurrence or impact of
these issues, additional approaches can be used during
ambulatory data collection. For example, during the study, an
e-diary system can notify participants about potential inaccurate
answers before they submit their answers, and a study
investigator can check data quality of incoming data and provide
feedback to the participants. For this study, we developed tools
for improving the quality of the collected data and for supporting
more efficient human checking and correcting of the phone,
sensor, and e-diary data.

Preprocessing Twice-Daily Electronic Diaries
We collected a total of 6077 days of e-diary data. In the first
year of the SNAPSHOT study, we set up an e-diary system that
automatically sent surveys to our participants every morning
and evening and then sent reminders if the participants did not
complete the surveys within 12 hours. We implemented logic
check functions on the system that prompted users to revise
their answers if certain types of errors or missing answers were
detected (eg, if two activity events overlapped, or if their
reported wake time was earlier than their reported bedtime).
During this first year, study investigators manually checked
participants’ answers every 1 to 2 days and emailed them to
revise their answers when errors were found.

In year 2 of the study, we installed raster plots that visualize
participants’ activities over time (Figure 2). These raster plots
were displayed to participants after they submitted their answers,
allowing users to visually confirm their responses and return to

their survey to correct any errors. These raster plots reduced
about half of the daily diary errors. The raster plots also reduced
the total average time taken to preprocess 1 month of a
participant’s e-diary data by 53%: from 145 min (year 1) to 68
min (year 2).

Finally, in year 3, we created and installed an administrative
module that includes three components to further improve data
validity: a calendar view, interactive checking system, and a
summary view. Every day, a study investigator logged into the
diary system and saw the calendar view (Multimedia Appendix
1) that showed the number of participants in the study, the
number of participants whose morning and evening diaries were
checked, the number of unchecked diaries, the number of diaries
that needed to be rechecked, and participants’ comments. The
interactive checking system automatically flagged missing
answers in the e-diary and allowed the study investigator to
check daily diaries just by flagging sections of the e-diary as
error (Figure 3). Emails were automatically sent to participants
if there were errors or missing answers. The summary view
(Multimedia Appendix 2) showed the daily diary status for each
participant in different colors (eg, green-acceptable, red-missing,
and pink-error). These plots enabled the study investigator to
understand which participants had filled out the daily surveys
and which participants they needed to contact (eg, if there were
repeated errors or missing entries in the diaries). This module
further reduced the total average time taken to preprocess 1
month of a participant’s e-diary data from 68 min (year 2) to
45 min (year 3). The combined changes in raster plots and the
administrative modules reduced the total average time taken to
clean 1 month of one participant’s e-diary data by 69%: from
145 min (year 1) to 45 min (year 3). Overall, participants’ daily
diary completion rates ranged between 92% and 97% with no
significant differences across semesters.

Preprocessing Sensor or Mobile Phone Data
Every week, a study investigator had a face-to-face meeting
with each participant to download sensor data and to check if
sensors were working correctly, if the participants were wearing
them properly, and if sensor electrodes needed replacement.
We developed scripts to download the data from sensors and
check sensor readings automatically for quality using a
previously developed and tested automated classifier [36]. This
classifier separated clean epochs and noisy epochs of SC data
for further analysis.

We collected 6309 days of Q-sensor data for a total of 125,413
hours. We computed how much data were within a typical range
per published guidelines: for SC, 83% were within the range of
0.01 to 30 microS [37-39], and for ST, 99.7% were within the
range of 20 to 42 degrees Celsius [40]. In addition, 92% of the
collected SC data were classified as clean data using an artifact
detection algorithm [36]. Thus, among the collected SC data,
80% of the data were used for further analysis.

Mobile phone data were sent automatically to a server by the
custom funf-based app. On the server, another set of scripts that
we wrote checked the data quality every day and sent
notification to a participant if a problem was found in their data
(eg, not receiving phone data for a day). Phone data were
collected on 85% of the days.
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Figure 2. Plot of daily activity timing (raster plot) with time of day (midnight to midnight) on the y-axis and each day plotted on a separate line.
Participants saw this plot after filling out their surveys and before they submitted their answers. Different activities were marked with different colors.

Identifying Risk Factors, Objective Biomarkers, and
Modifiable Behavioral Features Related to Stress and
Mental Health
We defined high stress and low stress groups based on their
poststudy PSS scores (Figure 4). PSS scores range from 0 to
40: higher scores indicate higher perceived stress. A PSS score
of 14.2 is the average for the age group of 18 to 29 years, and
a score over 16 is considered as high stress and of high health
concern [23]. Our participants’ average PSS score was 17.1.
We used the value of PSS ≥16 to construct the high stress group
(N=109, top 57.7% [109/189]) and PSS <16 for the low stress
group (N=80, bottom 42.3% [80/189]). Because we originally
had an unbalanced set of data for high stress and for low stress,
we first reduced the size of the high stress group by the method
of random sampling of its data to equalize the size of the high
and low stress classes at N=80. Thus, the prior probabilities on
both classes were made to be 0.5, so that a random classifier
would be expected to attain accuracy of 50%.

We defined high mental health and low mental health groups
based on their poststudy MCS from the SF-12 (Figure 4). For
the MCS, a value ≥50 is considered good mental health [41,42],
and 11.8% (23/195) of our population scored ≥50. We therefore
extracted the top and bottom 12% to form the two groups: high
mental health group (MCS ≥50, top 11.8% [23/195], N=23) and
low mental health group (MCS ≤29.4, bottom 12.3% [24/195],
N=24). Thus, the data in the high and low mental health groups

were balanced so that the prior probability of either group would
be 0.5, with a random classifier expected to have an accuracy
of 50%.

Feature Extraction
To quantify the relative importance of the many measures, we
compared the classification performance using the following
separate categories of features: (1) Big Five personality +
gender, (2) wearable sensors (eg, ST, SC, and ACC), (3) mobile
phone (eg, call, SMS, screen on, and location), and (4) objective
features (combining wearable sensors and mobile phone
metrics). We also separately defined (5) modifiable behaviors
as features that can potentially be controlled by participants,
such as sleep and activity timing and phone usage; these are
important features to measure for future behavioral interventions
(Table 1). Note that some features such as phone features and
ACC feature are found in more than one of the five categories.

SC was processed first using low-pass filtering (cutoff frequency
0.4 Hz, 32nd order finite impulse response filter). Because there
are individual differences in SC amplitude, we extracted features
from both unnormalized and normalized SC data based on the
maximum and minimum amplitude of each day within each
individual. To detect SC peaks, we obtained the first derivative
of the low-pass-filtered non-normalized SC data and then
determined where the slope exceeded a value of 0.02 µS per
second [43]. We detected SC peaks based on those that exceeded
this threshold and counted the number of peaks in each
30-second epoch.
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Figure 3. Interactive diary check system. The left panel shows a participant’s answers. The right panel shows if there are any detected errors or missing
entries and enables adding comments. After the study investigator clicked the Save button, the system sent an email to a participant about any missing
or erroneous entries if appropriate.
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Figure 4. (1) Distribution of poststudy Perceived Stress Scale (PSS) and (2) Distribution of poststudy mental component summary (MCS) scores.

We used four different times of interest for analyses: day (9
AM-6 PM), night (6 PM-0 AM), late night (0 AM-3 AM), and
sleep time (estimated for each individual from actigraphy and
daily sleep diaries) as physiological responses, such as SC and
ACC during daytime and sleep time have different meanings
[44] and late night phone and exercise activities could relate to
self-reported stress and mental health [45].

Bedtime and sleep regularity were calculated from the daily
sleep diaries, and sleep duration and sleep efficiency were
estimated from actigraphy with help of the daily sleep diaries.
Sleep regularity was computed because a relationship between
irregular sleep and low mental health was found in a previous
study using this index [46]. The Sleep Regularity Index (SRI;
Figure 5) captures the probability of an individual being in the
same state (asleep vs awake) at any two time points 24 hours
apart with 1 minute resolution, averaged across the entire study
[47], where s(t)=1 during wake and s(t)=−1 during sleep for
each minute. Assume data are collected for [0, T] with T=total
number of hours of data and τ=24 hours.

In practice, individuals will only display sleep patterns that
range between an SRI of 0 (random) and 100 (periodic: an
individual who sleeps and wakes at exactly the same times each
day). Values less than 0 are theoretically possible (eg, alternating
24 h of sleep and 24 h of wake) but very unlikely to be observed.

Phone usage and location data can provide information on
sociability. We computed the timing and the number of calls,

SMS, and screen on, which provide an estimate of how often
participants interact with their phone during the day and the
night. Previous studies showed the relationships between long
phone usage duration and high stress [45] and long and frequent
phone usage and severe depressive symptoms [8]. We also
computed the number of people each participant interacted with
over calls and SMS to help quantify their social interaction. For
mobility features, we computed the distance and radius based
on locations to which our participants travelled as these features
were shown to be important in previous studies [8,48].
Additionally, because our population spent most of their time
on campus or at their residence, we computed whether the day’s
mobility pattern varied from the typical routine based on a
Gaussian mixture model trained for each participant’s 1-month
mobility patterns [49].

Classification
For classifying high or low stress groups and high or low mental
health groups, we compared the methods of least absolute
shrinkage and selection operator (LASSO), support vector
machine (SVM) with linear kernel classifier, and SVM with
radial basis function (RBF) kernel classifier; these algorithms
were used in previous related work [8,10]. LASSO is a logistic
regression that performs regularization and feature selection by
minimizing the least squares objective function with an L1
penalty [50].
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Table 1. List of features.

FeaturesModality

Personality types, gender, diary, sensor, and phone featuresAll

Openness, conscientiousness, extraversion, agreeableness, neuroticism, genderBig Five personality types, gender (6 features)

Mean, median, SD of 0 AM-3 AM, sleep, 9 AM-6 PM, 6 PM-0 AM for SCa, ACCb, and

STc

Sensors (17 features x 4 time frames x 3=204 features)

Skin conductance: Area under the curve for 30 s epochs, max, mean, median, and SD of
amplitude; mean, median and SD of peaks for 30 s epochs; mean, median, and SD of nor-
malized amplitude

Acceleration: total # of zero crossing for 30 s epochs

Skin temperature: max, min, mean, median, and SD of temperature

Mean, median, SD of 0 AM-24 AM, 0 AM-3 AM, 6 PM-0 AM for call, SMS, and screen
(not mobility)

Phone (25 features (call, SMSd, screen) x 3 time frames
x 3 + 4 features (mobility) x 3 features=237 features)

Call: Mean, median, and SD of duration and time stamp of calls per day; total duration
per day, total number per day, and number of unique people per day

SMS: Mean, median, and SD of duration and time stamp of SMS per day; total number
per day and number of unique people per day

Screen: Mean, median, and SD of screen-on duration and screen-on time stamp per day;
total duration per day and total number of on or off per day

Mobility: Total distance per day, 5-min distance, radius per day, and log likelihood of each
day

Phone and sensor features (see above)Objective (441 features)

Sleep Regularity IndexModifiable behaviors (296 features)

Mean, median, and SD of bedtime and sleep duration

Diary features (see below)

ACC total # of zero crossing for 30 s epochs

Phone features (see above)

Mean, median, SD of sleep or no sleep (pulled an all-nighter; binary valued), pre sleep
electronic media interaction (emails, calls, SMS, Skype, chat, and online games; binary
valued), pre sleep personal interaction(binary valued), # of naps, nap duration, # of academic
activities per day, total academic duration, study duration, # of extracurricular activities,
total extracurricular activities, # of exercise, exercise duration, # of caffeinated drink intake,
memorable positive interaction(binary valued), somewhat negative interaction (binary
valued), very negative interaction(binary valued), last caffeine intake time

Diary (17 x 3=51 features)

Sleep Regularity IndexSleep (1 + 3 x 8=25 features)

Mean, median, and SD of bedtime, sleep duration, sleep efficiency, sleep or no sleep (pulled
an all-nighter; binary valued), pre sleep electronic media interaction (emails, calls, SMS,
Skype, chat, and online games; binary valued), pre sleep personal interaction (binary valued),
# of naps and nap duration

aSC: skin conductance.
bACC: acceleration.
cST: skin temperature.
dSMS: short message service.

Figure 5. Equation of Sleep Regularity Index.

For training and testing models, we used nested-cross validation.
To evaluate model performance, we applied
leave-one-cohort-out: training a model with all except one
semester cohort’s data and testing the model against the left-out

cohort’s data, repeating this process for the total number of
cohorts (ie, 5 times). First we (1) split the data into two datasets:
a training set made up of four cohorts and a test set made up of
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one cohort. We then left the test set out until step (5) or (8)
below.

For training the SVM models, we applied sequential forward
feature selection to the training data to reduce overfitting and
find the best combinations. (2) We applied a t test to each feature
of the training datasets and selected 100 features with the lowest
P values for finding features to separate two groups effectively
then (3) applied sequential forward feature selection [51]:
applied an SVM RBF classifier with 10-fold cross validation
to find the best up to five combinations from these 100 features
and optimized hyperparameters (C for SVM linear and C and
gamma for SVM RBF). Then, (4) we trained the SVM linear
or RBF models with the selected features of the training data,
(5) tested the models against the test data, and (6) repeated this
process (1-6) five times.

For LASSO, (7) the penalization parameter was determined
with the training data by 10-fold cross validation and (8) the
trained model was tested using the test data. This process (1, 7,
and 8) was repeated five times.

We computed overall accuracy and F1 scores by concatenating
the five-cohort predicted output to compare the performance of
the models to reduce the bias from splitting [52]. We computed
95% confidence levels using adjusted Wald test [53]. The F1
score is a measure of performance computed using precision
(also known as positive predictive value) and recall (also known
as sensitivity) as described in Equation 1, where precision is
the number of correct positive results divided by the number of
all positive results, and recall is the number of correct positive
results divided by the number of positive results that should
have been returned.

(1) F1 = 2 x precision x recall / (precision + recall)

We also compared the performance of the models using features
based on data from the entire 1-month study period with that
using features based only on using the data from the week before
the PSS and MCS surveys were completed.

We applied t tests or Mann-Whitney U tests (for non-Gaussian
distributions) to examine if the means of the features were
statistically different between the high or low PSS groups or
the high or low MCS groups. We adjusted for the multiple
comparisons using false discovery rate (FDR).

Results

Relationships Among Prestudy and Poststudy
Perceived Stress Scores and Mental Component
Summary
There were no differences in the poststudy PSS or MCS among
the five cohorts; one-way analysis of variance (P=.20, F=1.50).
Students’ poststudy scores (both PSS and MCS) were highly
correlated with prestudy scores (r=.59, .60, Pearson correlation).
Poststudy PSS scores statistically increased (mean prestudy
PSS: 15.0, poststudy PSS: 17.1, paired t test, P<.001) and MCS
scores decreased compared with the prestudy scores (mean
prestudy MCS: 44.4, poststudy MCS: 40.4, Wilcoxon signed
rank test, P<.001). Thus, the students reported worsening stress
and mental health over the 1 month of measurement.

The poststudy PSS was inversely correlated with the poststudy
MCS (r=−.71, Pearson correlation; Multimedia Appendix 3):
(1) 83% (19/23) of the students in the high MCS group belonged
to the low PSS group and (2) 88% (21/24) of the students in the
low MCS group belonged to the high PSS group. The low MCS
group had higher PSS scores than the rest of the students in the
high PSS group: low MCS group’s average PSS score was 25.2,
whereas the rest in the high PSS group’s average PSS score was
20.7 (P<.001).

Stress and Mental Health Classification
Overall, we found SVM models with the RBF kernel worked
better than LASSO and linear SVM models using RBF kernels
for all of the metrics (Figures 6 and 7; see Multimedia Appendix
4 for accuracy and F1 scores and Multimedia Appendices 5 and
6 for F1 scores for all results). SVM with the RBF kernel can
model more complex decision boundaries. Sensor features
showed higher performance than phone features both for PSS
and MCS.

We also compared the performance of the SVM RBF models
using features from only the last week of the 1-month period
to using the features from the entire month. Overall, the
performances with the 1 month of features were better
(classification accuracy improved by 1-16%) than those using
just the last week of features, except in the case of the SVM
models using all features.

The accuracy for PSS classification was highest when using all
features (82%), followed by when using features from only
sensors (78%), only behaviors (74%), only the Big Five (71%),
or only objective data (70%). The same rank ordering also held
when comparing F1 scores. For MCS, sensor features and
objective features showed the highest accuracy (87%), followed
by Big Five (85%), behaviors (79%), and all (77%). The ranking
of the F1 scores was similar except for all features had a slightly
higher F1 than behaviors. The means and SD of the accuracy
and F1 scores from leave-one-cohort-out cross validation are
presented in Multimedia Appendix 7.

We also tested different cutoffs: (1) instead of PSS cutoffs ≥16
for high and <16 for low stress, we used PSS ≥14 for high stress
group and PSS <14 for low stress, as (as noted above) 14.2 is
the reported average for people aged 18 to 29 years [23] and
(2) instead of extreme MCS cutoffs (top and bottom 12%), we
used MCS ≥median (42.05) for high mental health group and
MCS <median for low mental health group). This was done to
test if the rankings of performances were sensitive to the exact
cutoff values. Sensor and modifiable behavior features worked
best with both cutoff values (Multimedia Appendices 8 and 9).
Compared with the extreme MCS cutoffs, the median cutoff
showed much lower classification performance (the accuracy
decreased by 21 to 6 %).

We summarize the features most commonly selected by the
algorithms as useful for high or low PSS detection (Figure 8)
and high or low MCS detection (Figure 9) using the full 1 month
of data. Percentages indicate the percent time these features are
selected across 10-fold cross validation over five cohorts and
five feature modalities (all, Big Five + gender, sensor, phone,
objective and modifiable behavior features).
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For PSS classification for self-reported stress, neuroticism and
conscientiousness were the most often selected features (90%
and 70% of the models, respectively). The high PSS group had
higher neuroticism (q [which is the FDR-adjusted P
value]=.0004). The high stress group had a larger extracurricular
activity duration SD (q=.04).

In the MCS classification for self-reported mental health, the
low MCS group showed higher neuroticism (q<.001) and lower
conscientiousness (q=.04) than the high MCS group. The low
MCS group had naps more frequently (40%; q=.04). In the MCS
classification models using only the last week of data, the low
MCS group showed a lower probability of interacting with
electronic media (eg, emails, calls, SMS, Skype, chat, and online
games) before sleep (30%; q=.004) and lower SD of the number
of SC peaks during the time frame of 0 AM to 3 AM (20%;
q=.03), as well as higher neuroticism (q<.001).

The percentages of time each feature was selected for each fold
of leave-one-cohort cross validation are presented in Multimedia
Appendices 10 and 11.

We also tried building models only with sleep features (eg,
features in the sleep category and some sleep related features
in the survey category). We obtained 72% and 65% accuracy
for classifying high or low PSS and high or low MCS. Mean
nap duration was the most common feature used for the PSS
models (80% of the models), followed by median bed time and
the frequency of pulling all-nighters (60%). The frequency of
pulling all-nighters (100% of the models), mean number of
naps, sleep duration, and sleep efficiency (60%) were commonly
selected features by the MCS classification models. Average
sleep duration was not significantly different statistically in the
high vs low PSS groups or in the high vs low MCS groups (high
PSS: 6 hours 42 min vs low PSS: 6 hours 51 min [P=.09], high
MCS: 6 hours 40 min, low MCS: 6 hours 34 min [P=.72]).
Instead, the low MCS group’s more frequent napping was one
of the most discriminating features.

Figure 6. High or low Perceived Stress Scale (PSS) classification results. Top: comparison of performance using 1 month of data with three machine
learning algorithms. Bottom: comparison of performance using 1 month of data vs only the last week of data with support vector machine radial basis
function (SVM RBF). Accuracy scores for Big Five + Gender data are not shown in the bottom graph because these data are collected only once. Error
bars indicate the 95% CIs based on adjusted Wald test.
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Figure 7. As in Figure 6 with high or low mental component summary score classification results, accuracy scores for Big Five + Gender data are not
shown in the bottom graph because these data are collected only once. Error bars indicate the 95% CIs based on adjusted Wald test.

Figure 8. Percentage of time each feature was selected across 10-cross-validation for high or low Perceived Stress Scale (PSS) classification models
with 1 month of data.

J Med Internet Res 2018 | vol. 20 | iss. 6 | e210 | p. 12http://www.jmir.org/2018/6/e210/
(page number not for citation purposes)

Sano et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Percentage of times each feature was selected across 10-cross-validation for high or low mental component summary (MCS) classification
models with 1 month of data.

Discussion

Principal Findings
In this paper, we developed novel tools to collect and process
objective physiological and behavioral measures using online
diaries, wearable sensors, and mobile phones. We aimed to
investigate how accurately these measures could identify
conditions of self-reported high stress and poor mental health
and features most accurate in identifying these conditions.

Physiological sensor, phone, and mobility features were the
best predictors for distinguishing self-reported high or low stress
and mental health. Wearable sensor features, including SC and
ST, reached 79% accuracy for classifying high or low stress
groups and 87% accuracy for classifying high or low mental
health groups. Modifiable behaviors, including number of naps,
studying duration, phone calls (number, time stamp and duration
of calls), mobility patterns, and phone-screen-on time, reached
74% accuracy for high or low stress group classification and
78% accuracy for high or low mental health group classification.

Comparison With Prior Work and Interpretations of
Our Results
Our analysis showed that relatively high accuracy and F1 scores
can be achieved using the leave-one-semester-cohort-out testing
of the machine learning classifier for high or low stress
measured by PSS and high or low mental health measured by
MCS. Of all the features tested, the sensor features resulted in
approximately 14% higher classification accuracies in both PSS
and MCS than the phone features. In particular, SC responses
during the time frame of 9 AM to 6 PM were one of the best
predictors for PSS. SC has been considered as a biomarker for
stress [44] because SC quantifies eccrine sweat activity that is

controlled by only sympathetic nervous activity. These findings
(1) are among the first to show the potential contribution of SC
in stress detection using a wrist wearable sensor in a 24/7 daily
life setting and (2) agree with previous findings that use a
conventional finger SC sensor or a wearable SC sensor in
settings where a person is seated, eg, driving a car. For example,
Healey et al measured SC, heart rate, HRV, respiration, and
electromyogram in Boston drivers and reported that SC was the
most associated with stress [54]. Additionally, Hernandez et al
discriminated stressful and nonstressful calls at a call center
environment using SC features with 78% accuracy [55], and
Setz et al automatically classified SC responses from cognitive
load and stress with accuracy higher than 80% [56].

As we examined more closely which sensor features were most
discriminative, we found that SC responses during the time
frame of 0 AM to 3 AM and during sleep were predictors for
separating high and low self-reported mental health. Some
studies have shown that finger-based SC are reduced for patients
with depression measured in a short-term lab study [57-59].
One possible explanation of how low SC responses during sleep
could be related to MCS scores is that there is a decrease in
SWS in depression [60] and other psychiatric disorders [61],
and the largest SC responses during sleep are likely to occur
during non-REM stage 2 and SWS [25]. Note that in our data,
(1) 0 AM to 3 AM could include both awake and asleep
conditions, and if it included sleep, we would expect it to include
more SWS being at the start of the night for this cohort; (2) our
low mental score groups are based on self-report; and (3) we
do not know if any of our participants had clinically defined
depression or other psychiatric disorders as that information
was not gathered as part of this study.
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We found that ST features were also predictors for PSS and
MCS. A previous study has shown that acute stress does reduce
distal finger ST but does not statistically significantly reduce
wrist ST in a laboratory stress test setting [62]. Furthermore,
another study showed that ST is one of the strongest
discriminants to distinguish sleep and wake states [63]. Another
study showed that patients with depression have less rhythmicity
in ST [64], which would also be consistent with less regular
sleep in depression. To our knowledge, this paper is the first to
report that ambulatory wrist ST features are related to
self-reported stress.

For phone features, our results showed phone usage time stamp
and duration can be predictors for PSS and MCS. These results
are consistent with several previous studies. People with a
PHQ-9 score higher than 5 showed longer phone usage and
higher phone usage frequency than those with a PHQ-9 score
lower than 5 in a 2-week study with mobile phones [8]. A
questionnaire-based study also showed a relationship between
high mobile phone usage, stress, and symptoms of depression
[45].

Mobility, specifically travel distance per day and SD of the
distance traveled as measured by phone geolocation data, is a
predictor both for self-reported stress and mental health. This
result agrees with one study [8] reporting that normalized
mobility entropy (distribution of frequency of visiting different
places) and location variance were negatively correlated with
depression symptoms and another study reporting that mobility
patterns were highly related to stress level [13]. The relationship
between reduced activity levels and mobility patterns and high
stress and low mental health has been studied [48,65]. These
behavioral markers could be an objective index for monitoring
self-reported low mental health. It is possible that encouraging
people to move more could be an effective intervention to reduce
stress and improve mental health.

Consistent with previous studies [7,13,14], personality types
were one of the most influential and statistically significant
factors for self-reported stress and mental health in this college
population. In the Big Five Inventory Personality Test
categories, neuroticism was a predictor of stress [66]. The
combination of low extraversion and low conscientiousness or
low agreeableness contributed to the high stress group; these
directions of the associations in our analysis were consistent
with prior work [67]. High neuroticism and low extraversion
have previously been associated with low MCS [68].

There is a known association between sleep deficiency and
mental health status (eg, [61]). Our results, however, did not
show that sleep duration was a strong discriminant feature for
self-reported stress and mental health.

Limitations
There are multiple limitations of this study:

1. Selection of a feature as discriminating between two
categories does not mean it is an important feature or
causative of that behavior.

2. These results do not tell us the causality (eg, does a student
sleep later and less regularly because of higher stress or
have higher stress because of later or more irregular sleep?).

3. Our participants were limited to Android phone users
because we wanted to log detailed phone usage, which is
not allowed by other phone systems such as iPhone. As
about half of the undergraduate students were Android users
on the campus, a selection bias might exist. A previous
study showed slight differences in personality types and
economic status between iPhone users and Android users
[69].

4. A total of 64% of our study population were male
participants. It has been reported that females report higher
perceived stress levels and more depressive symptoms
[70-73], and there are gender differences in psychological
and biological stress responses [74]. In our dataset, the
ratios of female participants in the high or low PSS and
MCS groups were 45% and 20% (high and low PSS) and
22% and 54% (high and low MCS). Modeling stress and
mental health differently in males and females might help
understand the mechanism. Gender was included as a
potential feature in our models and was not selected
frequently.

5. Our data come from college students at one New England
university over 4 years. The work needs to be applied to
other populations to determine generalizability.

6. Our data come from socially connected student groups. We
might observe some statistically coherent behaviors in our
dataset because of these connections.

Future Work
These new tools and methods can allow multimodal data in
daily life to be captured more continuously, with greater
accuracy and integrity of the data, and for long-term and at great
scale. We are planning to collect a larger amount of data for an
even longer time to study long-term behaviors and physiological
responses and build predictive models. To do this, we need to
build a new system for consenting people in remote locations,
fully automate checking their measurement status and data
accuracy automatically, and let the participants know about
errors so they can fix them to keep study compliance and data
accuracy high.

We will continue our data analysis for understanding behaviors,
physiological responses, and traits that impact health and
well-being. One of our hypotheses is that health-related
behaviors will be contagious within social networks and that
social network data we obtained from call, SMS, and email data
could capture the social contagion quantitatively instead of
requiring self-report to capture it. We are also interested in
studying how phone usage influences sleep and health and how
we can predict stress and mental health using previous behaviors
and physiology.

These machine learning models are not limited to modalities
and features we measured and computed in this study but can
also be used for other modalities such as heart rate and heart
rate variability that are controlled by autonomous activities, and
other features such as app usage, ambient light, and audio or
sentiment-based patterns extracted from text or speech could
be added to improve the models. The features and models
presented in this paper can be tested in similar multimodal
ambulatory datasets collected in other future studies. Tracking
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stress and mental health conditions would help students better
understand their stress and mental health conditions over
multiple semesters, as well as help clinicians see how treatment
affects students’ conditions if they receive treatment.

Conclusions
In this paper, we introduced a methodology and tools we
developed to measure ambulatory multimodal data and improve
the integrity of collected data to study self-reported stress and
mental health in the daily lives of college students. We showed
that objective and modifiable behavioral features collected over

1 month can classify these college students as high or low stress
based on the PSS and as having high or low mental health based
on MCS from SF-12 collected at the end of that month with
over 70% accuracy, whereas sensor features alone could classify
high or low mental health and achieve over 88% on an F1 score.
For classifying high or low stress groups, we found that
combining phone and sensor features typically gave the best
results over using either modality alone, whereas for classifying
high or low mental health groups, the use of wearable sensor
features performed comparable to wearable + phone features.
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Multimedia Appendix 1
Calendar view. For each day, the investigator can see how many participants are in the study, how many surveys have been
verified, how many need to be re-examined, and participant comments.
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Multimedia Appendix 2
Summary view. The investigator can see the daily diary status for each participant in different colors: green: acceptable; red:
missing; pink: error; red/white slash: missing but participants still have time to complete the diary.

[PNG File, 100KB-Multimedia Appendix 2]

Multimedia Appendix 3
The relationship between poststudy Perceived Stress Scale (PSS) and poststudy Mental Component Score (MCS) for each
participant (blue circle). Chosen cutoffs for high and low PSS and high and low MCS are indicated.

[PNG File, 57KB-Multimedia Appendix 3]

Multimedia Appendix 4
Performance of PSS and MCS classification models with 1 month or last week of data.

[PDF File (Adobe PDF File), 28KB-Multimedia Appendix 4]

Multimedia Appendix 5
High or low Perceived Stress Scale (PSS) classification results. Top: Comparison of F1 scores for PSS classification with three
machine learning algorithms (LASSO, SVM linear, and SVM RBF) on 1 month of different types of data (All, Big Five + Gender,
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Sensor, Phone, Objective, Behaviors). Bottom: Comparison of F1 scores with SVM RBF machine learning algorithm on 1 month
of data versus on only the last week of the same data types. Accuracy scores for Big Five + Gender data are not shown in the
bottom graph because these data are collected only once.

[PNG File, 21KB-Multimedia Appendix 5]

Multimedia Appendix 6
High or low Mental Component Score (MCS) classification results. Top: Comparison of F1 scores for MCS classification with
three machine learning algorithms (LASSO, SVM linear, and SVM RBF) on 1 month of different types of data (All, Big Five +
Gender, Sensor, Phone, Objective, Behaviors). Bottom: Comparison of F1 scores with SVM RBF machine learning algorithm
on 1 month of data versus on only the last week of the same data types. Accuracy scores for Big Five + Gender data are not shown
in the bottom graph because these data are collected only once.

[PNG File, 22KB-Multimedia Appendix 6]

Multimedia Appendix 7
Mean and SD of accuracy and F1 scores from leave-one-cohort-out PSS and MCS classification models with 1 month of data
and SVM RBF.

[PDF File (Adobe PDF File), 26KB-Multimedia Appendix 7]

Multimedia Appendix 8
High or low Perceived Stress Scale (PSS) and Mental Component Score (MCS) classification results. Comparison of F1 for PSS
and MCS classification scores with SVM RBF and 1 month of different types of data (All, Big Five + Gender, Sensor, Phone,
Objective, Behaviors). Cutoff: 14 (the average in the 18-29 years age group) for PSS and 42.05 (median) for MCS.

[PNG File, 14KB-Multimedia Appendix 8]

Multimedia Appendix 9
Performance of PSS and MCS classification models with 1 month of data and SVM RBF. PSS cutoff: 14 (the average in the
18-29 years age group) and MCS cutoff: 42.05 (median).

[PDF File (Adobe PDF File), 16KB-Multimedia Appendix 9]

Multimedia Appendix 10
Percentages of the number of times each feature was selected for each fold of leave-one-cohort-out cross validation for 1-month
PSS models.

[PDF File (Adobe PDF File), 20KB-Multimedia Appendix 10]

Multimedia Appendix 11
Percentages of the number of times each feature was selected for each fold of leave-one-cohort-out cross validation for 1-month
MCS models.

[PDF File (Adobe PDF File), 19KB-Multimedia Appendix 11]
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FDR: false discovery rate
HRV: heart rate variability
LASSO: least absolute shrinkage and selection operator
MCS: mental component summary
MIT: Massachusetts Institute of Technology
PHQ-9: patient health questionnaire-9
PSS: perceived stress scores
RBF: radial basis function
REM: rapid eye movement
SC: skin conductance
SF-12: 12-Item Short Form Health Survey
SMS: short message service
SRI: Sleep Regularity Index
ST: skin temperature
SVM: support vector machine
SWS: slow-wave sleep
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