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Abstract

Background: Limiting the adverse effects of seasonal influenza outbreaks at state or city level requires close monitoring of
localized outbreaks and reliable forecasts of their progression. Whereas forecasting models for influenza or influenza-like illness
(ILI) are becoming increasingly available, their applicability to localized outbreaks is limited by the nonavailability of real-time
observations of the current outbreak state at local scales. Surveillance data collected by various health departments are widely
accepted as the reference standard for estimating the state of outbreaks, and in the absence of surveillance data, nowcast proxies
built using Web-based activities such as search engine queries, tweets, and access of health-related webpages can be useful.
Nowcast estimates of state and municipal ILI were previously published by Google Flu Trends (GFT); however, validations of
these estimates were seldom reported.

Objective: The aim of this study was to develop and validate models to nowcast ILI at subregional geographic scales.

Methods: We built nowcast models based on autoregressive (autoregressive integrated moving average; ARIMA) and supervised
regression methods (Random forests) at the US state level using regional weighted ILI and Web-based search activity derived
from Google's Extended Trends application programming interface. We validated the performance of these methods using actual
surveillance data for the 50 states across six seasons. We also built state-level nowcast models using state-level estimates of ILI
and compared the accuracy of these estimates with the estimates of the regional models extrapolated to the state level and with
the nowcast estimates published by GFT.

Results: Models built using regional ILI extrapolated to state level had a median correlation of 0.84 (interquartile range:
0.74-0.91) and a median root mean square error (RMSE) of 1.01 (IQR: 0.74-1.50), with noticeable variability across seasons and
by state population size. Model forms that hypothesize the availability of timely state-level surveillance data show significantly
lower errors of 0.83 (0.55-0.23). Compared with GFT, the latter model forms have lower errors but also lower correlation.

Conclusions: These results suggest that the proposed methods may be an alternative to the discontinued GFT and that further
improvements in the quality of subregional nowcasts may require increased access to more finely resolved surveillance data.

(J Med Internet Res 2017;19(11):e370) doi: 10.2196/jmir.7486
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Introduction

Seasonal influenza infections are estimated to occur in 5% to
10% of the adult population worldwide annually, with higher
attack rates in children and older adults [1,2]. In the United

States, influenza accounts for about 1.2 deaths per 100,000
people, with considerable interseasonal variability [3]. Municipal
and state health departments rely on surveillance data throughout
the influenza season, typically October through May in the
United States, to track the progress of the season and to
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coordinate vaccination and treatment activities among hospitals,
health care providers, and public health agencies. To support
these efforts, the Centers for Disease Control and Prevention
(CDC) disseminates weekly virologic and outpatient incidence
data for influenza-like illness (ILI) at national and regional
levels [4,5].

Several methods have been proposed to complement CDC's
ILI, with estimates based on search queries [6-11], tweets
[12,13], Wikipedia access logs [14,15], other public-generated
content [16-18], and a combination of these proxies [19]. In
addition to providing more timely estimates of outbreak
progression, these data sources can be used to develop ILI
estimates at the more localized subregional geographic
resolutions at which public ILI data are limited or unavailable.
As more effective and targeted interventions can be designed
through a more local view of the outbreak, these subregional
estimates, if accurate and reliable, are more actionable.

Google Flu Trends (GFT) [6] generated one of the more widely
available estimates of ILI at regional and subregional levels
using trends in Web-based search queries; however, production
of GFT estimates was discontinued in August 2015 [20]. Instead,
through Google's Extended Trends (GET) application
programming interface (API), researchers are now permitted
access to underlying Google search trends data and may build
their own models to estimate ILI. The original GFT approach
models CDC ILI as a linear function of search query frequency
aggregated as a single variable. More recent work [7,21]
demonstrated improved accuracy when individual query terms
were retained as independent variables in the linear model, and
further gain was reported with alternate models that allow for
nonlinear and temporal relationships between the queries. A
related study modeled ILI at week w on both autoregressive
lags of n-weeks and search volume of 100 selected terms during
week w [8,22].

Whereas these studies are encouraging, these models were
developed and validated at US national level where the response
variable, ILI, is available. Extrapolation of these national models
to subregional resolutions where CDC ILI is not publicly
available may yield nowcasts of limited accuracy. The GFT
team is yet to publish the methodology used to generate
nowcasts at subregional scales, and there have been few
validation studies for GFT estimates at subregional levels
[23,24].

In this paper, we propose methods to nowcast ILI at the
subregional level using GET. These methods were applied
retrospectively to generate nowcasts in 50 US states for six
seasons, report the accuracy of different model forms, and
compare these with GFT as published. It was observed that
accurate nowcasts of subregional ILI may not be possible using
models developed at the regional level; rather, subregional ILI
nowcast models must be developed using subregional ILI data.

Methods

Overview
To build nowcast models at the US state level, random forest
regression models were first built at the regional level (as

defined by the US Department of Health and Human Services,
HHS [25]). In these initial models, HHS regional weighted ILI,
as reported by the CDC, was the response variable, and queries
with search patterns correlated with ILI were explanatory
variables. A 1-week ahead forecast of an autoregressive model
fit on regional ILI was included as an additional explanatory
variable. These regional-level models were then applied, or
extrapolated, at the subregional scale. Specifically, the fit models
were used with state-level explanatory variables to estimate ILI
at the state level.

Independently, state-level nowcast models were built using
CDC-provided state-level estimates of ILI as the response
variable. These state-level ILI estimates are not publicly
available and were provided for this study on request. The error
of the state-level nowcast estimates made using these state
models was then compared with the estimates of the regional
models extrapolated to the state level.

Google Extended Trends (GET) Application
Programming Interface
The GET API allows users to retrieve timeline data of the
probability that a specified term is queried during a search
session. Additional parameters allow specification of
geographical (country, state, etc) and temporal (daily, weekly,
etc) granularity and period of interest. Query probability is
calculated on a random sample of 10% to 15% of all searches;
terms whose search volume does not meet a minimum threshold
are considered private, and their probabilities are reported as 0.
Data updates are made daily and historical trends from January
2004 are available. Hence, nowcast models developed using
GET can provide ILI estimates for at least one additional week
over CDC ILI data, which are released with a 5- to 11-day lag.

In this study, as we were interested in state-level nowcasts, state
was used as the geographical resolution and a weekly periodicity
to be consistent with CDC ILI and GFT, both of which are
weekly ILI estimates. We refer to logit transformed time series
of term t as the query fraction of t, that is, qf(t, s, w) = log
(z/(1-z)) where z is the probability that a query from state s
during week w is for term t. GET does not provide separate
query fractions at the HHS regional level. Therefore, the query
fraction for a term from an HHS region was calculated as a
population weighted mean of the query fractions for the term
from states within the region. This choice of transformation was
informed by previous work, which found that with logit
transformation, the relation between raw query fractions and
ILI becomes approximately linear and model performance
improves [7].

Feature Identification
Queries highly correlated with CDC ILI were identified using
Google Correlate [26,27] for use as explanatory variables.
Google Correlate returns 100 queries whose search trends are
historically most highly correlated (Pearson correlation
coefficient) with a given target time series data. ILI at US
national and 10 HHS regional levels from 2003-04 through
2014-15 influenza season was used as target time series.
Significant overlap was observed in the queries identified using
the different target time series. Query terms identified by Zhang
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[28] and influenza-related entities extracted from Freebase [29],
were appended to the list of correlates.

While examining the query fractions for terms related to ILI, it
was found that some terms, which have considerable search
activity at the national level, often have little-to-no activity at
the state level and are reported as 0 (Multimedia Appendix 1;
Figure S1), possibly because of the sampling and threshold
criteria used in GET. Hence, the explanatory variables at the
state level are sparse. To improve the quality of the data, a form
of inheritance where a state inherits the query fraction of a term
at the regional level when the state-level query fraction is zero
was employed: qf(t, s, w) = qf(t, r, w), where s   r, and r
designates HHS region. That is, in the absence of additional
information, we assume users in all states of a region search for
a term with the same probability. As this would not eliminate
all zeros, the remaining zeros were replaced with a very small
value, 1e-12, before applying the logit transformation.
Sensitivity analysis showed that the results were not sensitive

to the choice of the replacement (Multimedia Appendix 1; Figure
S2).

Autoregressive Integrated Moving Average
Lampos et al [7] have found that simple autoregressive
integrated moving average (ARIMA) models [30-32] using
search trends data can generate reasonable nowcast estimates
for ILI at the US national level. Similarly, Broniatowski et al
[33,34] have demonstrated the utility of ARIMA models that
use tweets and query data at a few subregional locations.
ARIMA models are specified with three parameters, the order
of the autoregressive component (a), the degree of differencing
(d), and the order of the moving average component (q).

In Figure 1, ф, θ, and ρ are to be learned during model fitting.
A method described by Hyndman and Khandakar [35,36] was
used to search parameter space and to identify a set of
parameters that provides good model fit, and the ARIMA models
built at different times (w) and for different regions were allowed
to use different parameters.

Figure 1. Autoregressive integrated moving average (ARIMA) formulation.

Random Forest
Random forest is a decision tree–based ensemble supervised
learner that can be used for regression [37-39]. Specifically,
given a dataset of n instances D=(X, Y)=(xip,yi), where Y is a
continuous response variable, and the feature set X=(X1,
X2,...,Xp) of p explanatory variables (ie, xip is the value of feature
j for instance i), a supervised learning algorithm uses D to learn
a function   such that  =  (X) and   minimizes some loss function
with respect to Y. The function   can then be used to estimate  0
for an instance x0=(x01, x02, …,xop) whose response is unknown.

Decision tree–based methods split the feature space along an
explanatory variable and learn separate fits,   for each subspace.
Ensemble methods build multiple decision trees, each tree on

a dataset D*, a random sampling with replacement of n instances
from D. Random forests are ensemble decision trees that also
exclude a random subset of explanatory variables while learning.
Random forests are suitable for nonlinear problems with large
feature sets and have been found to offer superior accuracy in
multiple domains.

In this study, the randomForest [45] package in R [46] (R Project
for Statistical Computing) was used to build the models.

Model Formulation
The model is described in detail in Multimedia Appendix 1. To

summarize, let y1:w
r denote the logit transformed ILI

observations for region r through week w; and X1:v
r a query

fraction matrix of logit transformed query fractions at HHS
region r for all terms in the feature set (columns) during weeks
1 through week v (rows). Note that v>w. We fit an ARIMA

model on y1:w
r forecast ahead for weeks w+1 to v and add the

ARIMA result as an explanatory variable to X1:v
r. With this

modified matrix as the predictor and (y1:w
r )T as the response,

we train a random forest model for region r at week w,  w
r. To

nowcast ILI for a state s in region r, we append region r's

ARIMA results to the state's query fraction matrix X1:v
s, and

use this as a test set with  w
r.

Validation
State level ILI counts (per 100,000 patient visits) from 2000-01
to 2010-11 season were provided by CDC following a data
request. These counts were considered as the true values to
validate the estimates from the model described above. As GET
data were only available from January 2004, the last six of the
seven overlapping flu seasons (Morbidity and Mortality Weekly
Report [40], MMWR, week 40 through MMWR week 39 of
the next calendar year), that is, 2005-06 to 2010-11 were used
for validation. To generate nowcasts for any given week, only
data that would have been available if nowcasts were being
generated in real time were used, thus allowing for an
out-of-sample validation of the estimates.

For each state during each of the six seasons, the Pearson
correlation coefficient (COR), root mean square error (RMSE),
and mean absolute proportion error (MAPE) were calculated.

In Figure 2, yw
s is the true ILI for state s at week w,  w

s the
corresponding nowcast, w   se the weeks in a given flu season,
and g() is the inverse logit transformation. Although nowcast
estimates up to 2 weeks ahead are sometimes possible using
ARIMA and GET, only 1-week ahead estimates were used in
this error analysis.
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Figure 2. Formulation for two error measures: root mean square error (RMSE) and mean absolute proportion error (MAPE).

Alternate Model Forms
To generate nowcasts for a state, the model trained with its
corresponding regional data was extrapolated to the state level.
For this extrapolation, the model formulation, described above
and trained using regional ILI as the response variable, was
applied using an ARIMA fit of regional ILI and state GET query
fractions as explanatory variables. We refer to this form as RRS.
Two other alternate forms were explored: RR0, where the state's
ILI estimate is simply its region's ARIMA estimate, and RRR,
where the state's GET query fractions were replaced with the
query fractions for its parent region.

The accuracy of RRS relative to RR0 was indicative of value
added by GET and random forests, and of RRS relative to RRR
as value added through the use of more localized GET data. As
GFT was published during the six seasons being used for
validation, the performance of these three model forms were
also compared against GFT.

Alternate Model Forms: State ILI as Response
The three model forms described above were built with regional
ILI as the response variable. As regional ILI is released weekly
by the CDC, these models are suitable for real-time operational
nowcasts. Although estimates of subregional ILI are not publicly
available, state and municipal health agencies do have these
estimates for internal use, and it is worthwhile to develop and
test model forms that would be possible with subregional ILI.

Four additional model forms were defined: SS0, a simple
ARIMA model fit on state ILI; SRR and SRS, which are similar
to RRR and RRS, respectively, except for the response variable
used for training; and SSS, which does not directly use any

regional information. Please see Multimedia Appendix 1 for
more formal specification of these four types.

To compare the different model forms and to check that the
differences were statistically significant, we used a Friedman
rank-sum test [41,42] followed by a Nemenyi test [43,44]. The
Friedman test is a nonparametric test that does not assume
normality. It ranks the different model forms on each test
attempt, a state-season combination and uses the rank to test
whether model forms are different. The Nemenyi test, a post
hoc test for Friedman, checks for statistically significant
differences between each pair of model forms.

Results

Of the explanatory variables used in the RRS models, the
ARIMA component (ar) ranks highest followed by a good
number of entities from Freebase (see Figure 3). Across all
seasons and states, the RRS models were found to have a
reasonably high median correlation of 0.84 (interquartile range
[IQR]: 0.74-0.91; Table 1). When stratified by population size,
states with larger population sizes had significantly higher
median correlations than those with small population sizes.
Significant variability across seasons was also observed. States
with large populations sizes were also found to have lower
median errors (RMSE and MAPE), but there does not seem to
be much difference between low- and medium-sized states.

Although the correlation of the RRS models was encouraging,
GFT estimates have better median measures overall and across
almost all disaggregated groups. Google has not published their
method to estimate ILI at subregional levels, and it is not clear
whether GFT estimates benefited from a fuller access to trends
data or whether the performance gain was solely methodological.
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Figure 3. Top 20 features by importance as determined by random forest models built at regional level. The dot and whiskers in red show the median
and interquartile range (IQR), respectively, whereas the blue point is the mean. The label shows the percentage of models in which the feature was used
(n=3130). ar refers to the autoregressive integrated moving average (ARIMA) component. Features prefixed by ENT are entities identified using
Freebase.
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Table 1. Median (interquartile range), Pearson correlation coefficient (COR), root mean square error (RMSE), and mean absolute proportion error
(MAPE) for RRS, RR0, RRR models, and Google Flu Trends (GFT). Results are stratified by state population size and season.

GFTa, median

(interquartile range)

RRR, median

(interquartile range)

RR0, median

(interquartile range)

RRS, median

(interquartile range)

Measure

COR b

0.89 (0.8-0.94)0.86 (0.75-0.91)0.83 (0.7-0.9)0.85 (0.74-0.91)Overall

Population size (millions)

0.83 (0.72-0.91)0.81 (0.67-0.88)0.76 (0.62-0.86)0.79 (0.64-0.87)0-2 (n=14)

0.9 (0.81-0.94)0.84 (0.75-0.90)0.82 (0.7-0.89)0.84 (0.72-0.89)2-5 (n=14)

0.89 (0.8-0.95)0.86 (0.73-0.92)0.82 (0.7-0.9)0.84 (0.74-0.91)5-7.5 (n=10)

0.93 (0.86-0.96)0.91 (0.86-0.94)0.9 (0.84-0.93)0.91 (0.85-0.93)≥7.5 (n=12)

Season

0.83 (0.71-0.88)0.81 (0.64-0.87)0.8 (0.62-0.85)0.8 (0.62-0.85)05-06

0.83 (0.76-0.9)0.82 (0.71-0.89)0.8 (0.6-0.88)0.82 (0.65-0.88)06-07

0.93 (0.87-0.96)0.89 (0.82-0.93)0.87 (0.79-0.92)0.88 (0.81-0.92)07-08

0.81 (0.71-0.89)0.78 (0.67-0.83)0.71 (0.58-0.82)0.75 (0.69-0.83)08-09

0.97 (0.94-0.98)0.9 (0.85-0.93)0.89 (0.8-0.93)0.9 (0.85-0.93)09-10

0.89 (0.86-0.93)0.89 (0.85-0.92)0.88 (0.75-0.91)0.89 (0.82-0.92)10-11

RMSE c

0.93 (0.66-1.33)0.97 (0.72-1.54)1.06 (0.73-1.56)0.99 (0.7-1.51)Overall

Population size (millions)

0.88 (0.63-1.29)1.05 (0.72-1.6)1.19 (0.73-1.62)1.06 (0.69-1.58)0-2 (n=14)

1.02 (0.78-1.52)1.22 (0.83-1.84)1.33 (0.92-1.81)1.21 (0.84-1.87)2-5 (n=14)

0.88 (0.67-1.48)0.93 (0.61-1.14)0.98 (0.72-1.33)0.93 (0.65-1.21)5-7.5 (n=10)

0.87 (0.63-1.16)0.88 (0.69-1.01)0.85 (0.70-1.08)0.87 (0.66-1.01)≥7.5 (n=12)

Season

0.88 (0.60-1.45)0.93 (0.64-1.52)0.92 (0.70-1.64)0.93 (0.64-1.5)05-06

0.82 (0.52-1.13)0.85 (0.5-1.1)0.89 (0.57-1.16)0.84 (0.56-1.16)06-07

1.09 (0.70-1.55)0.99 (0.82-1.67)1.06 (0.83-1.59)1.08 (0.81-1.7)07-08

1.02 (0.79-1.41)1.03 (0.79-1.55)1.10 (0.79-1.48)1.02 (0.77-1.47)08-09

1.05 (0.80-1.32)1.28 (0.98-1.72)1.40 (1.08-1.72)1.31 (0.98-1.77)09-10

0.73 (0.64-1.20)0.83 (0.59-1.15)0.83 (0.61-1.26)0.77 (0.59-1.16)10-11

MAPE d (/1000)

0.71 (0.44-1.51)0.77 (0.43-1.62)0.67 (0.42-1.54)0.8 (0.43-1.75)Overall

Population size (millions)

0.76 (0.51-1.56)0.84 (0.55-1.55)0.77 (0.51-1.41)0.9 (0.54-1.7)0-2 (n=14)

0.77 (0.41-1.48)0.87 (0.45-1.71)0.82 (0.44-1.65)0.95 (0.48-1.79)2-5 (n=14)

0.68 (0.4-1.41)0.63 (0.35-1.57)0.59 (0.37-1.69)0.65 (0.36-1.62)5-7.5 (n=10)

0.7 (0.43-1.54)0.65 (0.33-1.5)0.54 (0.3-1.34)0.65 (0.34-1.64)≥7.5 (n=12)

Season

1.07 (0.56-2.67)0.99 (0.49-2.72)0.78 (0.47-2.77)1.2 (0.46-3.06)05-06

0.88 (0.46-1.48)0.91 (0.51-1.67)0.92 (0.49-1.81)0.97 (0.53-1.84)06-07

0.76 (0.5-1.57)0.81 (0.51-1.51)0.83 (0.49-1.64)0.85 (0.5-1.67)07-08

0.71 (0.44-1.48)0.84 (0.43-1.52)0.67 (0.43-1.36)0.82 (0.47-1.59)08-09
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GFTa, median

(interquartile range)

RRR, median

(interquartile range)

RR0, median

(interquartile range)

RRS, median

(interquartile range)

Measure

0.63 (0.43-1.17)0.74 (0.36-1.96)0.64 (0.4-1.83)0.73 (0.36-1.96)09-10

0.61 (0.32-0.93)0.48 (0.31-1.04)0.48 (0.28-0.96)0.49 (0.3-1.04)10-11

aGFT: Google Flu Trends.
bCOR: Pearson correlation coefficient.
cRMSE: root mean square error.
dMAPE: mean absolute percentage error.

Table 2. Mean rank and statistical significance from post hoc Nemenyi test. For each season-state combination, the model forms are ranked from best
(rank=1) to worst (rank=4).

MAPEcRMSEbCORaModel

RRRRROGFTMean rankRRRRROGFTMean rankRRRRROGFTdMean rank

2.452.331.91GFT

.172.24<.0012.75<.0013.07RR0

.25.992.43.01.892.41<.001<.0012.38RRR

<.001<.001<.0012.87.79.09.352.51.1<.001<.0012.63RRS

aCOR: Pearson correlation coefficient.
bRMSE: root mean square error.
cMAPE: mean absolute percentage error.
dGFT: Google Flu Trends.

Table 2 shows the mean rank for the model forms along with
the results of Friedman-Nemenyi tests for significance. Of the
four estimates, the best performing (highest correlation or lowest
error) is assigned a rank of 1, the worst a rank of 4, and an
average across the different season-state combinations (n=300)
is calculated. The results indicate the following: (1) For
correlation, GFT has the best mean rank, followed by RRR,
RRS, and RR0. However, the difference between RRR and RRS
is not statistically significant; (2) the relative ordering of the
mean ranks remains the same with RMSE, but the difference
between RR0, RRR, and RRS is not statistically significant;
and, (3) RR0 has the best rank with MAPE followed by GFT.
The mean ranks of RRR and RRS are significantly higher.

Overall, the performance of the RRR models was comparable
to the RRS models, which indicates that state-localized GET

data, as used in the models described here, do not improve
nowcast accuracy. Because RR0 lowers (degrades) correlation,
does not alter RMSE and considerably lowers (improves)
MAPE, the effect of ignoring GET data altogether remains
uncertain.

Extending the comparison to model forms that are built using
state ILI as the response variable (Table 3; Figures 4 and 5), a
noticeable reduction was observed in errors. The median RMSE
and MAPE (Figure 4) of the SRS, SRR, and SSS models are
lower than GFT overall, in states with larger population, and in
a majority of the seasons. There is also a clear improvement
over their RR* counterparts (Figure 5). However, the median
correlation of all four models is noticeably lower, especially
for the SS0 models.
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Table 3. Median (interquartile range), Pearson correlation coefficient (COR), root mean square error (RMSE), and mean absolute percentage error
(MAPE) for Google Flu Trends (GFT), SS0, SRR, SRS, and SSS models. Results are stratified by state population and season.

SSS, median

(interquartile range)

SRS, median

(interquartile range)

SRR, median

(interquartile range)

SS0, median

(interquartile range)

GFTa, median

(interquartile range)

Measure

COR b

0.74 (0.61-0.83)0.8 (0.7-0.88)0.8 (0.7-0.88)0.56 (0.4-0.75)0.89 (0.8-0.94)Overall

Population size (millions)

0.62 (0.55-0.74)0.71 (0.56-0. 8)0.74 (0.57-0.82)0.46 (0.31-0.66)0.83 (0.72-0.91)0-2 (n=14)

0.73 (0.66-0.81)0.8 (0.72-0.85)0.78 (0.72-0.87)0.58 (0.42-0.76)0.9 (0.81-0.94)2-5 (n=14)

0.75 (0.63-0.82)0.81 (0.73-0.88)0.83 (0.7-0.88)0.51 (0.36-0.64)0.89 (0.8-0.95)5-7.5 (n=10)

0.86 (0.72-0.91)0.89 (0.8-0.92)0.88 (0.79-0.92)0.73 (0.48-0.85)0.93 (0.86-0.96)≥7.5 (n=12)

Season

0.74 (0.66-0.86)0.76 (0.62-0.86)0.78 (0.68-0.86)0.72 (0.56-0.85)0.83 (0.71-0.88)05-06

0.8 (0.72-0.89)0.8 (0.64-0.87)0.8 (0.7-0.88)0.75 (0.61-0.84)0.83 (0.76-0.9)06-07

0.81 (0.73-0.86)0.86 (0.78-0.9)0.87 (0.78-0.92)0.61 (0.47-0.77)0.93 (0.87-0.96)07-08

0.57 (0.45-0.68)0.74 (0.58-0.79)0.7 (0.59-0.8)0.37 (0.28-0.44)0.81 (0.71-0.89)08-09

0.74 (0.63-0.85)0.82 (0.74-0.89)0.82 (0.75-0.89)0.51 (0.39-0.73)0.97 (0.94-0.98)09-10

0.71 (0.63-0.78)0.81 (0.75-0.88)0.82 (0.75-0.88)0.47 (0.33-0.6)0.89 (0.86-0.93)10-11

RMSE c (1e-3)

0.9 (0.55-1.35)0.86 (0.55-1.27)0.84 (0.54-1.25)1.07 (0.68-1.84)0.93 (0.66-1.33)Overall

Population size (millions)

0.92 (0.58-1.44)0.96 (0.62-1.49)0.96 (0.55-1.47)1.17 (0.61-1.92)0.88 (0.63-1.29)0-2 (n=14)

1.11 (0.66-1.68)1.11 (0.62-1.57)1.04 (0.7-1.54)1.37 (0.83-2.13)1.02 (0.78-1.52)2-5 (n=14)

0.79 (0.55-1.24)0.71 (0.51-1.14)0.74 (0.49-1.07)0.99 (0.66-1.79)0.88 (0.67-1.48)5-7.5 (n=10)

0.74 (0.46-1.01)0.67 (0.41-0.99)0.69 (0.43-1.05)0.91 (0.64-1.49)0.87 (0.63-1.16)≥7.5 (n=12)

Season

0.64 (0.46-1.06)0.68 (0.49-1.13)0.71 (0.5-1.11)0.81 (0.49-1.47)0.88 (0.60-1.45)05-06

0.56 (0.41-0.83)0.58 (0.42-0.94)0.59 (0.43-0.88)0.70 (0.48-1.02)0.82 (0.52-1.13)06-07

0.97 (0.6-1.42)0.95 (0.58-1.37)0.91 (0.54-1.27)1.36 (0.78-1.85)1.09 (0.70-1.55)07-08

1.05 (0.78-1.4)0.93 (0.67-1.26)0.95 (0.69-1.31)1.21 (0.92-1.98)1.02 (0.79-1.41)08-09

1.53 (1.01-1.9)1.37 (0.92-1.92)1.34 (0.9-1.9)1.91 (1.28-2.44)1.05 (0.80-1.32)09-10

0.86 (0.58-1.16)0.7 (0.51-1.1)0.73 (0.5-1.04)1.00 (0.73-1.62)0.73 (0.64-1.20)10-11

MAPE d

0.61 (0.35-1.02)0.61 (0.34-1)0.54 (0.33-0.9)0.58 (0.38-0.8)0.71 (0.44-1.51)Overall

Population size (millions)

0.82 (0.58-1.28)0.84 (0.56-1.44)0.76 (0.5-1.36)0.68 (0.48-0.86)0.76 (0.51-1.56)0-2 (n=14)

0.68 (0.37-1.02)0.64 (0.39-1)0.58 (0.36-0.9)0.63 (0.36-0.85)0.77 (0.41-1.48)2-5 (n=14)

0.55 (0.34-0.92)0.46 (0.32-0.86)0.41 (0.31-0.75)0.58 (0.39-0.74)0.68 (0.4-1.41)5-7.5 (n=10)

0.41 (0.24-0.61)0.37 (0.2-0.69)0.38 (0.2-0.59)0.4 (0.31-0.59)0.7 (0.43-1.54)≥7.5 (n=12)

Season

0.74 (0.38-1.08)0.77 (0.41-1.12)0.68 (0.4-0.93)0.59 (0.39-0.8)1.07 (0.56-2.67)05-06

0.58 (0.3-0.89)0.62 (0.35-0.94)0.51 (0.32-0.84)0.54 (0.36-0.71)0.88 (0.46-1.48)06-07

0.62 (0.38-0.81)0.62 (0.41-0.94)0.54 (0.38-0.78)0.69 (0.4-0.83)0.76 (0.5-1.57)07-08

0.68 (0.39-1.14)0.66 (0.36-0.93)0.62 (0.37-1.01)0.57 (0.42-0.77)0.71 (0.44-1.48)08-09
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SSS, median

(interquartile range)

SRS, median

(interquartile range)

SRR, median

(interquartile range)

SS0, median

(interquartile range)

GFTa, median

(interquartile range)

Measure

0.67 (0.37-1.14)0.59 (0.31-1.38)0.52 (0.31-1.25)0.59 (0.36-0.85)0.63 (0.43-1.17)09-10

0.43 (0.31-0.83)0.38 (0.26-0.75)0.38 (0.26-0.67)0.5 (0.35-0.85)0.61 (0.32-0.93)10-11

aGFT: Google Flu Trends.
bCOR: Pearson correlation coefficient.
cRMSE: root mean square error.
dMAPE: mean absolute percentage error.

J Med Internet Res 2017 | vol. 19 | iss. 11 | e370 | p. 9http://www.jmir.org/2017/11/e370/
(page number not for citation purposes)

Kandula et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Measures observed with the different model forms A: Pearson correlation coefficient (COR); B: Root mean square error (RMSE); and C:
Mean absolute percentage error (MAPE). Left: The box and whiskers show the median, interquartile range (IQR), and extrema (1.5×IQR) for each
model form. The colored regions are violin plots showing probability density. Right: Heat map of the distribution of relative ranks of the models; more
frequent ranks are darker.
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Figure 5. Pairwise plots for the model forms on the three measures forms A: Pearson correlation coefficient (COR); B: Root mean square error (RMSE);
and C: Mean absolute percentage error (MAPE). The subpanels along the diagonal show density of the measure for the model form. Subpanels in the
lower triangle are scatter plots (n=300) denoting a state-season. Points on or close to the black line (y=x) are state-seasons where the pair of model
forms have similar measures (correlation or error). Subpanels in the upper triangle are heat maps of the counts of points in each two-dimensional (2D)
grid of the plot area (low counts in yellow, high in red). For example, to compare the correlations of RRS and SS0, see the scatter plot in (5,4) or heat
map in (4,5) of A.
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Table 4. Mean rank and statistical significance from post hoc Nemenyi test. For each season-state combination, the model forms are ranked from best
(rank=1) to worst (rank=8).

SRSSRRSS0RRSRRRRROGFTaMean rankModelMeasure

2.67GFTPearson correlation coefficient (COR)

<.0014.55RR0

<.001.0023.34RRR

.68<.001<.0013.68RRS

<.001<.001<.001<.0016.87SS0

<.001.01<.001.98<.0014.37SRR

.55<.001<.001<.001.97<.0014.75SRS

<.001<.001<.001<.001<.001<.001<.0015.73SSS

4.46GFTRoot mean square error (RMSE)

.0025.27RR0

.06.964.68RRR

.99.35.624.82RRS

<.001<.001.19<.0015.77SS0

<.001<.001<.001<.001<.0013.34SRR

.61<.001<.001<.001<.001.0053.71SRS

.92.04<.001<.001<.001<.001.23.96SSS

5.26GFTMean absolute proportion error (MAPE)

.654.91RR0

.89.995.18RRR

.15.002.375.7RRS

<.001<.001<.001<.0013.75SS0

.07<.001<.001<.001<.0013.17SRR

<.001.99<.001<.001<.001<.0013.93SRS

.99<.001.69<.001<.001.001<.0014.09SSS

aGFT: Google Flu Trends.

Results from Friedman-Nemenyi tests (see Table 4) show that
SRS has the lowest mean rank for RMSE, and the difference is
statistically significant from all other models, with the exception
of SRR. SS0 has the lowest mean rank for MAPE but is not
statistically different from either SRS or SRR. It is also
interesting to note that models that continue to use ARIMA fit
on regional ILI (SRR and SRS) match or outperform those that
use ARIMA fit on state ILI (SS0 and SSS).

Discussion

Principal Findings
We described a method to nowcast ILI at subregional levels
using GET and validated the developed models against real
surveillance data across six influenza seasons and 50 states in
the United States. The method was found to give improved
estimates over an autoregressive model but underperformed
relative to GFT. Variants of the method that used surveillance
data at subregional levels, in a majority of the cases, bettered
GFT.

Our results support earlier findings by other groups of the
suitability of ARIMA models, both by themselves and in
conjunction with other methods, in nowcasting ILI. This has
particular relevance for very small settings, say a hospital or a
rural county health department, where internal estimates of ILI
are available and short-horizon forecasts are of interest for
resource planning.

It was also found that data accessible through GET API are
sparse at finer geographical granularity, and methods that rely
solely on search trend data may not be viable for localized
nowcasts. The inheritance method described here addresses the
issue to some extent, as tests for the impact of inheritance on
the models' performance found that inheritance improves
correlation overall, particularly in states with low population;
however, it has no significant impact on RMSE and increases
MAPE (Multimedia Appendix 1; Figure S3). Additional analysis
is necessary to identify scenarios, for example, when a state's
signal is below a fraction of the parent region or below a
threshold determined by historical likelihood, in which
inheritance is useful. Incorporation of alternate data
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streams—such as electronic health records and social media—as
additional features to the random forest models may obviate
the need for inheritance and potentially improve nowcasts.

The reduced errors of the S* models, which use state-level ILI
as the training response variable, make a case for the public
release of this information every week. CDC estimates ILI at
HHS regions by aggregating data submitted through the US
Outpatient ILI Surveillance Network (ILINet) by about 2000
outpatient health care providers in the United States every week.
Aggregation of data at subregional levels is possible in theory,
but there are concerns about patient and provider privacy.
However, given our findings that reliance on regional ILI with
or without subregional GET produces inferior subregional
nowcasts and that these are only marginally better than use of
regional ILI as a proxy for subregional ILI, perhaps it is
necessary to revisit specific concerns about privacy and to
explore anonymization methods whose use might permit release
of ILINet data at the subregional level.

As all states in an HHS region will have the same RRR nowcast
estimate, the performance of RRR and GFT in nowcasting
regional ILI can be compared. No significant difference was
found between RRR nowcasts and GFT at the regional level
for any of the three accuracy measures used (see Multimedia
Appendix 1; Table S4). The superior performance of GFT over
R* models at the state level, however, requires additional
analysis. Although we have little information on the GFT model
form, we believe that Google had no access to subregional CDC
ILI data to train subregional models. As a consequence, GFT
municipal- and state-level ILI estimates were likely
extrapolations of regional models, akin to the R* models

described here. This might also explain why our S* models
outperform GFT in terms of RMSE and MAPE—by building
models at the state level, biases in state level ILI data relative
to the parent region were eliminated, thereby reducing error
(this implicit bias correction is indeed observed; see Multimedia
Appendix 1; Figure S4). If GFT had the same access to search
trends as is now publicly available through GET, the superior
GFT subregional nowcasts relative to R* models suggest that
both the feature set and the learning method presented here need
to be improved further. If, on the other hand, GFT had full
(100%) access to GET, then its superior performance relative
to R* models may stem more from that discrepancy in access.

One limitation of the validation method reported above is that
it does not account for back-revisions to ILI data. CDC's ILI
estimates are updated for multiple weeks following the week
of initial release, as additional providers submit delayed data.
We did not have access to information on how state-level ILI
was updated over time but only to the final stable ILI. If this
detailed versioned dataset were available, a more robust
validation comparing nowcasts generated using transient
estimates of ILI with the final stable ILI would have been
possible.

Conclusions
Overall, the findings suggest that nowcast extrapolation to more
local scales are likely to remain challenging, as long as data at
these scales remain restricted. As public health interventions
and hospital planning can benefit from timely and localized
estimates of ILI, relaxation of these restrictions may be
warranted.

Acknowledgments
This work was supported by grants from the US National Institutes of Health (NIH; GM110748 to JS and SK; GM100467 to JS).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The
authors would like to thank Christian Stefansen and Google Health Trends team for useful discussions and help with the API and
data and Mehmet Turkcan for collaborating in the development of earlier versions of some of the model forms.

Conflicts of Interest
JS declares partial ownership of SK Analytics. SK was a contractor for SK Analytics.

Multimedia Appendix 1
Supporting information.

[PDF File (Adobe PDF File), 1MB-Multimedia Appendix 1]

References

1. WHO. Influenza (seasonal) fact sheet URL: http://www.who.int/mediacentre/factsheets/fs211/en/ [accessed 2017-09-04]
[WebCite Cache ID 6tEctpQxS]

2. WHO. Influenza vaccines URL: http://www.who.int/biologicals/vaccines/influenza/en/ [accessed 2017-09-04] [WebCite
Cache ID 6tEcxKmG9]

3. Xu J, Murphy SL, Kochanek KD, Bastian BA. Deaths: final data for 2013. Natl Vital Stat Rep 2016;64(2):1-119 [FREE
Full text] [Medline: 26905861]

4. CDC. Overview of influenza surveillance in the United States URL: http://www.cdc.gov/flu/weekly/overview.htm [accessed
2017-09-04] [WebCite Cache ID 6tEd2Ix1L]

5. CDC. FluView interactive URL: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html [accessed 2017-09-04] [WebCite
Cache ID 6tEd6aocm]

J Med Internet Res 2017 | vol. 19 | iss. 11 | e370 | p. 13http://www.jmir.org/2017/11/e370/
(page number not for citation purposes)

Kandula et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v19i11e370_app1.pdf&filename=328afafd87ca0e2338d1819812164fa6.pdf
https://jmir.org/api/download?alt_name=jmir_v19i11e370_app1.pdf&filename=328afafd87ca0e2338d1819812164fa6.pdf
http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.webcitation.org/

                                            6tEctpQxS
http://www.who.int/biologicals/vaccines/influenza/en/
http://www.webcitation.org/

                                            6tEcxKmG9
http://www.webcitation.org/

                                            6tEcxKmG9
https://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf
https://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26905861&dopt=Abstract
http://www.cdc.gov/flu/weekly/overview.htm
http://www.webcitation.org/

                                            6tEd2Ix1L
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
http://www.webcitation.org/

                                            6tEd6aocm
http://www.webcitation.org/

                                            6tEd6aocm
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search
engine query data. Nature 2009 Feb 19;457(7232):1012-1014. [doi: 10.1038/nature07634] [Medline: 19020500]

7. Lampos V, Miller AC, Crossan S, Stefansen C. Advances in nowcasting influenza-like illness rates using search query
logs. Sci Rep 2015 Aug 03;5:12760 [FREE Full text] [doi: 10.1038/srep12760] [Medline: 26234783]

8. Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl
Acad Sci U S A 2015 Nov 24;112(47):14473-14478 [FREE Full text] [doi: 10.1073/pnas.1515373112] [Medline: 26553980]

9. Eysenbach G, Köhler C. Health-related searches on the Internet. J Am Med Assoc 2004 Jun 23;291(24):2946. [doi:
10.1001/jama.291.24.2946] [Medline: 15213205]

10. Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu Symp Proc
2006:244-248 [FREE Full text] [Medline: 17238340]

11. Polgreen PM, Chen Y, Pennock DM, Nelson FD. Using internet searches for influenza surveillance. Clin Infect Dis 2008
Dec 01;47(11):1443-1448. [doi: 10.1086/593098] [Medline: 18954267]

12. Dredze M, Paul MJ, Bergsma S, Tran H. Carmen: A twitter geolocation system with applications to public health. 2013
Presented at: AAAI Workshop on Expanding the Boundaries of Health Informatics Using AI (HIAI); July 14-18, 2013;
Bellevue, Washington, USA.

13. Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. PLoS Curr 2014 Oct 28;6:1-2 [FREE Full
text] [doi: 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117] [Medline: 25642377]

14. McIver DJ, Brownstein JS. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near
real-time. PLoS Comput Biol 2014 Apr;10(4):e1003581 [FREE Full text] [doi: 10.1371/journal.pcbi.1003581] [Medline:
24743682]

15. Hickmann KS, Fairchild G, Priedhorsky R, Generous N, Hyman JM, Deshpande A, et al. Forecasting the 2013-2014
influenza season using Wikipedia. PLoS Comput Biol 2015 May;11(5):e1004239 [FREE Full text] [doi:
10.1371/journal.pcbi.1004239] [Medline: 25974758]

16. Ray J, Brownstein J. Nowcasting influenza activity using Healthmap data. 2015 Presented at: DTRA Chemical Biological
Defense Conference; May 12-14, 2015; St. Louis, MO URL: https://www.osti.gov/scitech/servlets/purl/1251371

17. Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wójcik O, et al. Flu near you: Crowdsourced symptom
reporting spanning 2 influenza seasons. Am J Public Health 2015 Oct;105(10):2124-2130. [doi: 10.2105/AJPH.2015.302696]
[Medline: 26270299]

18. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social media, and traditional
data sources to improve influenza surveillance. PLoS Comput Biol 2015 Oct;11(10):e1004513 [FREE Full text] [doi:
10.1371/journal.pcbi.1004513] [Medline: 26513245]

19. Farrow D. 2016. Modeling the past, present, and future of influenza URL: https://delphi.midas.cs.cmu.edu/~dfarrow/thesis.
pdf [accessed 2017-10-08] [WebCite Cache ID 6u3PQq9jv]

20. Google Research Blog. The next chapter for flu trends URL: https://research.googleblog.com/2015/08/
the-next-chapter-for-flu-trends.html [accessed 2017-09-04] [WebCite Cache ID 6tEdDvoZJ]

21. Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to)
Google Flu Trends? Am J Prev Med 2014 Sep;47(3):341-347. [doi: 10.1016/j.amepre.2014.05.020] [Medline: 24997572]

22. Tibshirani R. 1996. Regression shrinkage and selection via the lasso URL: https://statweb.stanford.edu/~tibs/lasso/lasso.
pdf [accessed 2017-10-08] [WebCite Cache ID 6u3Pw8ZbB]

23. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal
and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol
2013;9(10):e1003256 [FREE Full text] [doi: 10.1371/journal.pcbi.1003256] [Medline: 24146603]

24. Pollett S, Boscardin WJ, Azziz-Baumgartner E, Tinoco YO, Soto G, Romero C, et al. Evaluating Google Flu Trends in
Latin America: important lessons for the next phase of digital disease detection. Clin Infect Dis 2017 Jan 01;64(1):34-41.
[doi: 10.1093/cid/ciw657] [Medline: 27678084]

25. U.S. Department of Health & Human Services. HHS regional offices. URL: https://www.hhs.gov/about/agencies/
regional-offices/index.html [accessed 2017-09-04] [WebCite Cache ID 6tEcpnQ0c]

26. Google. Google correlate URL: https://www.google.com/trends/correlate [accessed 2017-09-04] [WebCite Cache ID
6tEcfAKsx]

27. Mohebbi M, Vanderkam D, Kodysh J, Schonberger R, Choi H, Kumar S. Google. Google correlate whitepaper URL: https:/
/www.google.com/trends/correlate/whitepaper.pdf [accessed 2017-09-04] [WebCite Cache ID 6tEca1Xnd]

28. Zhang W. 2013. Development of a real-time estimate of flu activity in the United States using dynamically updated lasso
regressions and Google search queries URL: http://www.people.fas.harvard.edu/~msantill/Mauricio_Santillana/Teaching_files/
D_Zhang_thesis_final.pdf [accessed 2017-09-04] [WebCite Cache ID 6tEdMtiVP]

29. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring
human knowledge. 2008 Presented at: ACM SIGMOD International Conference on Management of Data; June 9-12, 2008;
Vancouver, BC, Canada.

30. Durbin J, Koopman S. Time series analysis by state space methods. Oxford, UK: Oxford University Press; 2012.
31. Hamilton JD. Time Series Analysis. Princeton, NJ: Princeton University Press; 1994.

J Med Internet Res 2017 | vol. 19 | iss. 11 | e370 | p. 14http://www.jmir.org/2017/11/e370/
(page number not for citation purposes)

Kandula et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1038/nature07634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19020500&dopt=Abstract
http://dx.doi.org/10.1038/srep12760
http://dx.doi.org/10.1038/srep12760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26234783&dopt=Abstract
http://www.pnas.org/cgi/pmidlookup?view=long&pmid=26553980
http://dx.doi.org/10.1073/pnas.1515373112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26553980&dopt=Abstract
http://dx.doi.org/10.1001/jama.291.24.2946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15213205&dopt=Abstract
http://europepmc.org/abstract/MED/17238340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17238340&dopt=Abstract
http://dx.doi.org/10.1086/593098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18954267&dopt=Abstract
https://dx.doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
https://dx.doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
http://dx.doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25642377&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1003581
http://dx.doi.org/10.1371/journal.pcbi.1003581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24743682&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1004239
http://dx.doi.org/10.1371/journal.pcbi.1004239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25974758&dopt=Abstract
https://www.osti.gov/scitech/servlets/purl/1251371
http://dx.doi.org/10.2105/AJPH.2015.302696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26270299&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1004513
http://dx.doi.org/10.1371/journal.pcbi.1004513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26513245&dopt=Abstract
https://delphi.midas.cs.cmu.edu/~dfarrow/thesis.pdf
https://delphi.midas.cs.cmu.edu/~dfarrow/thesis.pdf
http://www.webcitation.org/

                                            6u3PQq9jv
https://research.googleblog.com/2015/08/the-next-chapter-for-flu-trends.html
https://research.googleblog.com/2015/08/the-next-chapter-for-flu-trends.html
http://www.webcitation.org/

                                            6tEdDvoZJ
http://dx.doi.org/10.1016/j.amepre.2014.05.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24997572&dopt=Abstract
https://statweb.stanford.edu/~tibs/lasso/lasso.pdf
https://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://www.webcitation.org/

                                            6u3Pw8ZbB
http://dx.plos.org/10.1371/journal.pcbi.1003256
http://dx.doi.org/10.1371/journal.pcbi.1003256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24146603&dopt=Abstract
http://dx.doi.org/10.1093/cid/ciw657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27678084&dopt=Abstract
https://www.hhs.gov/about/agencies/regional-offices/index.html
https://www.hhs.gov/about/agencies/regional-offices/index.html
http://www.webcitation.org/

                                            6tEcpnQ0c
https://www.google.com/trends/correlate
http://www.webcitation.org/

                                            6tEcfAKsx
http://www.webcitation.org/

                                            6tEcfAKsx
https://www.google.com/trends/correlate/whitepaper.pdf
https://www.google.com/trends/correlate/whitepaper.pdf
http://www.webcitation.org/

                                            6tEca1Xnd
http://www.people.fas.harvard.edu/~msantill/Mauricio_Santillana/Teaching_files/D_Zhang_thesis_final.pdf
http://www.people.fas.harvard.edu/~msantill/Mauricio_Santillana/Teaching_files/D_Zhang_thesis_final.pdf
http://www.webcitation.org/

                                            6tEdMtiVP
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Ripley BD. 2002. Time series in R 1.5.0 URL: https://www.r-project.org/doc/Rnews/Rnews_2002-2.pdf [accessed
2017-10-08] [WebCite Cache ID 6u3R57laM]

33. Broniatowski DA, Paul MJ, Dredze M. National and local influenza surveillance through Twitter: an analysis of the
2012-2013 influenza epidemic. PLoS One 2013;8(12):e83672 [FREE Full text] [doi: 10.1371/journal.pone.0083672]
[Medline: 24349542]

34. Broniatowski DA, Dredze M, Paul MJ, Dugas A. Using social media to perform local influenza surveillance in an inner-city
hospital: a retrospective observational study. JMIR Public Health Surveill 2015;1(1):e5 [FREE Full text] [doi:
10.2196/publichealth.4472] [Medline: 27014744]

35. Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast package for R. J Stat Softw 2008;27(3):2008.
[doi: 10.18637/jss.v027.i03]

36. Hyndman R. Forecasting functions for time series and linear models URL: https://cran.r-project.org/web/packages/forecast/
index.html [accessed 2017-09-04] [WebCite Cache ID 6tEbWlup4]

37. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New
York, NY: Springer; 2009.

38. Breiman L. Random forests. Mach Learn 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
39. Breiman L. 2002. Manual on setting up, using, and understanding Random Forests v3.1 URL: https://www.stat.berkeley.edu/

~breiman/Using_random_forests_V3.1.pdf [accessed 2017-09-04] [WebCite Cache ID 6tEdmjBnR]
40. CDC. MMWR weeks URL: https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf [accessed 2017-09-04]

[WebCite Cache ID 6tEdRkN5n]
41. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc

1937 Dec;32(200):675-701. [doi: 10.1080/01621459.1937.10503522]
42. Hollander M, Wolfe DA, Chicken E. Nonparametric Statistical Methods. Hoboken, NJ: Wiley; 2013.
43. Nemenyi P. Distribution-free Multiple Comparisons. Princeton, NJ: Princeton University; 1963.
44. Pohlert T. 2014. PMCMR: calculate pairwise multiple comparisons of mean rank sums URL: https://cran.r-project.org/

web/packages/PMCMR/index.html [accessed 2017-09-04] [WebCite Cache ID 6tEbMqPK0]
45. Liaw A, Wiener M. Cogns.northwestern. 2002. Classification and regression by randomForest URL: http://cogns.

northwestern.edu/cbmg/LiawAndWiener2002.pdf[WebCite Cache ID 6u3SN9cRB]
46. R core team. R-project. 2013. R: A language and environment for statistical computing URL: http://www.r-project.org/

[WebCite Cache ID 6tEdZQFnY]

Abbreviations
API: application programming interface
ARIMA: autoregressive integrated moving average
CDC: Centers for Disease Control and Prevention
GET: Google Extended Trends
GFT: Google Flu Trends
HHS: US Department of Health and Human Services
ILI: influenza-like illness
ILINet: US Outpatient Influenza-like Illness Surveillance Network
IQR: interquartile range
MAPE: mean absolute percentage error
MMWR: Morbidity and Mortality Weekly Report
RMSE: root mean square error

Edited by A Keepanasseril; submitted 10.02.17; peer-reviewed by M Santillana, D Broniatowski; comments to author 07.04.17; revised
version received 13.06.17; accepted 15.08.17; published 06.11.17

Please cite as:
Kandula S, Hsu D, Shaman J
Subregional Nowcasts of Seasonal Influenza Using Search Trends
J Med Internet Res 2017;19(11):e370
URL: http://www.jmir.org/2017/11/e370/
doi: 10.2196/jmir.7486
PMID: 29109069

J Med Internet Res 2017 | vol. 19 | iss. 11 | e370 | p. 15http://www.jmir.org/2017/11/e370/
(page number not for citation purposes)

Kandula et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.r-project.org/doc/Rnews/Rnews_2002-2.pdf
http://www.webcitation.org/

                                            6u3R57laM
http://dx.plos.org/10.1371/journal.pone.0083672
http://dx.doi.org/10.1371/journal.pone.0083672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24349542&dopt=Abstract
http://publichealth.jmir.org/2015/1/e5/
http://dx.doi.org/10.2196/publichealth.4472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27014744&dopt=Abstract
http://dx.doi.org/10.18637/jss.v027.i03
https://cran.r-project.org/web/packages/forecast/index.html
https://cran.r-project.org/web/packages/forecast/index.html
http://www.webcitation.org/

                                            6tEbWlup4
http://dx.doi.org/10.1023/A:1010933404324
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
http://www.webcitation.org/

                                            6tEdmjBnR
https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf
http://www.webcitation.org/

                                            6tEdRkN5n
http://dx.doi.org/10.1080/01621459.1937.10503522
https://cran.r-project.org/web/packages/PMCMR/index.html
https://cran.r-project.org/web/packages/PMCMR/index.html
http://www.webcitation.org/

                                            6tEbMqPK0
http://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
http://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
http://www.webcitation.org/

                                            6u3SN9cRB
http://www.r-project.org/
http://www.webcitation.org/

                                            6tEdZQFnY
http://www.jmir.org/2017/11/e370/
http://dx.doi.org/10.2196/jmir.7486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29109069&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Sasikiran Kandula, Daniel Hsu, Jeffrey Shaman. Originally published in the Journal of Medical Internet Research
(http://www.jmir.org), 06.11.2017. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information
must be included.

J Med Internet Res 2017 | vol. 19 | iss. 11 | e370 | p. 16http://www.jmir.org/2017/11/e370/
(page number not for citation purposes)

Kandula et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

