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Abstract

Background: As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical
settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine
monitoring or as part of an early warning system to detect clinical deterioration.

Objective: To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients.

Methods: We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed
24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard
measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse
oximetry (Spo2.R) was also measured as a positive control.

Results: On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring
(average bias of −1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced
more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness
tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias −0.99
bpm vs −5.02 bpm, P=.02).

Conclusions: Personal fitness tracker–derived heart rates were slightly lower than those derived from cECG monitoring in
real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in
sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals.

Trial Registration: ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite
at  http://www.webcitation.org/6kOFez3on)

(J Med Internet Res 2016;18(9):e253) doi: 10.2196/jmir.6025
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Introduction

Over the last 5 years, consumer interest in self-monitoring and
personal health tracking has grown considerably [1-4]. What
began as a small movement among self-described “Quantified

Self” enthusiasts has grown into an industry that is worth an
estimated US $9 billion worldwide and is projected to grow to
US $30 billion by 2018 [5]. This growth is largely driven by
consumer interest in recording and reviewing high-frequency
data about activity levels and general health in order to modify
personal habits and promote healthy lifestyles. Data are
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generated by so-called wearables, small electronic devices that
contain sensors and computing capabilities, which can be worn
on a part of the body or integrated into clothing [5].

There has been growing enthusiasm for the potential use of
wearable devices to improve health care delivery [4,6]. A
number of different wearable sensors have been developed,
which generate data that could potentially be useful in health
care [7-9]. For instance, accelerometers have been incorporated
into wearable devices to track physical activity such as walking,
running, or climbing stairs and have also been used to evaluate
sleep quality [10]. Wearable devices have seen only limited
deployment in patient care settings, but their presence in clinics
and hospitals is expected to grow significantly in the coming
years [5].

Current clinical uses for wearable devices are mostly limited
to outpatient and ambulatory settings, with a focus on the
management of chronic diseases [11-13]. Applications include
long-term ambulatory electrocardiogram (ECG) monitoring,
optimizing pulmonary rehabilitation in patients with chronic
obstructive pulmonary disease, and monitoring motor function
in stroke patients as well as patients with Parkinson disease
[11].

There is ample opportunity to leverage the sensing capabilities
of wearable devices in the inpatient setting as well. Many newer
wearable devices use photoplethysmography (PPG) to record
heart rate by measuring differential reflection of light from the
skin, based on the pulsatility of superficial blood vessels [14].
Heart rate sensing devices may be useful in extending the reach
of vital signs monitoring in hospitals, which is typically limited
by constraints on human resources. These signs, including heart
rate, are monitored only a few times each day in ward settings.
More frequent monitoring of heart rate stands to improve timely
identification of deteriorating health of patients, increasing the
chances that costly admission to the intensive care unit (ICU)
can be avoided [15-19]. Heart rate surveillance also has the
potential to identify patients with poorly controlled pain, to
recognize incident arrhythmias, to detect sympathomimetic
states such as alcohol withdrawal, and to generate more granular
datasets for clinical research. A low-cost system capable of
hospital-wide heart rate monitoring would therefore be valued
in a time when health care expenditures are under increasing
scrutiny [20].

The ability of wearable PPG sensors to reliably measure heart
rate in the outpatient population has been demonstrated in at
least one study [12]; however, their accuracy in hospital
inpatients has not been firmly established. Equally uncertain
are the accuracy and reliability of heart rate data derived from
less costly wearables, such as commercially available personal
fitness trackers (PFTs).

In order to address these and other questions, we examined the
accuracy of heart rate measurements derived from PFTs. We
focused on patients in the ICU as this cohort is closely monitored
using continuous ECG (cECG) monitoring, which provides a
gold standard measurement of heart rate. Because the degree
of agreement that would be sufficient for clinical applications
is not well defined, we also examined the agreement between
cECG-derived heart rate measurements and a more widely

accepted method of heart rate measurement, namely, pulse
oximetry (Spo2) monitoring.

Methods

Study Setting and Patients
We used the Fitbit Charge HR (Fitbit, San Francisco, CA) PFT
to monitor heart rate in 50 patients admitted to the ICU at
Kingston General Hospital (KGH), a tertiary academic medical
center in Ontario. The 33-bed ICU at KGH is a mixed medical,
surgical, trauma, and neurosciences unit. The PFT device studied
is a wrist-worn device resembling a watch, which uses PPG to
detect periodic changes in blood flow beneath the sensor,
thereby deriving heart rate measurements. Heart rate values are
recorded every 5 minutes. The Fitbit Charge HR is a
commercially available PFT and is not currently regulated by
the US Food and Drug Administration.

In order to study a cohort of patients that would best resemble
hospital ward patients, we included only stable patients who
were not receiving mechanical ventilation, continuous analgesia,
or sedation. To reduce the risk of transmitting nosocomial
infections, we excluded patients under contact precautions for
methicillin-resistant Staphylococcus aureus and Clostridium
difficile infections. We further excluded patients with the
potential for vascular compromise of the arm on which the
device was to be placed, including those with deep venous
thrombosis of the upper extremity, peripherally inserted central
catheters, radial arterial lines, dialysis fistulas, and severe upper
extremity trauma or fracture. Patients were monitored only once
for a total duration of 24 hours.

Data Capture
The study used 6 separate PFTs (3 size large, 3 size extra-large),
each of which was assigned a unique email address and log-in
credentials for the Fitbit website. An automated R script was
used to download and process PFT data from the Fitbit website.
Heart rate data are recorded by the PFT every 5 minutes. To
provide a gold standard measurement of heart rate, we recovered
data from the ICU bedside monitors using specialized software
(BedMasterEX, Excel Medical, Jupiter, FL). Data included heart
rate values, as well as heart rate data derived from continuous
Spo2 monitoring (Spo2.R), both recorded every minute. These
data were acquired as XML files and processed using an
automated Python script to derive minute-level heart rate data.
We synchronized bedside monitor data and PFT data using a
correction factor that accounted for the difference between each
device’s internal clock.

Statistical Analysis
We analyzed heart rate data in aggregate across all patients, as
well as on a per-patient basis. We determined the difference
between cECG and PFT readings measured simultaneously, the
median of differences over a 24-hour period, the interquartile
range (IQR) of differences, and the Pearson correlation
coefficient between cECG and PFT measurements. We used a
Wilcoxon signed rank test to determine if the distribution of
cECG-derived heart rates differed from that of the PFT-derived
heart rates. Finally, we used Bland-Altman analysis to measure
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the agreement between the PFT and cECG methods of heart
rate monitoring, as well as the bias of the PFT relative to cECG.

We calculated all the above-mentioned metrics for cECG-Spo2.R
pairs in order to compare the accuracy of PFT measurements
with that of a well-established and widely used alternative for
heart rate measurement. On the basis of the mechanism of
sensing used by the PFTs, we hypothesized that accuracy would
differ in patients not in sinus rhythm and conducted a subgroup
analysis to test this effect. Rhythm status was based on
examination of cECG recording both at the time of device
application and at the time of device removal, with patients
designated as being in sinus rhythm only if this was present at
both time points. To assess the potential for degradation in PFT
performance over time, we compared the accuracy in the first
20 patients with that of the last 20 patients.

The study was approved by the Health Sciences Research Ethics
Board of Queen’s University (DMED-1818-15) and is registered
with ClinicalTrials.gov (NCT02527408). Patients or their
substitute decision makers provided informed consent. All study
data were deidentified. The study did not receive funding from
the device manufacturer or from any other source. All statistical
analyses were done using R (v 3.2.2).

Results

Patients
Between August 2015 and January 2016, we enrolled a
convenience sample of 50 patients meeting our enrollment
criteria. Patients were admitted with a variety of medical and
surgical conditions and were of low clinical acuity at the time
of monitoring (Table 1).

Table 1. Characteristics of patients included in the study (N=50)

ValuesCharacteristics

88.3Mean heart rate, beats per minute

64Mean age, years

Sex, n (%)

26 (52)Male

24 (48)Female

Admission diagnosis, n (%)

12 (24)Respiratory

7 (14)Sepsis

7 (14)Surgical

11 (22)Neurologic

3 (6)Trauma

6 (12)Cardiovascular

4 (8)Medical

Sinus rhythm, n (%)

43 (86)At start of monitoring

42 (84)At end of monitoring

Personal fitness tracker size used, n (%)

23 (46)Large

27 (54)Extra large

Data Acquisition
The PFT device was removed prematurely in 2 cases; in one
case a patient was discharged from the ICU early, and in another
case a patient developed a diffuse drug rash. In 4 cases
cardiorespiratory monitoring was discontinued early, resulting
in incomplete comparison data. Personal fitness tracker devices
in these cases continued to collect data for the full 24-hour
period. Excluding the 2 patients whose devices were removed
early, PFTs showed a high degree of data capture (mean 98%
of eligible data).

Heart Rate Accuracy
We analyzed a total of 12,358 cECG-PFT heart rate pairs and
56,385 cECG-Spo2.R heart rate pairs. Most of the 24-hour heart
rate recordings conformed to a skewed or bimodal distribution
(Multimedia Appendix 1). In the pooled analysis (Figure 1 and
Multimedia Appendix 2), the median difference between
PFT-derived heart rates and cECG-derived heart rates was 1
beat per minute (bpm), with 73% of readings within 5 bpm of
the cECG value. The correlation with cECG heart rate values
was .74, and the distribution of PFT-derived heart rate values
was significantly different from that of the cECG values
(P<.001). By comparison, Spo2.R-derived heart rates more
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closely approximated cECG, with a median difference of 0 bpm,
correlation coefficient of .91, and 89% of readings within 5 bpm
of the cECG value. The Spo2.R and cECG heart rate
distributions were similar (P=.18). Visual inspection of the
Bland-Altman plots revealed a tendency for the PFT to
underestimate heart rate values in the range of approximately
75 to 120 bpm (Figure 1, part C). There was greater bias with
the PFT method compared with the Spo2.R method (−4.7 bpm,
95% CI −4.91 to −4.44 bpm, vs −0.2 bpm, 95% CI −0.30 to
−0.16 bpm). The limits of agreement were wider with the PFT
method compared with the Spo2.R method: −31 (95% CI −31.22
to −30.40 bpm) to 21 bpm (95% CI 21.06-21.87 bpm) versus

−17 (95% CI −17.01 to 16.77 bpm) to 16 bpm (95% CI
16.31-16.55 bpm; see Multimedia Appendix 3).

Per-Patient Analysis
Scatterplots for individual patients are provided in Multimedia
Appendix 4. Summary statistics are presented in Table 2 and
Figure 2. Although the median heart rate difference was 0 for
both the PFT device and Spo2.R readings, when compared with
cECG, there was a statistically significant difference between
these 2 groups (P=.003). On average, PFT recordings yielded
a higher IQR, lower Pearson correlation coefficient, larger bias,
and wider limits of agreement than Spo2.R recordings (P<.001
for all comparisons).

Figure 1. Results of the pooled analysis comparing continuous electrocardiogram (cECG)-derived heart rates and personal fitness tracker (PFT)-derived
heart rates (in red), as well as cECG-derived heart rates and pulse oximetry heart rates (SpO2.R, in blue). A and B, Scatterplots showing simultaneous
heart rate measurements from cECG (x-axis) compared with alternative methods (y-axis). C and D, Bland-Altman plots for heart rate measured by PFT
and SpO2.R compared with cECG. Mean heart rate is shown on the x-axis, with the difference between heart rates shown on the y-axis. The solid
horizontal line represents a difference between measurements of 0, while the dashed lines represent the observed mean difference (bias) and limits of
agreement. HR: heart rate; bpm: beats per minute.

J Med Internet Res 2016 | vol. 18 | iss. 9 | e253 | p. 4http://www.jmir.org/2016/9/e253/
(page number not for citation purposes)

Kroll et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Results of the per-patient analysis of heart rate recording accuracy.

P valueSpo2.RbPFTaVariable

<.0011328281Pairs

<.00100Zeros (median)

.00300Median difference (bpmc)

<.00114Interquartile range (bpm)

<.001.89.57Correlation coefficient

.57d5.06E−111.52E−06Wilcoxon P value

<.0010.15−1.14Bias (bpm)

<.00113.0023.88Limits of agreement (bpm)

aPFT: personal fitness tracker.
bSpo2.R: pulse oximetry heart rate.
cbpm: beats per minute.
dcomparing the number of recordings with Wilcoxon P value < .05.

Our subgroup analyses compared 8 patients who were not in
sinus rhythm with 40 patients in sinus rhythm. Median heart
rate difference, IQR, Pearson correlation coefficient, bias, and
limits of agreement were all significantly worse in patients with
rhythms other than sinus (P<.05 for all comparisons, Table 3).
An example of poor PFT performance is shown in Figure 3. Of
the 5 recordings showing the worst PFT performance, 4 were

from patients not in sinus rhythm (Figure 4). There was no
difference in the correlation between PFT heart rates and
cECG-derived heart rates between the first 20 patients enrolled
and the last 20 patients (mean Pearson correlation coefficient
.51 vs .46, P=.61). Individual PFT devices were used between
5 and 13 times (mean 9 times).

Table 3. Heart rate measurement accuracy in patients in sinus rhythm compared with those not in sinus rhythm.

P valueNonsinus rhythm (n=8)Sinus rhythm (n=40)Measurement

.043.50Median difference (bpma)

.018.64Interquartile range (bpm)

<.001.23.58Correlation coefficient

.02−5.02−0.99Bias (bpm)

.04946.422.9Limits of agreement (bpm)

abpm: beats per minute.

J Med Internet Res 2016 | vol. 18 | iss. 9 | e253 | p. 5http://www.jmir.org/2016/9/e253/
(page number not for citation purposes)

Kroll et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Summary of the per-patient analysis of the differences between personal fitness tracker (PFT, shown in red) and pulse oximetry heart rate
values (SpO2.R, shown in blue) as compared with continuous electrocardiogram (cECG)–derived heart rate. A, Number of heart rate pairs analyzed.
B, Number of zero measurements recorded. C, Median difference between the device-derived heart rate and cECG-derived heart rate. D, Interquartile
range (IQR) of the differences. E, Pearson correlation coefficient (PFT vs cECG and SpO2.R vs cECG). F, P values indicating the likelihood that the
distribution of heart rate values derived from the other devices differed from that derived from cECG (Wilcoxon signed rank test). G, Mean difference
between device-derived heart rate and cECG-derived heart rate from Bland-Altman analysis. H, Limits of agreement between device-derived heart rate
and cECG-derived heart rate from Bland-Altman analysis. For each boxplot, individual patients are represented by an individual point. All comparisons
showed statistically significant differences by Wilcoxon rank sum test (P<.01), with the exception of the comparison of P values (P=.57).

Figure 3. Scatterplots showing simultaneous heart rate (HR) measurements derived from continuous electrocardiogram (cECG; x-axis) compared with
heart rate from personal fitness tracker (PFT, left) and pulse oximetry (SpO2.R, right) in a patient with atrial fibrillation. In the absence of normal sinus
rhythm, the PFT consistently underestimated heart rate.

J Med Internet Res 2016 | vol. 18 | iss. 9 | e253 | p. 6http://www.jmir.org/2016/9/e253/
(page number not for citation purposes)

Kroll et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Patient recordings arranged according to median difference between personal fitness tracker–derived heart rate and heart rate from continuous
electrocardiogram. The least accurate recordings were from patients who were not in sinus rhythm. HR: heart rate.

Discussion

Wearables in Health Care
Although the use of wearables in health care has garnered
considerable attention in recent years, few objective studies
exist resulting in a substantial dearth of clinical evidence
regarding their use. A recent PubMed search of the term
“wearable technology” revealed nearly 1000 articles published
in the last 5 years, only 3% of which were clinical trials [21].
None of these included acutely ill patients. Despite the absence
of evidence regarding their accuracy, data from PFTs have been
used in acute care settings, including in one recently published
case of a patient presenting to an emergency department who
received electrical cardioversion for stable atrial fibrillation
[22]. Data derived under real-world conditions from clinical
settings are needed to better define the role of wearable devices
in general, and commercially available fitness trackers in
particular, in the delivery of acute care medicine. We conducted
an observational study of heart rate monitoring accuracy of a
commercially available PFT in order to provide objective
evidence regarding the accuracy of its heart rate monitoring
capabilities among hospitalized patients.

Principal Findings
We found that, overall, Fitbit PFT-derived heart rate
measurements were less accurate and consistent than heart rate
values recorded by continuous pulse oximetry. There was,
however, considerable between-patient heterogeneity, with PFT
heart rate values proving highly accurate in some cases and less
so in others. With heart rate values analyzed on a per-patient
basis, the differences between the PFT and pulse oximetry
methods were less pronounced. The accuracy of PFT-based
heart rate monitoring was poor among patients not in sinus
rhythm.

Our results show that, on average, the PFT devices tested tended
to underestimate heart rate values slightly, particularly with

heart rate values in the range of 75 to 120 bpm. The clinical
implications of this degree of bias are uncertain and likely
depend on the intended purpose of the monitoring. A difference
of the magnitude observed might be acceptable for detecting
acute clinical deterioration, which is often accompanied by
marked changes in heart rate, but may not be adequate for
identifying more subtle physiological derangements.

Wrist-worn heart rate sensing devices have the potential to
enhance inpatient safety by identifying episodes of clinical
deterioration faster than current nurse-driven vital signs
monitoring practices allow. With only a small minority of
hospitalized patients receiving cECG monitoring in intensive
care settings, most have heart rate measurements taken only 2
to 3 times in a 24-hour period. Early warning systems (EWSs)
have been shown to accurately predict cardiac arrest and hospital
mortality, with some studies suggesting a reduction in these
events following EWS implementation [15]. Heart rate is a
common variable factored into most EWS algorithms [15,17].
Derangements in heart rate in general, and tachycardia in
particular, have consistently been shown to predict impending
clinical deterioration [15-19]. Early warning system variants
can be complicated and difficult to use on a practical level
[15,23-25]. Commercially available PFTs suggest a potential
solution to address shortfalls by supplementing the monitoring
of ward patients with frequent heart rate measurements
generated automatically.

There are a number of potential advantages to augmenting
hospital monitoring practices using wrist-worn PPG-based heart
rate sensors such as the one we studied. A cost advantage may
be achievable given that the device we tested retails for
approximately US $170 and that we were able to reuse devices
on average 9 times without seeing a decrement in performance.
By comparison, conventional heart rate monitoring on inpatient
wards (ie, telemetry) has been estimated to incur expenses of
just under US $40 per patient per day in direct costs and as
much as an additional US $170 in opportunity costs [26].
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Although PFTs do not measure any additional vital signs, they
do record movement data that can be used to monitor physical
rehabilitation [11]. Personal fitness trackers could therefore
provide benefit through the continuum of an illness episode, by
providing enhanced heart rate monitoring during the acute
phases, accurate tracking of mobility during convalescence, and
ongoing feedback to both patient and clinician following
discharge.

The use of wrist-worn devices for heart rate monitoring in
hospitals also has potential disadvantages. Consumer-grade
PFTs do not provide information regarding respiratory rate or
blood pressure, both of which have been shown to add value in
EWS [17]. Wrist-worn PPG devices might also be susceptible
to errors in heart rate measurement owing to the phenomenon
of the pulse deficit, in which beat-to-beat variability in stroke
volume alters the amplitude of the pulse. This can be seen in
atrial fibrillation, as well as other physiological conditions of
acute illness such as cardiac tamponade, status asthmaticus, and
various shock states, and may explain the significant decrement
in heart rate sensing accuracy seen in our subgroup of patients
who were not in sinus rhythm. Heart rate reporting might
therefore be less accurate in the patients for whom the
recognition of clinical deterioration is most needed, namely,
those developing hemodynamic instability. Whether a
degradation of signal quality could be used to identify
physiological decompensation remains unknown.

Our study has a number of strengths. We examined the use of
PFTs in a sizeable cohort of hospitalized patients under
real-world conditions. Devices were adjusted only once at the
time of application and were not reassessed for the duration of
the 24-hour recording period by either study personnel or clinical
staff. We used high-frequency data captured from continuous
bedside monitoring to provide an accurate gold standard
assessment of heart rate and analyzed PFT performance on both
a pooled and per-patient level.

Limitations
One of the potential limitations of our study arises from the fact
that the PFT-derived and cECG-derived heart rate values were
obtained from different devices, with separate internal clocks.
Although correction factors were used to synchronize the time
stamps from the 2 heart rate sources, it is possible that in some
cases the heart rate values that were treated as simultaneous
were in fact separated by a short time interval. As the PFT
device only recorded heart rate measurements every 5
minutes—an interval longer than the maximal device time
discrepancy observed—the impact of any potential asynchrony
was likely minimal.

Our study was conducted in the ICU, where cECG monitoring
provides a gold standard comparator for heart rate. The extent
to which our results can be generalized to hospitalized patients
on the wards is therefore not certain; however, all patients
enrolled were stable and were receiving ward-level care at the
time of monitoring. Finally, our subgroup analysis included a
relatively small number of patients not in sinus rhythm, thereby
limiting the statistical power of the results.

Our study used one particular type of PFT, namely, the Fitbit
Charge HR. Although many consumer-grade PFTs have similar
intended functionality and use similar heart rate sensing
technology, our results cannot necessarily be generalized to
other wearable devices. Given that the different performance
characteristics of various PFTs are not known, a study in which
a mix of devices is used would be vulnerable to unwarranted
mixing of effects or would require an increase in sample size
proportional to the number of different devices tested.

Comparison With Prior Work
Our study is the first to report on the accuracy of heart rate
recordings from wearable devices among hospital inpatients.
Previous work has focused on the technical and engineering
aspects of PPG-based wearable heart rate sensors, as well as
discussion of their potential uses in health care settings [7,8,11].
Studies regarding the accuracy of wearables have largely
focused on activity tracking and have been done using healthy
volunteers [27,28]. Our study differs from previous clinical
evaluations of wearable devices [29,30] in its focus on heart
rate monitoring rather than activity tracking, as well as its
inclusion of inpatients rather than ambulatory patients.

Conclusions
The health care sector is expected to drive a large proportion
of sales of wearable devices in the coming years [5]. Optimal
deployment and value from these devices will require clinical
trials conducted under real-world conditions, to test the
feasibility, accuracy, and costs associated with their use in health
care settings. Our study suggests a potential role for PFTs in
monitoring heart rate among inpatients; however, recording
accuracy was not as high as with pulse oximetry and lagged
substantially among patients not in sinus rhythm. Our findings
suggest that future work should focus on identifying which
patients are most suitable for PFT-derived heart rate monitoring,
as well as software development to optimize recording accuracy
in a wide range of illness states, including those associated with
a pulse deficit. Although our results suggest that PFT-based
heart rate monitoring may be highly accurate in some cases,
prospective clinical trials are needed to evaluate their capacity
to improve clinical outcomes as part of a larger strategy of
enhanced hospital-based monitoring.
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Multimedia Appendix 1
Frequency distributions for continuous electrocardiogram–derived heart rate (black), personal fitness tracker heart rate (red), and
pulse oximetry heart rate (green) for each patient.

[PDF File (Adobe PDF File), 1MB-Multimedia Appendix 1]

Multimedia Appendix 2
Table showing the results of the pooled analysis of heart rate comparisons.

[PDF File (Adobe PDF File), 12KB-Multimedia Appendix 2]

Multimedia Appendix 3
Histogram showing the distribution of the obtained heart rate differences (x-axis) of both personal fitness tracker and pulse
oximetry (SpO2) when compared with continuous electrocardiogram, in beats per minute.

[PNG File, 48KB-Multimedia Appendix 3]

Multimedia Appendix 4
Scatterplots (continuous electrocardiogram–derived heart rate vs device-derived heart rate) for each patient.

[PDF File (Adobe PDF File), 921KB-Multimedia Appendix 4]
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IQR: interquartile range
KGH: Kingston General Hospital
PFT: personal fitness tracker
PPG: photoplethysmography
SpO2: pulse oximetry
SpO2.R: pulse oximetry heart rate
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