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Abstract

Background: Decisional tools have demonstrated their importance in informing manufacturing and commercial decisions in
the monoclonal antibody domain. Recent approved therapies in regenerative medicine have shown great clinical benefits to
patients.

Objective: The objective of this review was to investigate what decisional tools are available and what issues and gaps have
been raised for their use in regenerative medicine.

Methods: We systematically searched MEDLINE to identify articles on decision support tools relevant to tissue engineering,
and cell and gene therapy, with the aim of identifying gaps for future decisional tool development. We included published studies
in English including a description of decisional tools in regenerative medicines. We extracted data using a predesigned Excel
table and assessed the data both quantitatively and qualitatively.

Results: We identified 9 articles addressing key decisions in manufacturing and product development challenges in cell therapies.
The decision objectives, parameters, assumptions, and solution methods were analyzed in detail. We found that all decisional
tools focused on cell therapies, and 6 of the 9 reviews focused on allogeneic cell therapy products. We identified no available
tools on tissue-engineering and gene therapy products. These studies addressed key decisions in manufacturing and product
development challenges in cell therapies, such as choice of technology, through modeling.

Conclusions: Our review identified a limited number of decisional tools. While the monoclonal antibodies and biologics
decisional tool domain has been well developed and has shown great importance in driving more cost-effective manufacturing
processes and better investment decisions, there is a lot to be learned in the regenerative medicine domain. There is ample space
for expansion, especially with regard to autologous cell therapies, tissue engineering, and gene therapies. To consider the problem
more comprehensively, the full needle-to-needle process should be modeled and evaluated.

(J Med Internet Res 2018;20(12):e12448) doi: 10.2196/12448
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Introduction

Rationale
Decisional tools or decision support tools are tools that can be
used to support complex decision making and problem solving.
Since their advent in the 1970s [1], these tools have been used
to support evidence-based decision making in various industries,
including health care [2], agriculture [3], and the environment
[4].

In the biopharmaceutical industry, decisional tools have been
applied to monoclonal antibody and vaccine manufacturing
decisions for over 20 years. These tools have proved to be useful
for understanding cost structures and risks in order to inform
decisions in various areas, including technology evaluation,
facility fit, and capacity planning [5-10].

Decision support tools such as cost-of-goods modeling have
proved themselves instrumental in informing the industry about
the economic drivers in switching to new technologies. One
such example is the shift from stainless steel to single-use
production strategies for biologics over the last 15 years across
the biopharma industry, which allowed faster campaign turnover,
lower initial capital costs, and manufacturing cost savings
[7,9,11]. Through providing a better understanding of the cost
drivers for change, decisional tools were able to help build a
valid commercial case to influence decision makers in making
important business and bioprocess decisions, from technology
choice and process change, to supply chain and project portfolio
management [6,12-15].

Regenerative medicine, as defined by Mason and Dunnill in
2008, “replaces or regenerates human cells, tissues or organs,
to restore or establish normal function, with approaches such
as use of soluble molecules, gene therapy, stem cell
transplantation, gene therapy, tissue engineering and the
reprogramming of cell and tissue types” [16]. By 2018, the field
had seen major breakthroughs. With US Food and Drug
Administration approvals of the genetically modified T-cell
therapies tisagenlecleucel (Kymriah) and axicabtagene ciloleucel
(Yescarta) for refractory or relapsed acute lymphoblastic
leukemia and large B-cell lymphoma, respectively, and
voretigene neparvovec (Luxturna) for retinal dystrophy [17],
the industry is slowly living up to its expectations. As more
regenerative medicine products are commercialized, decisions
such as cost-of-goods optimization and process design become
more critical.

Objectives
Rekhi et al [18] reviewed the existing decisional tools for
monoclonal antibodies and cell therapy bioprocessing and
identified plenty of room for expansion. With this review, we

aimed to provide a systematic update of the regenerative
medicine decision support tool landscape, with a focus on tissue
engineering, and cell and gene therapies, to identify the gaps in
the literature and inform future development of decisional tools
in the area.

The key research questions this review aimed to address were
as follows. First, what decisional tools are available in the
regenerative medicine domain? Second, what issues have been
addressed? Third, what are the gaps in decisional tools for
regenerative medicine?

Methods

We conducted this systematic review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. As we used only publicly available
information, the review did not require ethics review board
approval.

Eligibility Criteria
To be included in this review, each article had to meet the
following criteria: (1) addressed regenerative medicines, either
autologous or allogeneic, (2) described a decisional tool, and
(3) was available in English.

We enforced the following exclusion criteria to allow the review
to focus on the outcomes of fresh research reported with
sufficient details: (1) review articles, (2) conference abstracts,
and (3) book chapters.

Search Strategy and Study Selection
We searched the literature on May 23, 2018 to identify suitable
studies indexed in the MEDLINE database and electronically
identified the bibliographical references of the articles. We also
manually searched Google Scholar.

To find relevant studies, we used the keywords in Textbox 1.

We constructed a search string by pairing a regenerative
medicine term and a decisional tool search term—for example:
(regenerative medicine) AND bioprocess economics; (cell
therapy) AND bioprocess design.

We screened all titles and abstracts that we identified for
relevance. Subsequently, we obtained full-text articles and
reviewed eligible articles.

Data Collection
We analyzed the relevant articles in five aspects that are
typically shared by decision support tools found in the literature
(Figure 1). We extracted key data (Figure 1) from each source,
by following the same structure, into a predesigned Excel
spreadsheet (Microsoft Corporation).
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Textbox 1. Search terms.

Regenerative medicine search items

• Regenerative medicine

• Cell therapy

• Tissue engineering

• Gene therapy

• Exosomes

Decisional tools search terms

• Bioprocess economics

• Bioprocess design

• Decision* tool

• Evaluation framework

Figure 1. Key data extracted from the eligible literature.

Results

Figure 2 shows the PRISMA flowchart of the literature search
process. The database searches identified 646 articles for review.
At the screening stage, we deemed 13 articles to be relevant for
full-text eligibility assessment. We excluded 4 full-text articles
after screening, as they did not contain a description of a

decisional tool and, hence, did not meet the eligibility criteria.
Thus, we identified 9 articles that met the inclusion criteria and
reviewed them in full detail for subsequent assessments.
Multimedia Appendix 1 shows the executed data abstraction
form. The small number of articles we initially identified and
the small number resulting after screening indicate the novelty
of this research area.
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Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) flowchart of the literature review process.

Decision Objectives
Table 1 [19-27] shows the various decision objectives of
published decisional models. Ungrin et al aimed to enhance the
upstream cell expansion yield [19]. Lambrechts et al [20]
described a visualization tool for upstream expansion processes
cited from other literature, and hence did not have a decision
objective. All other models focused on optimization of the costs
for manufacturing or product development. Manufacturing cost
of goods was further broken down to show subcategories such
as raw material, labor, consumables, and capital equipment in

various analyses. Product development costs relate to investment
required to bring the product from bench to bedside, including
particularly clinical trial costs. Optimizing these costs is critical
in the sustainable development of companies and their
operational efficiency. Project net present value (NPV) is a
commonly used method in project evaluation [28]. Through
evaluating the NPV as an impact of process change in the
development timeline, Hassan et al [21] reflected the risks and
benefits of making a process change from one technology to
another.
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Table 1. Decision objectives of various decisional models in the reviewed articles.

ArticlesDecision objectives

Ungrin, 2012 [19]Operational yield for cell expansion process

Upstream: Simaria, 2014 [22]

Downstream: Hassan, 2015 [23]

Overall: Weil, 2017 [24]; Harrison, 2018 [25]; Jenkins, 2018 [26]

Cost of goods

McCall, 2013 [27]; Hassan, 2016 [21]Investment costs

Hassan, 2016 [21]Risk-adjusted net present value

Lambrechts, 2016 [20]Not applicable

System

System Boundary
Parnell et al [29] define a system boundary as a physical or
conceptual boundary that contains all the essential elements,
subsystems, and interactions necessary to address a systems
decision problem. Different decision objectives would motivate
different definitions of systems boundaries.

We generalized the systems in the eligible articles into two
types: (1) product development systems, and (2) manufacturing
and supply chain systems.

Product Development Systems

Two identified articles looked into the development phase of
cell therapies, both describing generic processes that can be
applied to any cell therapies. McCall [27] defined the systems
boundary as being between preclinical trials and phase 3 clinical
trials in order to look into the costs of developing a cell therapy.
Hassan et al [21] defined their systems boundaries as being
between phase 1 clinical trials and regulatory approval in order
to study the impact of process changes along the development
phases on NPV of their project.

Manufacturing and Supply Chain Systems

A total of 8 articles investigated decision making for
manufacturing and supply chain systems. Figure 3 shows the
system boundaries in these 8 articles mapped against the
needle-to-needle or patient-to-patient (ie, from patient tissue
procurement to therapy administration) cost-of-goods roadmap
proposed by Lipsitz et al [30].

Ungrin et al [19] and Lambrechts et al [20] addressed
optimization of the cell expansion process upstream through
experiments, bioprocess modeling, and visualization. Hassan
et al [21] focused on process change impacts along the product
development pathway using the change of upstream processing
technology as an illustrative example; hence we have included
their study in this section as well.

Simaria et al [22], Hassan et al [23], Weil et al [24], Harrison
et al [25], and Jenkins and Farid [26] evaluated different
technology options for the studied steps within their defined
system boundaries to better understand the advantages,
disadvantages, and bottlenecks in adopting different technology
options and their implications for manufacturing cost of goods.

Figure 3. Coverage of existing decisional tools. conc: concentration; DSP: downstream processing; QC: quality control; USP: upstream processing.
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Product Type
All the articles we identified focused on cell and ex vivo gene
therapy; we found no decisional tools in tissue engineering or
in vivo gene therapy. Table 2 [19-27] shows the product types
and type of transplant considered in the articles.

There was considerably more focus on allogeneic therapies and
mesenchymal stem cells (MSCs) as the cell source. The study
by Weil et al [24] is the only one in this review that considered
autologous processes, but it focused only on downstream affinity
purification.

Decision Variables, Parameters, and Assumptions
Decision variables conceptually or mathematically represent
decisions to be made in order to (best) achieve the decision
objectives. For a given decision objective, the determination of
a decision variable is typically affected by either internal or
external characteristics, or by both of them, which are referred

to as decision parameters. In other words, decision parameters,
together with other assumptions taken for internal or external
settings, form the input to a decision process, while the
determined values for the decision variables are its output.

Decision Variables
Decision variables are variables that the decision-maker controls.
Such variables are dependent on the decision objectives and the
problems they seek to answer.

For product development systems, the models seek to answer
to objectives such as minimizing development duration, risks,
and investment costs. The timing for technology change was
the decision variable modeled by Hassan et al to study the
impact of process change in product development on the project
NPV [21]. McCall [27] studied the impacts of product
development risks and uncertainties, as well as rework
probability on the investment costs; as there was no optimization
module in this study, no decision variable was identified.

Table 2. Cell types and type of transplant.

Cell typeTransplant type

Not applicableNot specifiedHuman pluripotent stem
cell/induced pluripotent
stem cells

Chimeric antigen re-
ceptor T-cell

Mesenchymal stem cells

N/ASimaria, 2014 [22]N/AaJenkins, 2018 [26]Hassan, 2015 [23], Hassan,
2016 [21], Lambrechts,
2016 [20], Harrison, 2018
[25]

Allogeneic

N/AN/AWeil, 2017 [24]N/AN/AAutologous

N/AN/AUngrin, 2012 [19]N/AN/ANot specified

McCall, 2013 [27]N/AN/AN/AN/ANot applicable

aN/A: not applicable.

Figure 4. Upstream and downstream operations considered in the reviewed articles. FACS: fluorescence-activated cell sorting; MACS: magnetic-activated
cell sorting.
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For manufacturing and supply chain systems, the models seek
to answer to objectives such as process yield [19] and
manufacturing cost minimization [22,24-26]. In these systems,
the choice of unit operations in the manufacturing process
sequence, chosen equipment, and their capacities are critical
decision variables to be considered. Figure 4 shows the upstream
and downstream unit operations options considered in the
articles. Together with process parameters, process flowsheet,
and requirements, the processes were modeled in order to
understand the associated cost of goods. Conclusions on the
relative advantages of various technology options under different
demand scenarios were drawn for bottleneck analysis and
decision recommendations.

Input Parameters
Input parameters are defined as “a constant element or factor,
especially serving as a limit or boundary” [31]. These are inputs
defined as prerequisites of the objective function; in other words,
they are constants of the objective function and not the values
to be optimized. In the 9 articles we identified, these included
scale, throughput, demand goal, and technical process
parameters.

Scale, Throughput, and Demand Goal
Early articles in the area generally looked at demands several
times more than the recent articles. As more commercial case
studies of regenerative medicine products arise, the demand
landscape is better understood and the estimation for

cost-of-goods modeling has been lowered from the monoclonal
antibodies ballpark (1000-500,000 doses of allogeneic MSCs
per year [22] to around 2500 doses/y for a regional center for
allogeneic MSCs [25] and 500-5000 doses/y for chimeric
antigen receptor T cells (CAR-T) [26]). Demand scenarios were
chosen depending on the cell type and the therapeutic target.
As more and more real-world commercial cases have emerged,
recent articles gave a lot more consideration to the clinical
applications and their specific demands and, hence, proposed
more realistic demand scenarios.

Upstream and Downstream Operations Process
Parameters
For upstream operations, comparisons were drawn from a range
of equipment scale, cell culture modes, and extent of automation.
Table 3 [19,22,25,26] summarizes process parameters previously
considered and explicitly mentioned in their respective articles.

In all the articles, planar culture flasks (eg, T-flasks and
multilayer flasks) were consistently found to be the most
expensive of all evaluated technologies for allogeneic therapies
and infeasible for higher cell number per lot. The number of
cells harvested per surface area was found to be the most
important cost driver, as it dictates the number of expansion
units required and, hence, the raw materials and consumables
requirements [22,26].

Table 4 [23,24,26] shows the process parameters for downstream
processing discussed in the articles.
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Table 3. Input process parameters for upstream processing.

Jenkins, 2018 [26]Harrison, 2018 [25]Simaria, 2014 [22]Ungrin, 2012 [19]Input process parameters

Planar culture flasks, rock-
ing-motion bioreactor, gas-
permeable vessel, integrated
bioprocess platform

T-175 flasks, SelecT auto-
mated platform

T-flasks, multilayers, com-
pact flasks, compact multi-
layers, multilayer bioreac-
tors, hollow fiber bioreactors

MicrowellStudied technologies

Cell culture process parameters

NoNoNoYesPopulation doublings

NoYesNoNoInoculation cell count

NoYesYesNoSeeding density

YesNoYesNoHarvest density

Technology process parameters

NoNoYesYesSurface area

YesYesYesNoEquipment size and volume
range

NoNoYesNoNumber of expansion stages

YesNoNoNoPerfusion rate

NoNoYesNoMaximum units

NoNoYesNoBiosafety cabinet requirement

NoYesYesNoIncubator capacity requirement

Time duration assumptions

NoNoYesNoSeed time

NoNoYesNoFeed time

NoNoYesNoHarvest time

NoYesNoNoCell culture duration

Material use and cost assumptions

YesYesYesNoMedia requirements

YesYesYesNoLabor requirements

YesYesYesNoConsumable unit price

YesYesYesNoCapital charge
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Table 4. Input process parameters for downstream processing.

Jenkins, 2018 [26]Weil, 2017 [24]Hassan, 2015 [23]Input process parameters

Fluidized bed centrifugation, spin-
ning filter membrane, integrated
bioprocess platform

N/AaTangential flow filtration, fluidized
bed centrifugation

Wash and concentration: studied technolo-
gies

Magnetic-activated cell sorting, in-
tegrated bioprocess platform

Fluorescence-activated cell
sorting, magnetic-activated
cell sorting, novel bead

N/APurification: studied technologies

Technology process parameters

NoYesYesNumber of washes/cycles

YesYesYesEquipment size and volume range

YesYesYesMaximum cell processing capacity

YesYesYesStep yield

Time duration assumptions

NoNoYesMaximum time

Material use and cost assumptions

YesYesYesRaw material requirements

YesYesYesLabor requirements

YesYesYesConsumable unit price

YesYesYesCapital charge

aN/A: not applicable.

The downstream process starts with the wash and concentration
step, and common wash concentration unit operations were
discussed in detail by Hassan et al [23] and Jenkins and Farid
[26]. Hassan et al reported that wash and concentration
downstream steps were a bottleneck for high-cell-dose lots at
high demand. As the demand estimate was lowered in the study
of Jenkins and Farid, wash and concentration was no longer
shown to be a bottleneck except in integrated bioprocess
platforms such as CliniMACS Prodigy, which has a relatively
smaller volume-reduction capacity.

Following wash and concentration, affinity purification has also
been a target for modeling and optimization. Weil et al [24] and
Jenkins and Farid [26] looked into affinity purification for
autologous induced pluripotent stem cells and allogeneic CAR-T
cells, respectively. Weil et al compared fluorescence-activated
cell sorting (FACS) versus magnetic-activated cell sorting
(MACS) and evaluated a novel technology that does not require
cell labeling. MACS was determined to be more cost effective

for dose sizes with a higher cell count (>7.0×107 cells/dose), as
FACS is limited by its process scale. The model by Jenkins and
Farid [26], for affinity purification, considered only MACS and
integrated bioprocess platform.

Assumptions and Constraints
The articles made other assumptions besides technology-related
assumptions and constraints.

For scheduling-related problems where one task follows another,
task precedence constraint was used. McCall [27] used the task
precedence constraint for dictating the start and end of a task,
which is useful for setting up the scheduling problem. Iteration
loops were built in the development pathway with assumption
of learning. Hassan et al [21] assumed a linear project
development pathway with failure probability. They constructed
a database with information on clinical trial development times
and failure rates of all 592 commercial cell therapy projects
from 1981 to 2011 to estimate the duration and failure rate of
similar products. This approach allows more industrially relevant
benchmark assumptions to be made and, hence, gives rise to
higher-quality results.

For resource utilization, McCall [27] assumed a fixed and
steady-rate consumption of resources and a renewable resource
pool throughout the project duration. Similar assumptions were
made in all the other cost models to better understand the impact
of resource utilization on the overall cost of goods. For instance,
Simaria et al [22] showed that efficient use of equipment and
facility can lower the depreciation costs shared across doses.
Harrison et al [25] looked into the impact of human resource
turnover in detail to understand the impact of increased operators
on the relative cost of labor in overall cost of goods.

Having reasonable cost assumptions is one of the most important
factors determining the validity of the model. Table 5 [22-26]
shows some of the cost assumptions used in various models.
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Table 5. Extracted quality control (QC), labor, and facility cost assumptions.

Jenkins, 2018 [26]Harrison, 2018 [25]Weil, 2017 [24]Hassan, 2015 [23]Simaria, 2014 [22]Cost type

QC quality assurance
cost = 1 × operating labor
cost

QC costs based on
Athersys

Simpler assay panel:
US$5934.53

Advanced assay panel:
US$37512

QC costs per dose =
£3250

US$10,000/lotUS$10,000/lotQC

Operator cost =
US$120,000/y

Salary by salary band,
taking into account pen-
sion, overheads, and
training costs

Fluorescence-activated
cell sorting operator
wage = £57,500/y

Magnetic-activated cell
sorting operator wage =
£46,000/y

Labor cost = hourly rate
× number of operators ×
number of equipment ×
number of lots/y

Operating labor =
US$200/h,

other labor cost multipli-
er = 0.2

Labor

N/AaOffice space, business
rates, service charge
cleanroom space costed
per square meter

Depreciation over 10
years

N/AaLang factor: 23.67

Maintenance (% capital
investment) = 10%

Depreciation (% capital
investment) = 7%

Depreciation over 10
years

Facility costs

aN/A: not applicable.

The cost assumptions of Harrison et al [25] were considerably
more detailed than those in the rest of the articles. Quality
control test panels were in accordance with good manufacturing
practice requirements of the specific product and are listed in
detail in the supplementary material of Harrison et al and based
on industry information from Athersys. Depending on product
characteristics, each product needs different quality control tests
and assays requirements and, hence, the costs can be quite
different. For instance, genetically modified cells would require
assays on transformed cell populations to demonstrate
appropriate and reproducible expression of newly acquired
characteristics [25].

Labor costs can be quite different depending on geographical
location. In an interview with the chief executive of Nanjing
Legend, a Chinese company, he estimated that the
manufacturing costs for CAR-T in China can be one-sixth of
those in the United States due to cheaper overheads [32]. Simaria
et al [22] suggested in their sensitivity analysis that labor rate
is one of the most important cost drivers for less-automated
processes.

The two main methods for accounting for facility costs in the
studies were equipment-factored estimates (eg, Lang factor)

and estimates of cost per square meter. Facility costs are
averaged over the period of depreciation and shared among all
doses. The Lang factor is a commonly used method in project
cost estimates in the engineering industry and is recommended
by the American Association of Cost Engineers [33]. The Lang
factor used by Hassan et al [23] was taken from Pollock et al
[12], which took into account pipework and installation, process
control, instrumentation, electrical power, building works, detail
engineering, construction and site management, commissioning,
and contingency factor. It was unclear what Harrison et al [25]
included in their method of cost per square meter applied to
cleanroom space. In addition, a different cleanroom grade would
constitute a different cleanroom space running cost and, hence,
it is important to understand the good manufacturing practice
requirements of the manufacturing environment.

Solution Method
A solution method is required to relate the decision variables
to the decision objective. Process models were built in all the
identified studies. Table 6 [19-27] summarizes the approaches
to solution methods used in the 9 articles. The two main
approaches were process economics modeling in the form of
what-if studies and multi-attribute decision making.
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Table 6. Techniques and algorithms used for solution methods.

Jenkins,
2018 [26]

Harrison,
2018 [25]

Weil, 2017
[24]

Lambrechts,
2016 [20]

Hassan,
2016 [21]

Hassan,
2015 [23]

Simaria,
2014 [22]

McCall,
2013 [27]

Ungrin,
2012 [19]

Technique or algorithm

YesYesYesNoYesYesYesNoNoProcess economics model-
ing

NoNoNoNoNoNoNoYesNoValue systems modeling

NoNoNoNoNoNoNoYesNoDesign structure matrix

YesYesYesNoYesYesYesNoNoWhat-if scenario analysis

YesNoNoNoNoNoNoNoNoMulti-attribute decision
making

NoNoNoYesYesNoNoYesNoDatabase evaluation

NoNoNoNoNoNoNoYesNoLatin hypercube

YesNoNoNoYesNoNoNoNoMonte Carlo simulation

YesNoYesNoNoNoYesNoNoSensitivity analysis

YesYesYesNoNoYesYesNoYesDeterministic process
evaluation

YesNoNoNoYesNoNoYesNoStochastic model

NoNoNoYesNoNoNoNoNoData Visualization

Process Economics and Value Systems Modeling
To ensure all relevant costs are identified, typically models
simulating the actual manufacturing or product development
process are constructed and costs associated with each step are
summed. Costs were analyzed by Simaria et al [22], Hassan et
al [23], Hassan et al [21], Weil et al [24], Harrison et al [25],
and Jenkins and Farid [26]. This method allows for
process-centric costing, which in turn supports cost analyses
based on technology options.

A value system modeling is a way of modeling the firms by
sets of activities that the firms use to create value and
competitive advantage [34]. McCall [27] modeled the set of
activities in product development and accounted for
development process characteristics such as interdependency,
iteration, activity cost, and duration uncertainties. Through this
model, McCall was able to highlight the critical processes,
resources, and risks in product development. The report
highlighted the importance of early-stage investment, clinical
trials rework, and regulatory requirements.

Design Structure Matrix
Design structure matrix is a method developed by Steward and
other in 1981 for planning and communicating engineering
works [35]. The matrix represents the events, their sequence,
and the interdependencies between events. McCall [27] used a
design structure matrix to clearly represent the precedence
constraints while considering iteration circuits inherent in
product development.

What-If Scenario Analysis
Several articles included what-if scenario analysis, where the
dose sizes, lot sizes, and demand for products were varied. These
studies were used to provide guidance for technology selection
under different circumstances.

Single Objective Versus Multi-Attribute Decision Making
While most articles dealt only with manufacturing or investment
cost optimization, Jenkins and Farid’s model employed a
multicriteria decision-making methodology to assess bioprocess
flowsheets [26].

The weighted sum technique provided a way to account for both
quantitative and qualitative attributes of a solution, and, by
assigning weightings, considered the perceived relative
importance of different attributes. Weighted sum, however, is
just one of many methods of multi-attribute decision making.
Hester and Velasquez [36] conducted a comprehensive review
and comparison of the methods commonly used. The analytic
hierarchy process allows for pairwise comparisons to compare
alternatives, which is less data intensive and more suitable for
qualitative performance-type problems and resource
management applications.

Handling of Risks and Uncertainties
Common themes incorporated into these manufacturing and
development cost models are the risks and uncertainties lurking
in the industry. The major methods of capturing risks and
uncertainties in the studied models were stochastic modeling,
Latin hypercube sampling, Monte Carlo analyses, and sensitivity
analyses.

Deterministic Versus Stochastic Modeling
Deterministic models use discrete values, meaning that, for a
certain input, the output will always be the same. Stochastic
models have at least one quantity with random values, leading
to an ensemble of different outputs [27].

Stochasticity was accounted for in 3 of the articles, where
triangular distributions were applied to parameters to capture
the uncertain and variable nature of the systems. McCall [27]
applied a triangular probability distribution to the task duration
to capture the uncertainties in development step duration. Hassan
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et al [21] applied a probability distribution to the success rate
of each development step. Jenkins and Farid [26] assigned
probability distributions to the weighting of quality attributes
in the multi-attribute decision-making module; hence, they
modeled only the variability in preference of quality attribute.

We noted that probability distribution had not been assigned to
variability and uncertainties in the manufacturing process in
these studies.

Latin Hypercube Sampling and Monte Carlo Simulation
McCall [27] categorized the risks into product risk factors and
enterprise risk factors. Product risks were defined as risks that
can harm the patient, namely the choice of cell type,
manufacturing processes, and delivery mechanism. Enterprise
risks were defined as risks that affect the commercialization of
the product and the business developing the product, namely
technical risks and market risks. The Latin hypercube sampling
method was used to consider the probability of failure and
duration for each task along the product development pathway
and the interdependencies. It is worthwhile to note that in this
model, iteration caused by failures and impact of failures during
each phase were considered using three matrices: design
structure, rework probability, and rework impact.

Hassan et al [21] simulated the risks and uncertainties of process
change along the product development pathway through Monte
Carlo analyses. To adjust the project NPV according to risk,
they used a discount rate based on the riskiness and expected
development time.

Sensitivity Analysis
Sensitivity analysis is a common strategy to account for
uncertainties and identify key cost drivers [22,24,26]. It is useful
in understanding which assumptions and parameters the overall
system is most sensitive to. Simaria et al [22] focused on
upstream production for MSCs and found that the main cost
drivers were microcarrier area, harvest density, media price,
and downstream yield. Weil et al [24] and Jenkins and Farid
[26], who considered processes requiring differentiation or gene
modification, consistently cited the key cost drivers to be the
efficiency of differentiation and gene modification. This is
particularly interesting, as Weil et al modeled an autologous
process [24] while Jenkins and Farid modeled an allogeneic
process with a different cell type [26].

Hypothetical Case Studies
Hypothetical case studies where the demand and dose sizes
varied were conducted for manufacturing systems, including
by Simaria et al [22], Hassan et al [23], Weil et al [24], and
Jenkins and Farid [26]. The case studies were useful in the
evaluation of process bottlenecks and technology-switch sweet
spot analysis.

Implementation

Model Validation

Data Mining

McCall [27] and Hassan et al [21] both established databases
using real commercial case studies to inform some of their
assumptions. McCall collected data from development programs
surrounding orphan and non–orphan cell therapies [27], while
Hassan et al collected information on clinical trial development
times and failure rates of all 592 commercial cell therapy
projects that entered development from 1981 to the end of 2011
[21]. These databases are useful for benchmarking purposes
and increase the validity of the development time assumptions.

Laboratory Experiments

Ungrin et al [19], Weil et al [24], and Harrison et al [25] all
included experimental results to inform assumptions in their
studies. Using experimental results to support key assumptions
is a powerful tool in validation. For instance, performance data
of unit operations may not be as good as the vendor claims and
the use case may be different, hence leading to varying results.
Also, conducting experiments with different cell types can give
valuable insights into characterization of the inherent variability
of the process, lending the model more credibility.

Simulation Platforms
Figure 5 shows the simulation platforms employed in the
different tools. Depending on the goal of the decisional tool,
different simulation tools have been used. For simpler models,
using Microsoft Excel with Visual Basic has appeared to be
sufficient. For instance, the Excel model constructed by Weil
et al [24] consisted of a cost model with mass balance, design,
sizing, resource utilization and cost-of-goods equations, database
of bioprocess technology data and iterative algorithms, and
scenario analysis developed using Visual Basic. However,
Visual Basic codes are susceptible to Excel program upgrades,
and changing formats (eg, adding a column or a row) may cause
changes in the functions. C# or MATLAB allows more versatile
coding experience, and for models requiring many runs, such
as uncertainty or stochasticity analysis, these platforms may be
more suitable.

For models with larger databases, it is worth looking into
database software such as Microsoft Access. Database software
provides better scalability if the volume of data is huge, and the
links can be built in a more robust ways than in spreadsheets.

Visualization software such as Google Charts allows for
information to be easily updated and visualized and hence is
useful for presenting a lot of data in a meaningful way [20].
Dedicated add-ons, such as Palisade Risk 6, used by McCall
[27], allow for Monte Carlo simulations and sensitivity analysis
to be carried out a bit more easily. Without experience of using
the software, however, the usability of this software has not
been formally compared with implementations based on C# or
MATLAB.
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Figure 5. Choice of simulation platforms.

Discussion

Principal Findings
We systematically reviewed 9 articles describing decisional
tools in the regenerative medicine area. The diversity of
decisions that have been modeled in this area is very limited
compared with work relating to monoclonal antibodies and
small-molecule pharmaceuticals. Some areas that are not yet
studied include scheduling [37], facility fit [38], capacity
planning [39,40], supply chain optimization [41,42], and
portfolio management [6].

In terms of product development systems, it is worthwhile to
consider that regenerative medicines for serious life-threatening
diseases can be eligible for regulatory shortcuts through various
early-access initiatives, such as breakthrough therapy
designation in the United States [43], Priority Medicines
(PRIME) in the European Union, and Sakigake Designation in
Japan [43-47]. Table 7 [17,44,48-60] shows some examples of
cell and gene therapy products that have been granted regulatory
pathways or designations that allow for acceleration of the
commercialization process. As more and more products are
granted these designations, to assist decision making, the
implications of these pathways should be considered. For
instance, breakthrough therapy designation allows for New Drug
Application and Biologic License Application data to be
submitted as they are accumulated, and orphan drug designation
allows for approval of medicinal products within 6 months. The
impact of these accelerated regulatory pathways can be
evaluated using decisional tools to better understand the
efficiency of these policies and inform future regulatory
framework improvements.

Available models provide good guidance for the industry in
terms of technology evaluation at various scales for large-scale
allogeneic process unit operations. However, autologous
products make up a significant proportion of approved
regenerative medicine products approved worldwide (19 out of
36) [61]. As of 2012, more than 65% of the stem cell clinical
trials contained autologous cells or tissues [62] and therefore

deserve attention in the future development of decisional tools.
We also noted that, despite the widespread use of simulation in
the existing decisional tools, none of these used optimization
algorithms that can identify and select best candidate solutions.

Additionally, as Figure 3 shows, there are no tools modeling
the entire needle-to-needle process. For a more comprehensive
understanding to aid decision making, the whole process from
patient to patient should be considered. For instance, tissue or
cell procurement can be a major constraint on the lot size and
final cell count. Population doubling levels should be
considered, as a higher passage number has been shown to be
negatively correlated to the therapeutic potential of the cultured
MSCs [63]. Harrison et al [25] conducted experiments on 3
donor samples and through their model established the challenge
of donor variability on equipment sizing and of expansion
potential on the final cost of goods. To provide a comprehensive
account of scheduling for administration of a therapy, the
availability of hospital resources should be considered. Models
can be extended to cover tissue procurement and institutional
requirements surrounding therapy administration in order to
optimize the cost and overall patient-to-patient supply chain
robustness.

As noted previously, the efficiency of differentiation and gene
modification steps have shown to be a key cost driver for both
autologous and allogeneic cell therapies. More in-depth
evaluation of different gene editing technologies may be
beneficial for driving the industry to adopt more robust and
cost-effective strategies in the process step.

Similar methodologies can be applied to other novel therapeutic
modalities. The approvals of alipogene tiparvovec (Glybera) in
the European Union in 2012 and of voretigene neparvovec
(Luxturna) in the United States in 2017 show the potential of
adeno-associated virus vector-based gene therapies [54,64];
over 50 clinical candidates are using adeno-associated virus
vectors [65]. Furthermore, since the approval of the first clinical
trial for the clusters of regularly interspaced short palindromic
repeats (CRISPR) genome editing technology in 2016, there
are now over 20 active trials registered on ClinicalTrials.gov.
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Table 7. Examples of cell and gene therapy products that have been granted early-access designations.

Example cell and gene therapy productsRegulatory agency and regulatory pathway

United States: Food and Drug Administration

Novartis: KymriahPriority review (1992)

Pfizer: bosutinibAccelerated approval (1992)

Renova: RT-100 AC6 gene transfer (Ad5.hAC6); DNAtrix therapeutics:
DNX-2401; AveXis: AVXS-101

Fast track (1998)

Enzyvant: RVT-802; Juno and Celgene: JCAR017; Adaptimmune and
GlaxoSmithKline: NY-ESO-1c259T; Bluebird and Celgene: bb2121

Breakthrough therapy (2012)

Avita: Recell [48]Expedited access pathway (2015)

uniQure: AMT-130 [49]Orphan drug designation (1983)

Spark Therapeutics: Luxturna [17]Rare pediatric disease priority review (2014)

Abeona Therapeutics: ABO-102 [50]; Mesoblast: mesenchymal precursor
cell therapy [51]

Regenerative medicine advanced therapy designation (2017)

European Union: European Medicines Agency

Bluebird: LentiGlobin [53]Accelerated assessment (2004) [52]

uniQure: AMT-130; Orchard Therapeutics: StrimvelisOrphan drug designation (2000) [52]

uniQure: Glybera [54]Marketing authorization under exceptional circumstances (2005) [52]

Chiesi Farmaceutici: Holoclar [44]; MolMed: Zalmoxis [55]Conditional marketing authorization (2006) [52]

Atara Bio: ATA129Adaptive pathway (2015) [52]

uniQure: AMT-060, AMT-061; Juno and Celgene: JCAR017; Bluebird:
LentiGlobin [53]; Adaptimmune and GlaxoSmithKline: NY-ESO-1c259T;
Bluebird and Celgene: bb2121 [56]

Priority Medicines (PRIME) (2016) [52]

Japan: Pharmaceuticals and Medical Devices Agency

Glecaprevir/Pibrentasvir, AbbViePriority review [57]

Edison Pharmaceuticals: EPI-743Orphan designation (1993) [57]

No examples availableConditional and time-limited approval (2014) [57]

Nippon-Shinyaku: NS-065/NCNP-01 [59]Sakigake forerunner review assignment (2015) [58]

China: State Administration for Market Regulation

Not yet in practiceAccelerated and conditional approval (draft issued in 2017) [60]

As the industry moves toward delivering these novel therapies,
learning from past clinical translation experiences (eg, the
monoclonal antibody industry), better understanding of the risks,
and making better informed decisions become all the more
important.

Strengths and Limitations
There were some limitations to the review process. First, we
focused our search on the MEDLINE database because
preliminary scoping searches suggested that there would be
more targeted literature in these databases than in those available
in EMBASE and Scopus. This decision increased the risk of
not identifying all relevant articles. Second, due to time
limitations, we did not engage a second reviewer to review
articles for eligibility, increasing the risk of excluding eligible
reviews due to oversight. We consulted the Cochrane Library
and PROSPERO database retrospectively, and we found no
reviews to be relevant to the review question.

These limitations notwithstanding, this study is, to our
knowledge, the first to systematically review the methods and

logic for the design of decisional tools in aiding regenerative
medicine translation and manufacturing. The small number of
published studies highlights the opportunities to develop further
decision support tools for different decisions and product types.
The detailed design method analysis can be helpful for future
development of these tools in a systematic manner in order to
facilitate the translation of novel therapies into clinics more
time and cost efficiently. Furthermore, the identification of the
gaps in the literature can be useful for other bioprocess
researchers working in the area.

Conclusions
We systematically reviewed the decisional tool landscape for
regenerative medicine. Decisional tools have been shown to be
instrumental in the commercialization of monoclonal antibodies
through informing various decisions in manufacturing
technologies, capacity planning, scheduling, and investment.
As more and more regenerative medicine products receive
regulatory approval, decisional tools offer a systematic way of
evaluating different commercialization decisions and options.
Studies within the regenerative medicine area have largely
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addressed the manufacturing challenges and cost-reduction
drivers for allogeneic cell therapies. Decisional tools in tissue
engineering and gene therapies are lacking. To more
comprehensively understand the overall costs and supply chain
robustness of these lifesaving cell therapies, the entire process
from tissue procurement to postadministration should be
considered. To put forward industrially relevant decisional tools,

costs and process assumptions should be industrially validated
to ensure that any results derived from the model are useful and
relevant. Future decisional tools to integrate the different facets
of the available decisional tools should be developed to inform
decision making in the rapidly expanding and transformative
field of regenerative medicine.
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