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Abstract

Despite the accelerating pace of scientific discovery, the current clinical research enterprise does not sufficiently address pressing
clinical questions. Given the constraints on clinical trials, for a majority of clinical questions, the only relevant data available to
aid in decision making are based on observation and experience. Our purpose here is 3-fold. First, we describe the classic context
of medical research guided by Poppers’ scientific epistemology of “falsificationism.” Second, we discuss challenges and
shortcomings of randomized controlled trials and present the potential of observational studies based on big data. Third, we cover
several obstacles related to the use of observational (retrospective) data in clinical studies. We conclude that randomized controlled
trials are not at risk for extinction, but innovations in statistics, machine learning, and big data analytics may generate a completely
new ecosystem for exploration and validation.
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Introduction

Despite the accelerating pace of scientific discovery, the current
clinical research enterprise does not fully address daily clinical
questions such as “what is the most adequate course of action
for a particular patient, under these conditions, in this phase of
the illness?” [1]. From a clinician’s perspective, the most
abundant information available for decision making is based
on observation and experience [2]. With the accumulation of
large amounts of health-related data, the methods for therapeutic
effect quantification have been rapidly evolving and are driven
by recent innovations in statistics, machine learning, and big
data analytics [3]. Recent technology allows the use of (near)
real-time clinical decision support tools, enabling the

quantification and prioritization of unanswered clinical questions
in the absence of published evidence [4].

Despite the abundance of data available, fitting data to a model
to explain observations might be plausible and appear to be in
agreement with clinical experiences, but the derivation of natural
laws or theories cannot be justified. From an epistemological
point of view (Karl Popper), science should strive to describe
simple and logical theoretical systems that are testable before
enabling any predictions [5]. Classically, deductive science
begins with a hypothesis or theory and proceeds to derive
possible conclusions and statements. With the introduction of
precision medicine as an emerging approach for disease
treatment and prevention, the question arises whether simple
and logical theoretical systems are the only choice for predictive
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analysis of complex, high-dimensional data from a
multimorbidity patient population [6].

Various methods have been presented to predict future outcomes
or to forecast trends using observational data [7]. Observational
data research might seem attractive because of lower cost and
time consumption, but it is mostly considered inferior to
prospective research. In the big data and Internet of things era,
“observational” data are abundant and could be considered a
historical footprint, valuable for training and testing models
from which performance can be quantitatively assessed using
new data input [8].

The aim of this viewpoint paper is to highlight some innovations
in statistics, machine learning, and big data analytics, and to
confront them with the current gold standard test used in clinical
trials: the randomized controlled trial (RCT). Therefore, we
discuss this in three sections—challenges and shortcomings of
RCTs, potential of observational studies with big data, and
challenges and difficulties of observational (retrospective) data
for clinical studies.

The Challenges and Shortcomings of
RCTs

RCTs were introduced in medicine more than half a century
ago [9]. The trial is initiated by a null hypothesis that there is
no decisive evidence that the intervention or drug being tested
is superior to existing treatments. In prospective RCTs, the
investigators conceive and design the trial, recruit participants,
and collect baseline data, before the participants have developed
any of the outcomes of interest. Individuals are selected from
a population to estimate characteristics of the entire population.
The intervention is randomly assigned after participants have
been assessed for eligibility and recruitment, but prior to the
intervention under study. When properly designed, RCTs can
isolate confounding factors and allow researchers to identify
causal effects between input and observed phenomena. This
makes RCTs the gold standard for evidence-based medicine
(EBM) [10]. The Framingham Heart Study is a historical
example of a large, productive prospective cohort study [11].

In contrast, it is widely acknowledged that evidence from RCTs
frequently rests on narrow patient inclusion criteria, hindering
generalization to real clinical situations [12]. As such, RCTs
do not ensure the translation of their results into tangible benefits
to the general population [13]. Additionally, it is often unclear
which assumptions are part of the hypothesis. Frequently,
researchers end up with central tendencies from a group of
individuals, a measure that is often not representative of an
individual patient.

Limitations of RCTs or suboptimally designed RCTs are at
times overlooked or ignored [14]. When RCTs lack
methodological rigor, the results must be interpreted cautiously
[15,16]. Furthermore, the cost and duration of RCTs may be
prohibitive, delaying the acceptance of new treatment modalities
[17]. The outcome of interest in RCTs should also be common;
otherwise, the number of outcomes observed becomes too small
for statistical meaningfulness (indistinguishable from the cases
that may have arisen by chance).

Additionally, certain interventions might not be suitable to be
explored by RCTs because of ethical considerations. Likewise,
when an intervention becomes widespread, clinicians are
unwilling to experiment with alternatives. For instance, the
impact of timing of cardiopulmonary resuscitation on cerebral
and myocardial functional recovery cannot be investigated with
controlled trials. However, such studies can be designed using
techniques such as propensity score analysis and stratification
based on big data [18,19].

With the aging of the population, an increasing percentage of
patients have multiple comorbidities, which are routinely
excluded from RCTs. In contrast, big data from electronic
medical records provide information from real-world settings
[19]. Research based on these data might be more applicable to
patients encountered in daily practice.

Even with a well-designed and successfully conducted RCT,
many clinical questions are unanswered, because results from
RCTs might not be suited to each individual patient. This
problem is the main focus of personalized and precision
medicine [6]. An obvious example is that over the past few
decades, perioperative management has improved in safety,
resulting in lower incidences of major perioperative
complications (<1% to 3%), such as perioperative stroke or
death. Nonetheless, even events with a 1% incidence rate would
affect 2 million people each year worldwide. These devastating
complications are hardly studied in RCTs, as their low
incidences would require inclusion of significant numbers of
patients [20]. Big data analytics might facilitate research for
these rare end points, thereby potentially opening opportunities
for improving clinical practice [21].

In the last two decades, EBM attempted to address the
limitations of RCTs. EBM is commonly defined as “the
conscientious, explicit, and judicious use of current best
evidence in making decisions about the care of individual
patients” [22]. The purpose of EBM is to provide a stronger
scientific foundation for clinical work, so as to achieve
consistency, efficiency, effectiveness, quality, and safety in
medical care. The theoretical ideal of EBM, where every clinical
question would be based on meta-analysis and systematic
reviews of multiple RCTs, faces multiple limitations. An early
example of EBM can be found in the British Thoracic Society’s
1990 asthma guidelines, developed through consensus and based
on a combination of randomized trials and observational studies
[23].

Two decades of enthusiasm could not prevent some from
arguing that the EBM movement is in crisis, for many reasons
[2]: (1) the evidence-based “quality mark” has been
misappropriated by vested interests, (2) the volume of evidence,
especially clinical guidelines, has become unmanageable, (3)
statistically significant benefits may be marginal in clinical
practice, (4) inflexible rules and technology-driven prompts
may produce care that is management driven rather than patient
centered, and (5) evidence-based guidelines often map poorly
to complex multimorbidity.

It is remarkable that recent advances in analytics are not
mentioned in any “strength of evidence” rankings [24]. This
closely resembles the plea from Angus Deaton, the 2015 Nobel
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prize winner in economic sciences, for more modesty in what
randomized trials can offer, fulminating against a
one-size-fits-all mentality [25].

Potential of Observational Studies With
Big Data

The burden of chronic diseases is rapidly increasing worldwide,
triggering a paradigm shift from delayed interventional to
predictive, preventive, and personalized medicine [26,27].
Success stories of the big data paradigm and data mining led to
broader recognition of the potential impact and benefits (both
human and economic) in health care. In 2012, the worldwide
amount of digital health care data was estimated to be around
500 petabytes, expected to reach 25,000 petabytes in 2020, of
which approximately 80% is unstructured [28].

The explosion in data has opened a multitude of opportunities
for improving health care in general by the design of data-driven
models for different tasks: (1) in public health: prediction of
admission rates, epidemics, hospital capacities, etc, (2) early
risk prediction for mortality, hospital readmission, treatment
efficacy, etc, (3) for chronic disease control: drug dosage
optimization, therapeutic adherence, etc, (4) in diagnostics:
decision support systems in medical imaging, etc.

Predictive modelling in a clinical context, where data are
collected, a statistical model is formulated, predictions are made,
and the model is validated (or revised) as additional data become
available, could become the key for tailoring medical treatment
to individual characteristics of each patient (precision medicine
initiative [6]).

A recent report on the potential of learning health care systems
suggested that the RCT is not dead, but rather that other
methodologies will be required if we are to bridge the evidence
gap in modern medicine [29]. Observational studies can deliver
useful results quickly, at lower cost, and do not put patients at
risk through experimental exposure. The development of
electronic health records and rigorous outcomes measurement
offers the potential to accelerate the use of observational
research. This may require a paradigm shift in education and
research.

Retrospective data are historically assessed by descriptive
statistical analysis, resulting in clinical intelligence (Figure 1).
Predictive analytics differs from clinical intelligence and
business intelligence-style intelligence in its use of
models—models that capture and represent hidden patterns and
interactions in the data.

Clinical decisions, once exclusively guided by experience
(wisdom generated from qualitative retrospective analysis) and
retrospective clinical intelligence (wisdom from quantitative
retrospective analysis), can now be upgraded by knowledge of
predictive and prescriptive analytics, predicting future events
on the individual patient level (Figure 1).

Big data is defined as high-volume, high-velocity, high-variety,
and high-veracity information assets, requiring new forms of
processing to enhance decision making, insight discovery, and
process optimization [30]. Cutting-edge big data technologies

allow for integration and scalable analytics of heterogeneous
medical data. Additionally, recent computational and
mathematical advances have enabled effective usage of machine
learning and data mining methods for uncovering hidden
relationships between different parameters and clinical outcomes
[13]. This evolution is considered one of the main factors in the
development of predictive, preventive, and personalized
medicine. Big data might increase the relatively low ratio of
screened to enrolled patients of RCTs, optimizing the
generalization of results from research in routine clinical practice
(external validity).

Data availability in clinical medicine can be seen as both wide
(from large populations) and deep (a large amount of data per
patient). Wide data allow for analytics of various trends in public
health care (eg, the number of admissions per disease or
hospital) and can be used in quality indicators for hospitals (eg,
readmission rates), newly introduced drugs, or health campaigns.
In other words, wide secondary data provide the essential raw
material for key operations in health care. Plans and priorities
of governmental health departments and clinical decision making
based on historical disease characteristics both depend on
secondary data. For example, virtually every basic-science grant
application for severe sepsis research contextualizes the
proposed work with national-scale epidemiology derived from
administrative records [27,31]. Policy concerns about health
care overuse in the intensive care unit, such as excessive
end-of-life spending and unexplained geographic variation in
intensive care unit use, depend on secondary data analyses
[32,33]. Much of our understanding of racial or ethnic and
insurance-based disparities, as well as the value of critical care,
derives from secondary data analyses [34].

Directly related to the exploration of wide data, initiatives were
promoted for collecting, integrating, and making publicly
available these data for analyses. One of the largest open
databases of this kind is the State Inpatient Databases, a US
Agency for Healthcare Research and Quality Healthcare Cost
and Utilization Project [35]. The State Inpatient Databases
(2001–2010) include about 330 million inpatient discharges
from 46 US states. These data track all hospital admissions at
the individual level, and track diagnostic and procedural data
based on International Classification of Diseases, Ninth
Revision, Clinical Modification coding. Additionally,
demographics and administrative data of each admission are
tracked (eg, sex, age, month of admission, length of stay, and
total charges in US currency). Opening up these data initiated
many research efforts in health care predictive analytics as
published on websites from the US National Information Center
on Health Services Research and Health Care Technology and
others.

However, wide data are not the best information source to
generate clinically relevant research at the patient level (eg,
mortality risk, evaluation of effectiveness of procedures),
because these data are in most cases generated for administrative
and reimbursement purposes, and are not sufficiently detailed
to describe complex medical states and outcomes for a unique
patient.
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Deep data, on the other hand, provide a higher level of temporal
details from each patient, on multiple scales (eg, genomics,
proteomics, drugs, laboratory tests, comorbidities, symptoms).
When analyzed properly, such data have the potential to provide
valuable clinical insights and could change practice in
fundamental ways, improving outcomes for patients [6]. A good
example is the reevaluation of the use of pulmonary artery
catheters, once a ubiquitous feature of the treatment of nearly
every medical intensive care unit patient, but this use was
reinvestigated with a clever reanalysis of a clinical trial [36].

The importance of opening deep data for analytics is recognized
widely. One of the most popular and most detailed data sources

available is the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC) clinical database, which contains data
on 58,976 intensive care unit admissions (medical, surgical,
coronary care, and neonatal), for over 48,000 distinct patients
admitted to Beth Israel Deaconess Medical Center (Boston,
MA, USA) from 2001 to 2012 [37]. The MIMIC-III database
contains highly detailed and heterogeneous data (laboratory
tests, vital signs, symptoms, medical imaging, notes, waveforms,
etc). The data in the MIMIC-III database are available to other
researchers and there are no privacy concerns, promoting
reproducibility of research. Opening this database yielded many
promising research efforts [38,39].

Figure 1. From clinical intelligence to prescriptive analytics. BI business intelligence; ICU: intensive care unit.

Challenges and Difficulties of
Observational (Retrospective) Data for
Clinical Studies

Observational studies look at medical events from some time
point in the past and examine exposure to a suspected risk or
treatment in relation to an outcome established at the start of
the study. There are several challenges opposing the quick and
easy development of predictive models with good performance,
in particular for complex clinical problems.

This results in a large gap between potential and actual data
usage [27,31]. Retrospective databases pose a series of
methodological challenges, some of which are unique to this
data source [40].

Correlation Does Not Imply Causation
One of the major obstacles to full applicability of predictive
analytics in real-life clinical practice (and distrust of
observational studies) is the credibility of the evolved patterns
(models). Although modelling enables quantification of
correlation on large data sources, correlation in most cases does
not imply causation (even with significant correlations
identified). Two major fallacies have been described in this
respect: cum hoc ergo propter hoc, Latin for “with this, therefore
because of this,” and post hoc ergo propter hoc, Latin for “after
this, therefore because of this.” The main cause of misleading
conclusions based on identified correlations is incorrect sample
or feature selection, which leads to neglect of actual
confounders. Namely, retrospective studies are often conducted
on large data samples, but these samples are not described with
all potential confounders [41,42]. On the other hand,
stratification of a population, leading to homogeneous and
well-described groups (eg, the same age group, sex, history of
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diseases, current health status, and vital signs), also leads to
insufficient data quantities because of the complexity of medical
phenomena and the large number of potential confounders. So,
when a population is carefully selected, in most cases, the lack
of data emerges as a problem that prevents the development of
accurate and stable predictive models. In these situations, an
additional problem arises in identification of real causal
relationships: “the curse of dimensionality” or Hughes
phenomenon [43]. The curse of dimensionality states that, with
a fixed number of training samples, the predictive power reduces
as the dimensionality increases, meaning that patterns identified
in high-dimensional spaces may occur due to chance.
Consequently, an enormous amount of data is needed to ensure
that a population is well described by a given sample.

To conclude, in theory it is possible to select an adequate sample
and feature space that describes well the medical phenomena
that are observed, and eventually could lead to causal
relationships and insights. However, finding such samples in
retrospective data is very challenging, and this problem has to
be addressed adequately when reporting and interpreting
predictive results from retrospective studies.

Fusion of Data Science and Domain Expertise
Even if retrospective studies are well defined (in relation to
samples and features) and if the medical community is confident
with models and results, successful predictive analytics and
application of cutting-edge machine learning algorithms often
demands substantial programming skills in different languages
(eg, Python or R). This migrates modelling from the domain
expert to the data scientist, often missing the necessary domain
expertise, and vice versa. Additionally, data analyses are highly
creative processes and there are no detailed recommendations
for conducting such research. High-level steps for conducting
this research is described by the cross-industry standard process
for data mining, which is breaking down the life cycle of an
analytics project into six phases: business understanding, data
understanding, data preparation, modelling, evaluation, and
deployment [44]. However, specifications of each problem
prevent the development of a standardized analytics process on
an operational level. This ultimately leads to the slow
development, adoption, and exploitation of highly accurate
predictive models, in particular in medical practice, where errors
have significant consequences (both human and financial) [45].
Obviously, a close and continuous collaboration between domain
experts and data scientists would solve this problem, but this is
not always feasible. Many efforts have attempted to overcome
this problem in recent research. One of the directions is
formalization of domain knowledge through medical ontologies
(eg, Disease Ontology [46], SNOMED [47], and for orofacial
pain [48]) and integration with data-driven models [49,50]. This
approach aims to allow for data-knowledge fusion and to reduce
the need for additional specialization of domain experts in data
science and vice versa. Another approach is development of
visual analytics tools that enable a faster learning curve and
powerful analytics that can be conducted by domain experts
[45,51].

Data Heterogeneity and Quality
In particular, deep medical data that could potentially provide
meaningful clinical conclusions or new hypotheses is highly
heterogeneous: laboratory tests, disease history, comorbidities
(multiple diagnoses), medication prescriptions, protein
interaction networks, genomic sequences, medical imaging,
notes, waveforms, and so on. In addition to different data
formats, the data are time stamped, temporal, context dependent,
and defined over different levels of granularity. This raises the
challenging problem of extracting information and meaningful
patterns from all available data sources, even with cutting-edge
big data technologies that allow for efficient storage and
manipulation of such data and predictive methods that allow
for temporal modelling of interdependent data [52]. Various
ways have been proposed to address these problems, such as
integrating the results of models that are built separately on
homogeneous data sources, and mapping between problem
(data) spaces and learning models on common data
representations [53]. However, each step of these strategies
loses information and propagates uncertainty, and thus the
potential of big and heterogeneous data is only partially
exploited. Additionally, it is essential to interpret the findings
in the context of a defined patient population (generalizability).
If multiple data sources were used to construct a database, it is
important to emphasize whether the necessary linkages between
data sources and various care sites have been carried out
appropriately, taking into account differences in coding and
reporting across sources and timestamping (data linkage).
Retrospective data face a renewed interest with the growth of
big datasets, as questions arise related to the quality of the data
and the source validity. With frequently unknown quality or
completeness of the recorded data, “garbage in, garbage out”
(or GIGO) is commonly used to describe failures in human
decision making due to faulty, incomplete [38], or imprecise
data.

Validation and Reproducibility
Even though many studies have reported cutting-edge
performance in predictive modelling on biomedical data,
evolved models often show unstable or unconvincing
performance when applied outside of the initial experimental
setting.

Some of the reasons for this are that validation measures used
in experiments are misleading; that specific algorithm
implementations and data are not always available; and that
experimental settings are not sufficiently described and, thus,
the results reported in scientific papers cannot be reproduced
in other settings.

Selection of adequate validation measures is highly dependent
on the nature of the data for building models. Since most of
these datasets have an imbalance between the size of the positive
and negative classes, classification accuracy is a meaningless
performance measurement. For this reason, other evaluation
criteria are used, such as the area under the receiver operating
characteristic curve and the area under the precision recall curve.
All of these are based on the basic notions of the numbers of
true positives, false positives, true negatives, and false negatives
[54,55].
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Further, in order to realistically estimate model performance in
the future (on unseen cases), experimental setups will need
perfection and to be protected against overfitting (the situation
where a model has good performance on training data but shows
poor generalization performance when tested on unseen cases).
As discussed before, finding the predictive model best suited
to the data at hand is often based on trial and error, and assumes
comparisons of multiple models with multiple parameter
settings. The number of trials and the complexity of the models
positively correlate with the probability of model overfitting.

This is why parameter optimization and multiple model testing
should also be monitored using an alternative partition of the
data (validation dataset). A common technique to validate a
model is either cross-validation or bootstrap validation [56].
Cross-validation is often used to select the optimal level of
complexity (maximal predictive power without overfitting).

Other methods focus on estimating heterogeneity in causal
effects in experimental and observational studies, and on
conducting hypothesis tests of the magnitude of the differences
in treatment effects across subsets of the population. These
approaches are often tailored to situations with multiple
attributes of a unit relative to the number of units observed, and
where the functional form of the relationship between treatment
effects and the attributes of units is unknown [19].

Finally, the error rate of the model is estimated with the
remaining data partition [57]. As such, the testing data represents
a realistic assessment of the model’s correctness when applied
to new datasets. Additionally, it is utterly important to take
special care when selecting data for validation and final model
performance evaluation (because models could adapt and
generalize well only on a subset of the data, and thus all types
of data that are expected in the future have to be present in the
final evaluation of the model).

When modelling is done properly, accurate predictive models
have the ability to adjust and improve over time. The artificial
intelligence resulting from this evolution might have the
potential to measure and optimize therapeutic effect and
adherence [58].

Interpretability
In the process of building a useful representation of a system
or phenomenon, interpretability (comprehensibility or ability
to understand) is often recalled. This is of particular importance
in the medical domain because, even with the best diagnostic
assessment and highly accurate predictive models, decisions
have to be made with caution and with involvement of medical
experts. If models are interpretable, medical experts can put
information provided by predictive models in their specific
context (reducing the danger of potential confounder influence)
and get better insights into the reasons for phenomena identified
by predictive models. This should eventually lead to making
informed decisions and taking a step toward prescriptive
analytics. However, there is a clear trade-off between model
complexity and model interpretability. Additionally,
interpretability is in the eye of the beholder: it is hard to make
some objective comparisons between predictive models. Model
interpretability is also related to the number of features and the

information provided by the features. The number of features
is intuitively evident as an interpretability measure. The higher
the dimensionality, the more complex it becomes for human
beings to analyze the relative impact of features and patterns
that are potentially important in making decisions. Therefore,
using a reduced set of features might lead to more interpretable
models (eg, through backward feature elimination, or forward
feature construction). The basic principle of all predictive
methods for decreasing the number of features is to extract
factors from features, by mapping (transforming) the feature
space to a low-dimensional space, while keeping as much of
the original variance of the features as possible.

On the other hand, the contextual information provided by the
features is important regardless of dimensionality. If a model
is based on a limited number of features but the human
interpreter considers the model to be a black box, then the model
is not interpretable. Interpretability requires more thought on
how the results of predictive models help in explaining an
underlying phenomenon [59]. Because of this, state-of-the-art
predictive algorithms, which often provide highly accurate
models (eg, neural networks or support vector machines), are
often not considered useful for real-life medical applications.
This poses an additional challenge to making highly accurate
predictive models based on less-complex and more-interpretable
algorithms such as logistic regression, naive Bayes, or decision
trees. Unfortunately, interpretability and accuracy are usually
concurrent, and this increases the importance of feature selection
and construction in predictive modelling processes.

There Is No Free Lunch
Many predictive algorithms have been developed, but there is
no evidence that any algorithm outperforms all others in every
situation. Strong support for this claim is given by “no free
lunch” theories [60], where researchers demonstrate that no
predictive algorithm outperforms others on every dataset, but
one can always find an algorithm that is optimal for a dataset.
In particular, in health care predictive analytics, the
consequences of no free lunch theories are posing a very
challenging problem of finding the algorithm best suited to the
data at hand. This is directly related to the complexity of medical
phenomena, contextual dependency, data heterogeneity, high
dimensionality, class imbalance, and so on. For many of these
specific problems, a variety of efficient predictive methods have
been developed. For example, lasso logistic regression
efficiently reduces dimensionality of the initial dataset [61],
while preserving or even increasing the predictive performance
on unseen data. Support vector machines [62] efficiently avoid
overfitting and allow incorporation of domain knowledge by
kernel engineering. Neural networks and deep learning methods
have the ability to fit high-dimensional data and to model
spatiotemporal relations in data [63]. Further, ensemble methods
[64] are used to improve the performance of individual
algorithms. They have shown many advantages in dealing with
a small sample size, high dimensionality, and complex data
structures by exploiting the diversity among the models
produced. These models can be aggregated from the same model
built on different subsamples of data, from different models
built on the same sample, or a combination of the previous two
techniques. Some popular algorithms from this class are bagging
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[65], random forest [66], boosting [67], and bootstrap
aggregating.

However, all mentioned models have their own cons and there
are no theoretical guarantees for a model’s success in a particular
application. The problem of finding the best model for a
particular dataset is influenced by data preprocessing (feature
selection, feature construction, etc). The objective of variable
(feature) selection is 3-fold: improving the prediction
performance of the predictors, providing faster and more
cost-effective predictors, and providing a better understanding
of the underlying process that generated the data [68]. This
requires feature construction, feature ranking, multivariate
feature selection, efficient search methods, and feature validity
assessment methods.

Privacy Concerns
Another problem often considered an obstacle for successful
application of predictive analytics in health care is the lack of
data. Data can be lacking for several reasons: rare diseases, long
and expensive procedures for data collection, and confidentiality
of personally sensitive information. Privacy concerns often
restrict the potential of sharing the data between institutions
and thus building more accurate and reliable models.

However, there are many techniques that could help in
overcoming this problem and enable data sharing without fear
of identifying patients without their permission. The process of
privacy protection starts with traditional anonymization
techniques, which map personal and hospital identity into an
encrypted form. Additionally, time and duration of hospital
visits are usually presented in a relative form (number of days
from initial admission), while exact dates are removed. Even
though these techniques can substantially reduce the risk of
patient identification, the state-of-the-art predictive techniques
theoretically can still identify the person based on procedures,
diagnoses, and other data that cannot be encrypted if they are
a basis for collaborative building and evaluation of predictive

models. Thus, privacy of big data is of particular concern. These
problems are often successfully solved by secure multiparty
computation [69,70], where the sites cooperate to build the
global prediction model without sharing the data themselves,
and by randomization, where data are additionally masked by
adding some controlled noise [71,72].

Conclusion

By no means is the value of RCTs as a method for scientific
experimentation questioned. We are convinced that it is far more
reasonable to estimate the therapeutic effects from
nonrandomized studies, based on the best available surrogate
technology, than to ignore the potential richness of the available
data [13]. Nonrandomized data could at least provide indicators
of potential causality, ultimately triggering the initiation of
randomized experiments.

A changing ecosystem of analytical methods has opened up and
become available for exploration and validation. Observational
studies could complement RCTs in generating hypotheses,
establishing questions for future RCTs, and defining clinical
conditions [73]. Drawing conclusions based on biased data or
dubious analyses by threats of both external and internal validity
should be monitored constantly in big data analysis to guarantee
that a study measures what it set out to and that the results can
be generalized from the study to the reader’s patients.

As such, the data science community has a huge responsibility
to eliminate the fear of using predictive modelling in health care
by explaining the concepts of predictive modelling in a setting
where humans are the preferred decision makers. Finally, data
scientists need to create familiarity with data visualization as a
channel for information sharing. Data-driven research
incorporates artificial intelligence and machine learning into
statistics and supports the recognition of patterns within massive
datasets. Validation and interpretation of results is an essential
step preceding data visualization.
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