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Abstract

Background: Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile
computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal
with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by
dysfunction of glucose homeostasis.

Objective: The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management
of diabetes, along with the associated challenges.

Methods: A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature
from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review.

Results: We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis
of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies
reviewed yielded encouraging results.

Conclusions: We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered
tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence
methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of
diabetes. Consequently, these methods provide powerful tools for improving patients’ quality of life.

(J Med Internet Res 2018;20(5):e10775) doi: 10.2196/10775
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Introduction

Overview
Diabetes mellitus refers collectively to a group of diseases
resulting from dysfunction of the glucoregulatory system [1].
Hyperglycemia, the hallmark of diabetes, is the primary
consequence of this dysregulation. Chronic hyperglycemia in
diabetes is associated with long-term complications involving
tissue damage and organ failure, which can decrease life
expectancy and even cause death. The International Diabetes

Federation estimates that, by 2017, diabetes affected 425 million
people worldwide, of whom, 4 million died in the same year.
These figures are expected to increase dramatically in the
coming decades, placing a rising burden on health care systems
[2].

Most diabetes can be categorized into 3 subgroups: type 1
diabetes (T1D), type 2 diabetes (T2D), and gestational diabetes
(GDM). Over the long term, T2D patients become resistant to
the normal effects of insulin and gradually lose their capacity
to produce enough of this hormone. A wide range of therapeutic
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options are available for patients with T2D. At the early stages
of disease, they commonly receive medications that improve
insulin secretion or insulin absorption, but eventually they must
receive external doses of insulin. On the other hand, T1D
patients have severe impairments in insulin production, and
must use external insulin exclusively to manage their blood
glucose (BG). Treatment of T1D requires consistent doses of
insulin through multiple daily injections (MDIs) or continuous
subcutaneous insulin infusion (CSII) using a pump. GDM is
treated similarly to T2D, but only occurs during pregnancy due
to the interaction between insulin and hormones released by the
placenta.

In each class of diabetes, timely diagnosis, education of patients
in self-management, and continuous medical care are required
to prevent acute complications (eg, ketoacidosis) and minimize
the risk of long-term complications (eg, nephropathy,
retinopathy, diabetic foot, cardiovascular disease, or stroke). In
addition to medication, management of diabetes requires
adherence to an array of self-care behaviors that are often very
burdensome for patients: carefully scheduling meals, counting
carbohydrates, exercising, monitoring BG levels, and adjusting
endeavors on a daily basis. The effects of nonadherence to
recommended treatment are not immediately evident and
long-term complications may take years to develop.
Accordingly, diabetes therapy is complex, and therapeutic
decisions need to take into account diverse medical factors and
lifestyle-related activities that must be optimized to improve
diabetic patients’ quality of life.

Artificial intelligence (AI) is a quickly growing field, and its
applications to diabetes research are growing even more rapidly
as shown in Figure 1, which is a gross estimate of the number
of related articles in the Google Scholar database.

In the literature, intelligent algorithms are widely used in data
driven methods to support advanced analysis and provide
individualized medical aid. There is also evidence that an
increasing number of health care companies are applying these
techniques [3]. Short-term prospects indicate they are likely to
have considerable success in clinical practice. The main reasons
for this growth include the explosive increase in the amount of
available information, along with the improved performance of
intelligent methodologies capable of handling and processing
this information, both of which have led to the development of
tools and applications which can enhance the effective
management of complicated diseases, including diabetes and
cancer.

Over the last decade, the entire paradigm of diabetes
management has been transformed due to the integration of new
technologies such as continuous glucose monitoring (CGM)
devices and the development of the artificial pancreas (AP),
along with the exploitation of data acquired by applying these
novel tools. AI is attracting increased attention in this field
because the amount of data acquired electronically from patients
suffering from diabetes has grown exponentially. By means of
complex and refined methods, AI has been shown to provide
useful management tools to deal with these incremental
repositories of data. Thus, AI has played a key role in the
recognition of these systems as routine therapeutic aids for
patients with diabetes.

The literature offers ample evidence of the use of artificial
intelligence methods in the field of diabetes, such as in general
surveys [4,5] or in particular domains, for example early
diagnosis [6]. In this manuscript, we describe the latest efforts
and advances in the application of AI methodologies to diabetes
management and decision support. Background information on
AI methods is provided in the remainder of the Introduction
section.

Figure 1. The number of published articles in Google Scholar that include the terms “diabetes” and “artificial intelligence.”.

J Med Internet Res 2018 | vol. 20 | iss. 5 | e10775 | p. 2http://www.jmir.org/2018/5/e10775/
(page number not for citation purposes)

Contreras & VehiJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We then provide a detailed description of the methodological
approach used in this review, report the results of a literature
analysis, discuss studies on various sub-topics, and conclude
with a brief summary and a discussion of future challenges.

Artificial Intelligence Techniques
Defining the concept of AI, computational intelligence, or
machine intelligence is not a trivial undertaking. In this paper,
we refer to AI as a branch of computer science that aims to
create systems or methods that analyze information and allow
the handling of complexity in a wide range of applications (in
this case, diabetes management). Although the application of
AI algorithms involves highly technical and specialized
knowledge, this has not prevented AI from becoming an
essential part of the technology industry and making
contributions to major advances within the field. This section
will provide a short overview of several well-known
computational intelligence paradigms. For a more in-depth
discussion of various intelligent algorithms, theoretical results,
and applications, the reader is referred to the following book
by Nilsson [7]. In this study, we categorized methodologies
with respect to the objective sought: to explore and discover
information, to learn using information, or to extract conclusions
from information (see Figure 2).

Learning from Knowledge
Acquisition of knowledge is a key requirement of solutions
intended to exhibit intelligent behavior. Because learning is an
effective way to introduce such knowledge, most AI studies to
date have employed learning techniques (see Figure 3). The
primary aim of learning from knowledge is to allow computers
to learn automatically without human intervention or assistance.
This process could involve any method that includes some
inductive component, ranging from a simple Kalman filter to a
complex convolutional neural network. No method is inherently
better than any other; each is more or less well-suited to different

scenarios, for example, a softer learning curve, faster execution,
or more flexible solutions. Furthermore, the performances of
various methods are closely related to the quality and quantity
of data: when more information is gathered, and less noise is
present in the data, better solutions can be obtained. The most
important families of techniques are artificial neural networks
(ANNs), support vector machines (SVMs), random forest (RF),
evolutionary algorithms (EAs), deep learning, Naïve Bayes,
decision trees, and regression algorithms.

Exploration and Discovery of Knowledge
The discovery of knowledge revolves around the exploration
and creation of algorithms for retrieving potential information
from databases, commonly referred to as knowledge discovery
in databases (KDD). The primary objective of KDD is
identification of valid, potentially useful, and understandable
information. KDD involves evaluation and interpretation of
patterns and models for making decisions about what does and
does not constitute knowledge, that is, distinguishing between
data that are useful and those that are (in the context of interest)
useless. Therefore, KDD requires broad and deep knowledge
about the area of study.

The overall KDD process may be characterized into 6 steps in
the cross industry standard process for data mining (CRISP-DM)
model (Figure 4) [8]: business understanding, data
understanding, data preparation, data modeling, evaluation of
the model, and deployment. The application of data mining
modelling is the most technical stage of the process. Techniques
for data mining have taken much of their inspiration from
learning algorithms and statistics, although the two types of
approaches have different objectives. The most important data
mining tasks involve the detection of anomalies, identification
of dependencies between variables, regression, clustering, and
classification. Some examples of representative techniques for
this process are k-means, the k-nearest neighbor algorithm, and
hierarchical clustering (HC).

Figure 2. A taxonomy of some of the best known artificial intelligence methods.
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Figure 3. A general diagram of the learning algorithm process.

Figure 4. General CRISP-DM model for the knowledge discoveryin databases (KDD) process.

Reasoning from Knowledge
In this discourse, the idea of reasoning from knowledge denotes
the creation of precise and effective ways to generate inferences
in more precise and robust ways. Thus, reasoning from
knowledge involves the use of logical techniques such as
deduction and induction to generate conclusions from the
available knowledge. The primary objective of systems that
implement reasoning mechanisms is to perform tasks at a
human-expert level in a narrow, specialized manner within the
domain of interest. Such systems commonly apply heuristics
to guide reasoning and reduce the search space of possible
solutions.

These systems are based on 3 main components. First, a
knowledge acquisition system is used to gather and collect

inferences that can be used for further development. In this
context, such a system is used to extract new rules and gather
information. Second, a knowledge base, characterized by rules
and information, is used for problem solving. Important aspects
here include relations, conditions, recommendations, directives,
and strategies. Finally, the inference engine links the knowledge
base with the gathered information. Overall, this process
facilitates reasoning, whereby the system becomes able to
facilitate the realization of the anticipated solution. It is possible
for a system structured on this basis to transfer expert knowledge
directly to the knowledge base. This, in turn, helps to build new
solutions based on previous cases, or to deal with ambiguous
concepts and uncertainty. Representatives of these tasks include
rule-based reasoning, case-based reasoning (illustrated in Figure
5), and fuzzy logic.

Figure 5. The case-based reasoning circle.
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Methods

A review of the literature was conducted using the PubMed
database. The selection of this bibliographic system as the
primary data source was motivated by the sharp increase in the
number of articles in the database and the strong link between
these articles and the health care sector. PubMed has been
validated as a reliable tool for retrieving information on medical
research and clinical applications. Only English-language
documents published between 2010 and 2018 were considered.
The search terms listed in Textbox 1 were used to identify terms
in the abstracts, titles, and keywords of the documents.

The search terms were explored and combined, yielding 1841
“hits.” The terms “diabetes,” “management,” “artificial
pancreas,” and “blood glucose” were combined with the
remaining terms using a conjunctive operator, and these terms
were used as keywords to create individual datasets comprising
all references to the following phrases: “artificial intelligence”
(186), “computational intelligence” (179), “machine learning”
(88), “data mining” (111), “deep learning” (3), “k-means” (9),

“fuzzy logic” (24), “heuristic” (10), “clustering analysis” (281),
“Bayes” (19), “decision tree” (67), “random forest” (21),
“particle swarm optimization” (7), “pattern recognition” (31),
“genetic algorithm” (43), “supervised algorithm” (14),
“unsupervised algorithm” (9), “knowledge-based” (14),
“case-based reasoning” (11), “decision support system” (71),
“self-organizing map” (4), “evolutionary computation” (2),
“neural network” (72), “natural language processing” (34),
“reinforcement learning” (6), clustering (510), and “support
vector machine” (23). Each of these datasets was then combined
to build an objective dataset of articles. A comprehensive review
was performed of all references cited in the datasets. Finally,
the bibliography of the reviewed articles was thoroughly
explored to find titles with relevance to the main focus of this
study.

The complete method is summarized in Figure 6. The resultant
final collection of articles was divided into various categories,
designed to assist in the grouping of studies according to their
shared and specific characteristics. Over the course of the
systematic review, the subcategories were fused and fixed to
accommodate the merging of information.

Textbox 1. The terms used in the search queries.

Artificial intelligence; Artificial neural network; Artificial pancreas; Blood glucose; Case-based reasoning; Cluster analysis; Clustering; Computational
intelligence; Data mining; Decision support systems; Decision tree; Deep learning; Diabetes; Evolutionary computation; Fuzzy logic; Genetic algorithm;
Heuristic; K-means; Knowledge-based; Machine learning; Management; Natural language processing; Naïve Bayes; Particle swarm; Pattern recognition;
Random forest; Reinforcement learning; Self-organizing map; Supervised learning; Support vector machine; Unsupervised learning

Figure 6. Summary of the review process and classification of articles into a set of subdomains.
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Results

Main Findings
Ultimately, 141 papers were included in the review. The
potential of AI to enable diabetes solutions has been investigated
in the context of multiple critical management issues. In this
section, we use the following proposed diabetes management
categories to summarize the latest contributions and the results
described in the reviewed articles:

• Blood glucose control strategies
• Blood glucose prediction
• Detection of adverse glycemic events
• Insulin bolus calculators and advisory systems
• Risk and patient personalization
• Detection of meals, exercise and faults
• Lifestyle and daily-life support in diabetes management

As seen in Figure 7, the majority of the papers were published
in the last 3 years, reflecting a clear acceleration in the
application of AI techniques to diabetes management. In the
following, contributions to each of the subdomains are detailed
and discussed.

Blood Glucose Control Strategies
Development of the AP has been intensively pursued over the
past decade. An AP consists of an automated system that mimics
islet physiology, including a glucose sensor, a closed-loop
control algorithm, and an insulin infusion device. The ultimate
goal of an AP system is to improve overall diabetes management
and reduce the frequency of life-threatening events associated
with T1D. The algorithms used by the AP to calculate insulin
dosage have been intensively investigated, either using data
from diabetic patients or computer simulated patients, commonly
named virtual patients (VP). The major candidate algorithms
are derived from traditional control engineering theory; however,
AI has become more established over the past few years and
could ultimately provide better candidates to meet the challenges
of an AP [9].

Although AI and control engineering have converged to some
extent as the two fields incrementally exchange methods, here
we will focus on studies dealing with closed-loop algorithms
based on AI techniques. We direct interested readers to a recent
comprehensive review on AP systems [10].

Three main AI methodologies have been established as control
techniques in recent years: FL, ANNs, and reinforcement
learning (RL). Most alternatives to control engineering
algorithms are based on FL. Controllers apply FL theory to
imitate the lines of reasoning of diabetes caregivers. Thus, the
primary benefit of FL over classic control engineering is the
ability to deal with nonlinearities and uncertainties. However
fuzzy logic systems have not yet been proven to clearly
outperform well-tuned classical approaches.

MD-Logic [11,12] was developed by authors who sought to
individualize glycemic control using a fuzzy controller. Two
feasibility studies were conducted in cohorts of 7 T1D patients
to introduce the methodology and test the viability of the
controller. Subsequently, a randomized crossover trial was
conducted in 12 T1D patients [13]. The results suggested that
the fuzzy method could improve nocturnal BG control without
increasing the risk of hypoglycemia. Following the success of
these feasibility studies, the authors performed a randomized
crossover study of 56 young patients over 3 days [14]. The
results confirmed a reduced rate of nocturnal hypoglycemia and
superior glycemic control in comparison with insulin pump
treatment. In a home-based randomized trial of 15 T1D patients
[15], the authors compared the fuzzy AP and sensor-augmented
pump over 4 nights; the results confirmed the feasibility, safety,
and efficiency of their approach in a home setting. Later, an
extended study of 24 T1D patients during 6 weeks of nocturnal
control demonstrated the safety and effectiveness of long-term
use of a FL-based controller. In a recent clinical trial evaluating
remote patient monitoring of the FL controller, the AP was
tested in 75 T1D patients for 4 consecutive nights. The results
demonstrated safe and efficient glycemic control. Further studies
will evaluate the MD-Logic controller implemented in MiniMEd
690G [16].

Figure 7. Number of articles reviewed according to subdomain and year of publication (BG: blood glucose).
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Other research groups have also investigated the application of
FL to BG control. For example, Mauseth et al [17] reported a
FL controller designed to personalize glycemic control. They
tested it in 30 virtual patients on the UVA/Padova T1D
simulator. Next, to demonstrate the feasibility of their approach,
they conducted a pilot study in 12 T1D patients [18]. In a later
study, they proposed stressing a fuzzy controller with high-fat
meals and exercise and tested this approach in a trial with 10
T1D patients [19]. The results revealed deficits in their previous
approach and ultimately led to improvements in the FL
controller.

Other FL approaches have been tested using virtual patients or
simulations [20-24]. For example, Miller et al reported a fuzzy
controller combined with a learning algorithm that extracted
initial patient profiles using open-loop data [23]. Another
example was provided by Dinani et al [24], who suggested
combining fuzzy and sliding-mode controllers, with the goal of
using feedback to govern the insulin delivery rate more
aggressively.

Another AI method that has been increasingly adopted in the
area of control algorithms is the so-called reinforcement
algorithm [25]. Daskalaki et al presented an adaptive,
patient-specific BG control strategy based on the Actor-Critic
learning approach and tested their approach on 28 virtual T1D
patients (adults, adolescents, and children) [26].

Another AP study based on RL was proposed by Daskalaki et
al, who proposed using an Actor-Critic algorithm to optimize
insulin infusion for personalized glucose regulation, and
evaluated the system using virtual patients [27]. The results
revealed that their novel tuning method decreased the risk of
severe hypoglycemia, especially in patients with low insulin
sensitivity. Other AI-related techniques used to support the
development of the AP included modeling of glucose
metabolism with an SVM [28].

Over this period, several groups proposed complementary AI
algorithms to support AI controllers. Fereydouneyan et al
proposed assisting the controller with a genetic algorithm (GA)
that optimizes the values for two inputs and one output
membership function [22], with the goal of preventing
fluctuations caused by derivatives in fuzzy design. Another GA
was used in the work of Catalogna et al to support an ANN
controller [29]. In that case, the proposed GA optimizes network
topology and learning features, instead of using the
trial-and-error approach commonly adopted in ANN topology
determination. In line with previous studies, Khooban et al
proposed a controller assisted by particle swarm optimization
that optimizes the parameters of the glucose-insulin model [21].
Following the trend of combining methods to control BG with
metaheuristics, Yadav et al proposed the use of a Cuckoo search
algorithm to optimize the gain of the controller [20].
Optimization of AI techniques, aside from their use in
conjunction with AI controllers, have been used in other studies
to determine controller parameters. For example, Tang et al
used GA to mine information from patients’ medical histories
to generate multiple customized models [30], and Greenwood
et al proposed the use of particle swarm optimization to adjust
the function cost of an economic predictive control model [31].

Complementary to advances in control algorithms, efforts have
been made to improve models that attempt to capture
glucose-insulin dynamics. Since the publication of the seminal
paper in this field [32], interest has increased in applying neural
networks to identification and control of nonlinear systems.
Zarkogianni et al [33,34] developed a recurrent neural network
trained with a real-time recurrent learning algorithm that models
the BG kinetics of T1D patients and predicts BG levels using
information about meal intake, BG measurements, and infused
insulin. González-Olvera et al investigated the use of a fuzzy
neural network in an attempt to combine the best properties of
ANNs and fuzzy systems [35]. Specifically, they implemented
a learning system that combines input signals, infused insulin,
and BG measurements with a membership initialization based
on the fuzzy c-means algorithm. The following year, Alanis et
al performed a more rigorous study using a recurrent neural
network trained to model BG in T1D patients [36]. The approach
they implemented considered glucose absorption via
carbohydrates consumption and insulin infusion as inputs. These
3 neural network studies proposed a model of insulin dynamics
as the first step in the design of a control scheme, and then
validated the model using T1D patient data. Their results
demonstrated that they were indeed able to capture BG
dynamics. More recently, 2 studies presented a complete control
scheme using neural networks [29,37]. Both studies sought to
determine whether this technique could predict and control BG
excursions in T1D using patient-specific models. The first
approach was tested using the hyperinsulinemic-euglycemic
clamp technique in 34 rats, and the second was tested using in
silico data including BG measurements, administered insulin,
exercise information, and ingested food. The results of both
approaches demonstrated that ANNs are accurate methods for
regulation of glucose levels.

Blood Glucose Prediction
The ability to anticipate BG excursions could provide early
warnings regarding ineffective or poor treatments. Thus,
information collected from new technologies for diabetes
management, such as the CGM devices, could lead to real-time
predictions of future glucose levels. Prediction of BG levels is
challenging due to the number of physiological factors involved,
such as delays associated with absorption of food and insulin,
and the lag associated to measurements in the interstitial tissue.
Errors of the CGM also increase the difficulty of predicting BG
values (approximately 9% of the mean absolute relative
difference for the best sensors [38]).

The results of this section are presented in Table 1, which
captures the critical information from all studies in which AI
methods were used to predict BG values. The table was designed
to provide quick access to information about current
technologies being tested. We outline the features of each study
using key information, including prediction horizon (PH) in
minutes, objective population criteria, number of participants
in the cohort, mean number of monitored days per patient, mean
number of monitored hours per day, existence of monitoring
during the overnight period, type of monitoring technology, and
information about physical activity.
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Table 1. Summary of reviewed studies addressing blood glucose prediction: prediction horizon in minutes, objective population criteria, number of
participants in the cohort, mean number of monitored days per patient, mean number of monitored hours per day, type of monitoring technology,
existence of monitoring during the overnight period (O) and inclusion of exercise or physical activity information (E).

YearRefMethodEOTimeDaysCohortPopulationPrediction horizon (min)

2010[39]ANNb✓10 h2815T1Da15, 30, 45

2010[33]ANN✓24 h1012T1D30

2010[40]ANN✓15 h161Critical Care75

2011[41]ANN✓24 h527T1D75

2011[42]ANN✓✓24 h75VPc, 1T1D30

2012[43]ANN✓24 h830VPT1D30, 45

2012[44]RFd✓✓24 h1327T1D15, 30, 60, 120

2012[45]ANN✓24 h11, 720VP, 9T1D30

2013[46]SVMe, RAf, ANN✓24 h310T1D30

2013[47]RA, ANN✓24 h6.123T1D15, 30, 45

2013[48]SVR✓✓24 h1327T1D15, 30, 60, 120

2015[49]ANN✓24 h320T1D30

2015[50]ANN✓✓24 h116T1D15, 30, 45, 60

2015[51]ANN✓✓24 h610T1D30, 60, 120

2015[52]ANN✓✓24 h1315T1D30

2016[53]SVR✓24 h305VP, 1T1D30

2016[54]ANN—1346T2Dg—

2016[55]Kernel✓✓24 h1315T1D5, 15, 30, 45, 60

2016[56]EAh24 h905T1D60

2016[57]DTi✓24 h38T1D, T2D1440

2016[58]EA✓24 h103T1D30

2017[59]RA✓24 h617T1D30,60

2017[60]EA✓24 h1420VPT1D60, 120, 150, 180

2017[61]NBj—233T2D0

2017[62]KNNk, RF, EA✓24 h1010T1D30, 60, 90, 120

2017[63]EA✓24 h14100VPT1D120

2017[64]RA and ANN✓24 h<7106T1D & T2D30, 60, 90

aT1D: type 1 diabetes.
bANN: artificial neural network.
cVP: virtual patient.
dRF: random forest.
eSVM: Support Vector Machine
fRA: regression algorithm.
gT2D: type 2 diabetes.
hEA: evolutionary algorithm.
iDT: decision tree.
jNB: Naïve Bayes.
kKNN: k-nearest neighbor.

Finally, we highlight the main AI methods applied in the studies,
the bibliographic reference, and the year of publication. AI for
BG prediction has been addressed in as many as 13 parallel

lines of research. Most of these studies focused on T1D because
of the inherent utility of AI in this condition and the availability
of high-frequency data collected from patients using a CGM
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device. The results of our review reveal the range of PHs
explored, from 5 to 180 minutes. Short-term predictions were
the most frequently explored: 38 out of 49 studies (76%) used
PHs below 60 minutes. ANN approaches were the most widely
applied methodology, but other machine learning methodologies
such as RF, SVM, or RAs are being adopted with increasing
frequency.

Detection of Adverse Glycemic Events
As with BG prediction, glycemic episode detection encompasses
a set of tools that deal with the complexity of effective BG
control. However, in this section we will not address glucose
values, but instead focus on the appearance of hyperglycemic
or hypoglycemic events. These tools enable us to detect the
occurrence of glycemic episodes and give us the opportunity
to respond promptly to their effects. In contrast to the previous
section, most of the reviewed studies on this topic focus on
detecting hyperglycemia or hypoglycemia in situations when
it is not possible to effectively monitor BG. Therefore, most of
these studies deal with real-time approaches rather than
predictions of future events. We summarize the studies dealing
with detection of BG excursions in Table 2. Each scenario is
represented by the following features: prediction horizon in
minutes, objective population criteria, number of participants
in the cohort, mean number of monitored days per patient, mean
number of monitored hours per day, type of monitoring
technology, existence of monitoring during the overnight period,
and inclusion of exercise or physical activity information.
Finally, we highlight the main AI methods applied in each study,
the bibliographic reference, and the year of publication. The
results revealed that nine of the 14 studies (64%) reported
real-time detection systems, and 10 of these studies (93%) were
specifically focused on T1D. Table 2 shows that over six of the
approaches that exclusively addressed T1D (60%) gathered data
from CGM sensors, whereas the remainder used an
electroencephalogram (EEG) or self-monitoring blood glucose
(SMBG) measurements. Studies focusing on T1D were
performed with fewer than 15 patients, whereas studies of T2D
included larger cohorts. Sensitivity and specificity were the
most common outcomes used to assess the quality of approaches
to glycemic detection. Although this section contains fewer
papers than the one on BG prediction, we identified more than
10 research groups contributing to this topic. In particular,
researchers at the Centre for Health Technologies (Faculty of
Engineering and Information Technology, Sydney, Australia)
have published five studies on this topic over the last 7 years.

Insulin Bolus Calculators and Advisory Systems
The most common insulin therapies for diabetics, continuous
subcutaneous insulin infusion (CSII) and multiple daily insulin
injections (MDI), operate according to similar principles [79].
Both utilize basal insulin (injection of long-acting basal insulin
and infusion at a constant basal rate, respectively) and bolus
insulin (injection of quick-acting bolus insulin and meal boluses,
respectively) to cover meals or snacks. The calculation of correct
insulin doses and the estimation of the amount of carbohydrates
is a regular task in the daily life of many insulin-dependent
patients. Bolus advisors are based on previous insulin doses,
BG measurements, planned carbohydrate estimates, and other

patient-specific parameters, including insulin-to-carbohydrate
ratio and insulin sensitivity. Manually calculating bolus doses
and counting carbohydrates can be complex and challenging
because individuals must consider multiple parameters to
achieve satisfactory glucose control, and miscalculation of these
values may result in persistent glycemic episodes.

To support carbohydrate estimation and determination of insulin
doses by patients, tools for providing bolus advice and
carbohydrate estimates are increasingly being adopted. These
tools seek to increase the accuracy of mealtime and correction
boluses. AI has been used to provide sets of tools to improve
the accuracy of carbohydrate estimates and to calculate the
optimal insulin bolus for the ingested meal

We identified several studies that applied AI to systems aimed
at supporting patient decisions by issuing advice regarding
meals, exercise, or medication. Research groups at the Imperial
College London performed an extensive study of an insulin
bolus calculator based on case-based reasoning methodology
[80-84]. Their approach, which manages various dynamically
optimized diabetes scenarios, was proven in a clinical trial
(NCT02053051) to be a safe decision support tool. Additionally,
this approach was demonstrated to improve glycemic control
in diabetes management when it was combined with an AP
system [84]. A similar approach was presented recently by
another group [85], which also proposed an insulin bolus
calculator based on case-based reasoning but, in contrast to
other bolus calculators, it used a novel temporal retrieval
algorithm. The Center for Biomedical Engineering Research at
the University of Bern performed several important and
extensive studies [86-90] investigating the GoCARB system,
which provides dietary advice to diabetic patients based on
automatic carbohydrate counting. Their approach is based on
the use of computer vision techniques, such as feature extraction
and SVM, and pilot studies show it to be an excellent assistive
tool. We have also found several studies that validated their
approach using the UVA/Padova patient simulator. Srinivasan
et al proposed the use of a set of insulin delivery profiles
optimized by a PSO to find the optimal open- and closed-loop
profiles for various meal compositions [91]. More recently,
another study [92] presented an approach based on ANN to
optimize bolus calculation by patients using CGM. The results
revealed that it was better at reducing the blood glucose risk
index value than other approaches. Finally, Lee et al proposed
an advisory treatment system that provides insulin, meal, and
exercise recommendations [93]. Their study, which compared
rule-based reasoning and k-nearest neighbor algorithms,
concluded that the k-nearest neighbor algorithm was best suited
to this approach.

Risk and Patient Stratification
Most commercially available tools and protocols for managing
diabetes are based on general models of the diabetic population
or involve subsets of patients defined by simple clusterization
features and easily identifiable characteristics. However, the
daily lives of diabetic patients are determined by a wide range
of management scenarios that are not represented in these
general models. Insulin-dependent patients must manage a
highly complex process to maintain suitable levels of BG.
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Table 2. Summary of reviewed studies addressing detection of adverse glycemic events: prediction horizon (PH) in minutes, objective population
criteria, number of participants in the cohort, mean number of monitored days per patient, mean number of monitored hours per day, type of monitoring
technology, existence of monitoring during the overnight period (O), and inclusion of exercise or physical activity information (E),

YearRefaMethodEOMeasurementsTimeDaysCohortPopulationPH (min)

2010[65]ANNd✓EEGc10 h1 day6T1Db0 min

2012[66]RFf, SVMg✓SMBGe—80-247 days30T1D0 min

2012[67]ANN, PSOi✓CGMh10 h1 day15T1D0 min

2013[68]SVMCGM4 h30 days10T1D0 min

2013[69]SVM✓✓CGM24 h12.5 days15T1D30, 60 min

2013[70]SVMCGM6 h4.5 days10T1D0 min

2013[71]DTj✓CGM24 h17.3 days10T1D30 min

2015[72]RFSMBG—l—l163T2Dk24 h

2014[73]ANNCGM4 h1 day15T1D0 min

2014[74]ANN✓SMBG, ECG—m—m10T1D0 min

2014[75]Pattern recognitionSMBG—n—n201, 323T1D, T2D2, 7, 30, 61-90 days

2016[76]ANN✓✓ECG10 h1 day15T1D0 min

2016[77]NLPpEHRo—>12 days119695T2DPast events

2017[78]DT, ANNSMBG2 h1 day500T1D, T2D0 min

aRef: reference.
bT1D: type 1 diabetes.
cEEG: electroencephalogram.
dANN: artificial neural network.
eSMBG: self-monitoring blood glucose.
fRF: random forest.
gSVM: support vector machine.
hCGM: continuous glucose monitoring.
iPSO: particle swarm optimization.
jDT: decision tree.
kT2D: type 2 diabetes.
l344 data points.
m18 data points.
n787 data points.
oEHR: electronic health record.
pNLP: natural language processing.

Treatment of diabetes is governed by diverse factors, implying
high intra- and interpatient variability [94]. Exercise, nutrition
disturbances, age, and cardiovascular complications are just
some of the long list of factors that can dramatically impact
quality of life and undermine medication adherence even when
patients follow their treatment regimen strictly. Such patient
variability severely limits the use of general models, which
cannot capture the specific physiological behaviors of
individuals. Thus, an important step toward better risk detection
and intervention is personalization of the system. Over the past
decade, major research efforts have been devoted to developing
management tools capable of stratifying patients in different
segments of the population. Risk assessment and patient

stratification methods are important to improving the
management of diabetes, and therefore the overall health
outcomes of diabetic patients, and consequently have attracted
a greater share of attention from the medical community.

This category gathers all reviewed papers that systematically
identified individual patients and their risk factors to manage
and coordinate their care based on specific conditions and on
evidence-based guidelines. Table 3 outlines the type of
stratification together with the specific challenge. Main
characteristics, such as number of years, cohort, and objective
population, are also included. Finally, the table defines the AI
methodology applied, bibliographic reference, and year of
publication.
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Table 3. Summary of studies addressing risk and patient stratification.

RefaYearMethodsPopulationCohortPeriodChallengeStratification

[95]2010DTc, ANNdT1Db555 yearsGroup risks of retinopathyComplications

[96]2011Hierarchical clusteringChronic diseases154802 yearsGroup combinations of comorbid con-
ditions

Disease complexity

[97]2011Hierarchical clusteringT1D2393 monthsGroup management profilesDisease complexity

[98]2012K-meansT2De703.5 monthsGroup management profilesDisease complexity

[99]2013K-meansT1D, T2D976 monthsGroup biomechanical foot profilesComplications

[100]2015Knowledge discoveryT2D9537 yearsGroup by drug purchasesDisease complexity

[101]2015K-meansT2D1093 yearsGroup risks of renal diseaseComplications

[102]2015Learning modelsT1D144110 yearsGroup risks of complicationsComplications

[103]2015RAf and ANNT1D, T2D845 yearsGroup risks of complicationsComplications

[104]2015SVMg, RFh, DT, NBiT2D345<1 yearGroup risks of retinopathyComplications

[105]2016Hierarchical clusteringT1D104 monthsGroups of blood glucose profilesDisease complexity

[106]2016RA, K-means;T2D18625 yearsGroup personal networks typesComplications

[107]2016NBT2D243315 yearsGroup risks of T2D progressionDisease progression

[108]2017RFT2D3233782 yearsGroup risks of retinopathyComplications

[109]2017RFT2D270052 yearsGroup blood glucose profilesDisease complexity

[110]2017RAs, KNNT2D6845 yearsGroups of HbA1c profilesDisease complexity

[111]2017RAT2D254031 yearsGroup of BMI profilesWeight intervention

[112]2018RF, RAT2D9433,5,7 yearsGroup by retinopathy, neuropathy, or
nephropathy

Complications

aref: reference.
bT1D: type 1 diabetes.
cDT: decision tree.
dANN: artificial neural network.
eT2D: type 2 diabetes.
fRA: regression algorithm.
gSVM: support vector machine.
hRF: random forest.
iNB: Naïve Bayes.

Detection of Meals, Exercise, and Faults
Because people with both types of diabetes need support to
successfully manage their disease, solutions with higher
accuracy that require less user interaction are associated with
higher-quality diabetes treatments. Tools or algorithms capable
of early detection of critical events affecting glycemic control,
such as exercise, a meal, or an infusion set failure, are critical
for systematic automation of both closed-loop and open-loop
systems. Insulin-dependent patients monitoring their glucose
with CGM devices use BG measurements to calculate insulin
infusion rates. Consequently, failure of these devices can lead
to episodes of hyperglycemia or hypoglycemia. Leal et al
proposed an approach using SVM to detect correct and incorrect
measurements in real-time CGM [113]. They tested their system
on 23 critically ill patients and obtained promising results in
patients with sepsis or septic shock. The same objective was
pursued in the work performed by Turksoy et al [114], who
used a k-nearest neighbor algorithm for the diagnosis of faults

and the data from 51 patients to validate the performance of
their approach. For the detection of inaccurate measurements
by glucose meters, another study [115] developed an SVM
algorithm to minimize the effect of hematocrit on glucose
measurement and tested their method on 400 BG samples.

Physical activity offers multiple benefits for diabetic patients,
but also complicates the management of diabetes, especially in
T1D patients. Some of the factors affecting BG dynamics during
exercise include the intensity, duration, and type of exercise,
insulin on board, and the carbohydrate absorption rate. Tools
and systems focused on automated detection of exercise could
improve the accuracy of treatments. Turksoy et al also proposed
the use of a k-nearest neighbor classification algorithm to
automatically detect exercise type and intensity in an AP system
[116]. They tested their approach in 5 T1D patients and reported
a sensitivity of 98.37%. Similarly, Jacobs et al proposed a
regression model to automatically detect physical exercise in
patients carrying an accelerometer and a heart rate sensor [117].
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The system was assessed in 13 T1D patients, yielding a
sensitivity of 97.2% and a specificity of 99.5%.

Meal detection is important in AP systems that do not permit
manual meal announcements and as a safety system for patients
who may forget to enter meal information manually. Turksoy
et al have also investigated the development of a meal detection
system based on analysis of CGM signals using an unscented
Kalman filter and a fuzzy system to estimate the carbohydrates
content [118-120]. Their approach was validated in silico with
30 T1D patients using the UVA/Padova simulator, which
revealed a sensitivity of 91.3% and an error of 23.1% in
carbohydrate estimation; and in vivo using data from 11 T1D
patients, which revealed a sensitivity of 93.5% for meals and
68.0% for snacks.

Insulin pump failure may result in prolonged hyperglycemia or
diabetic ketoacidosis. Early detection of failures could minimize
the associated risk. Cescon et al proposed the use of a
time-varying autoregressive model to develop a patient alert
system [121]. Validation with data from 9 T1D patients during
18 weeks of infusion set wear revealed that the system had 50%
sensitivity and 66% specificity.

Lifestyle and Daily-Life Support in Diabetes
Management
Lifestyle management is a fundamental aspect of diabetes care.
Sedentary living, stress, nonadherence to medication, lack of
regular medical examinations, and bad habits can lead to
discontinuation of treatment for patients with diabetes. From
the time of diagnosis, patients are required to optimize their
lifestyles to manage complications and other comorbid
conditions, with the overall goal of enhancing their own care.
Current technologies and data warehouses enable solutions that
model data and make quality decisions based upon them.
Decision support systems (DSSs) consist of tools focused on
helping patients or doctors to manage diabetes therapies. These
systems usually have monitoring features that facilitate
systematic recording of information about diet, physical activity,
medication, glucose measurements, etc and combine it with
tools to support both patients and clinicians, with the overall
goal of enhancing therapeutic outcomes.

Multiple studies aimed at developing DSSs to manage diabetes
have been proposed since 2010. One of the most productive
approaches is the METABO project [122-127]. This project
involves monitoring and advanced features including tools to
prevent future excursions, dynamically optimize care pathways,
extract patterns via knowledge discovery, and guide weight loss
programs. The authors conducted several pilot trials, including
usability tests in 36 T1D patients. The MOSAIC project
[100,110,112,128], another important project, is focused on the
development of a DSS for T2D management, with a special
focus on the risk assessment of related complications using data
mining methods. Another daily-life support system has advanced
tools, such as a recommender system that employs case-based
reasoning and an integrated BG prediction tool based on
evolutionary computation [129].

Recently, Everett et al presented a DSS using machine learning
to promote adherence to physical activity and weight reduction

[130]. Authors validated the system with 55 patients with
prediabetes. Previously, Yom-Tov et al proposed a DSS based
on a RL algorithm that automatically sends messages to patients
who are following a personalized plan for physical exercise
[131]. The approach was validated in 27 sedentary T2D patients.
Daily-life support systems using AI tools for GDM were also
investigated. A weight management proposal was presented in
the MediClass system [132]. The system, which is based on the
application of a natural language processing (NLP) algorithm,
was validated during the postpartum visits of 600 GDM patients.
Rigla et al also investigated tools for GDM patients [133]. They
proposed a mobile app based on an AI-augmented telemedicine
DSS as a tool for helping GDM patients. Later, they presented
a platform to remotely evaluate patients using a classifier based
on a clustering algorithm and a decision tree learning algorithm
[134]. The system was evaluated in 90 GDM patients. The
results showed a reduction in the time devoted by clinicians to
patients and in face-to-face visits per patient.

Six other studies have proposed alternatives to the manual
creation of patient care workflows. The studies offer support
for the design and deployment of diabetes management
protocols, as well as ways to continuously improve patient
tracking throughout the entire process. Cleveringa et al presented
a system aimed at decreasing cardiovascular risk of T2D patients
by optimizing patient care workflows [135,136]. The authors
validated their system by administering questionnaires to 3391
T2D patients. Miller et al used a machine learning approach to
extract information from drug prescriptions from electronic
health record (EHR) data and identify factors associated with
patient care flow deviations [23]. Another DSS with care flow
tools was presented in the work of Alotaibi et al [137]. This
system focuses on the management of T2D patients using
advanced features, such as computerized alerts and reminders.
It was tested in 20 T2D patients for 6 months and resulted in
reduced HbA1c levels and improved diabetes awareness.
Fernandez-Llatas et al proposed using data mining methods to
enable the dynamic design of care protocols but highlighted the
need for mechanisms to reduce the Spaghetti Effect and make
DSSs usable by experts [138]. Contreras et al developed a
diabetes management system to integrate a series of AI models
and tools with an engine to manage diabetes patient care flows
[139]. Finally, Suh et al proposed a dynamic care flow system
that applied data clustering together with rule mining techniques
to prioritize required user tasks [140].

Other tools have been proposed for improving daily-life support
for diabetes therapies. Four different tools have been designed
to analyze online discussion forums and social networks to
extract relevant information. First, Grieves et al compared
multiple machine learning techniques (decision trees, SVM,
bagging, and Bayes) to analyze patients’ online comments with
the aim of predicting patients’ assessment of hospital
performance [141]. Second, Valdez et al proposed using a
k-means clustering analysis to identify communication patterns
both on and off Facebook [142]. They validated their tool in a
cohort of 700 T2D patients. Third, Chen et al proposed
clustering based on repeated bisecting k-means with the goal
of obtaining patient experience information, including emotional
and temporal aspects of diabetes management [143]. Finally,
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Hamon et al proposed using NLP methods to extract information
about patients’ skill in managing diabetes [144].

Furthermore, tools have been developed to analyze clinical
appointments, medication, and therapy adherence. For example,
a machine learning approach to examine medication adherence
thresholds and risk of hospitalization was implemented [145].
The system implemented in the study reported by Fioravanti et
al promotes patient empowerment and adherence to therapy
based on the automatic generation of feedback messages [146].
Greaves et al proposed a clinical DSS that issues medication
interaction alerts based on clusters with similar management
recommendations [147]. A fuzzy approach was also presented
by Eghbali-Zarch et al to address the problem of medication
selection in T2D patients [148]. Finally, Kurasawa et al proposed
a machine learning algorithm to predict missed clinical
appointments and help patients continue regular doctor visits
[149].

Discussion

By systematically examining high-quality articles in the PubMed
database, we identified a series of studies with the goal of
evaluating the latest efforts of AI-enabled solutions for diabetes
management. The topics we reviewed suggest that prediction
and prevention are currently being revitalized and reinforced
by AI applications, whereas “safety and failure detection” has
been less extensively reviewed, constituting fewer than 6% of
the studies we encountered. Similarly, few investigations have
delved into the application of AI techniques to early detection
of critical issues such as exercise, meals, infusion set failures,
and so forth. Exploiting the latest AI techniques to improve the
safety of both AP systems and open-loop tools has the potential
to dramatically improve performance. By contrast, research on
closed-loop systems, representing 31 out of 141 of the reviewed
studies (22%), has been the most productive area for AI
applications. Most of these efforts addressed fuzzy techniques,
but the application of other methodologies has begun to attract
increasing interest. In our opinion, researchers in this field
should continue to take advantage of the latest improvements
in AI and to combine them with development of the AP. A
considerable number of the reviewed studies, 41 out of 141,
investigated BG, either to develop models that enable accurate
predictions of BG concentrations (27 studies) or to detect
possible BG events (14 studies). Multiple studies reported
accurate prediction and detection tools that promise to improve
management resources for current and future therapies. These
tools include bolus advisors, as well as both lifestyle and patient
stratification.

Our findings show the increasing importance of AI methods for
diabetes management. We think these methods will encourage
further research into the use of AI methods to extract knowledge
from diabetic data. In general, the most striking advances in the
application of AI techniques come from data-driven methods
that learn from large datasets. The ability to collect information
from individual diabetic patients has led to a shift in diabetes
management systems; accordingly, systems that lack access to
valuable data will face substantial hurdles. Diabetes management
is geared toward tailored management of therapies, at the level
of smaller strata of patients or even individuals. Thus,
management protocols provided to diabetic patients should be
tailored to address their needs at various points during their
illness. Furthermore, the availability of genetic data, such as
that provided by metabolomics analysis, has also empowered
the application of AI methods to personalization of diabetes
management.

The increased availability of digitized health data from diabetic
populations, along with the emerging applications of AI and
research trends such as the AP and personalized medicine,
suggests that we are moving toward a new paradigm for
management of diabetes. This new outlook proposes to achieve
custom delivery of diabetes care while tailoring professional
practices, medical decisions, and treatments to individual
patients. On the other hand, the inclusion of intelligent
algorithms in decision making has ethical implications that
should be addressed by physicians and scientists. The ethical
risks associated with the release of personal data should also
be investigated. For example, the increasingly frequent use of
health apps and the potential use of tools based on AI by
insurance companies could lead to discrimination or the
exclusion (or both) of some citizens from health services.

A large number of studies have already been published on the
application of AI to diabetes in a broad range of management
domains. Our dive into PubMed demonstrates an acceleration
in the pace of research on AI-powered tools designed to predict
and prevent the complications associated with diabetes.
Although the available technologies and methods for diabetes
management are growing exponentially in terms of quantity
and quality, the potential of AI to boost effective and accurate
management of diabetes has already been demonstrated in both
open- and closed-loop therapies. Research in this field should
continue and should seek to discover the opportunities and
advantages of applying AI methodologies in diabetes
management that differentiate these strategies from other
classical approaches.
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Abbreviations
AI: artificial intelligence
ANN: artificial neural network
AP: artificial pancreas
BG: blood glucose
CGM: continuous glucose monitoring
CSII: continuous subcutaneous insulin infusion
DSS: decision support system
DT: decision tree
DL: deep learning
EA: evolutionary algorithm
FL: fuzzy logic
GA: genetic algorithm
GDM: gestational diabetes
KDD: knowledge discovery in databases
KNN: k-nearest neighbor
MDI: multiple daily injection
NB: Naïve Bayes
NLP: natural language processing
PH: prediction horizon
RA: regression algorithm
RF: random forest
RMSE: relative mean square error
SVM: support vector machine
T1D: type 1 diabetes
T2D: type 2 diabetes
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