
Original Paper

Mobile Phone-Based Unobtrusive Ecological Momentary
Assessment of Day-to-Day Mood: An Explorative Study

Joost Asselbergs1,2, MSc; Jeroen Ruwaard1,2, PhD; Michal Ejdys3, MSc; Niels Schrader3, MFA; Marit Sijbrandij1,2,

PhD; Heleen Riper1,2,4,5, PhD
1Faculty of Behavioural and Movement Sciences, Section Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
2EMGO Institute for Health Care and Research, VU University Medical Centre, Amsterdam, Netherlands
3Mind Design, Amsterdam, Netherlands
4GGZ inGeest, Amsterdam, Netherlands
5Health and Life Sciences Faculty, Telepsychiatry Unit, Southern Denmark University, Odense, Denmark

Corresponding Author:
Joost Asselbergs, MSc
Faculty of Behavioural and Movement Sciences
Section Clinical Psychology
Vrije Universiteit Amsterdam
Van der Boechorststraat 1
Amsterdam, 1081 BT
Netherlands
Phone: 31 20 59 88774
Fax: 31 20 5988758
Email: j.a.g.j.asselbergs@vu.nl

Abstract

Background: Ecological momentary assessment (EMA) is a useful method to tap the dynamics of psychological and behavioral
phenomena in real-world contexts. However, the response burden of (self-report) EMA limits its clinical utility.

Objective: The aim was to explore mobile phone-based unobtrusive EMA, in which mobile phone usage logs are considered
as proxy measures of clinically relevant user states and contexts.

Methods: This was an uncontrolled explorative pilot study. Our study consisted of 6 weeks of EMA/unobtrusive EMA data
collection in a Dutch student population (N=33), followed by a regression modeling analysis. Participants self-monitored their
mood on their mobile phone (EMA) with a one-dimensional mood measure (1 to 10) and a two-dimensional circumplex measure
(arousal/valence, –2 to 2). Meanwhile, with participants’ consent, a mobile phone app unobtrusively collected (meta) data from
six smartphone sensor logs (unobtrusive EMA: calls/short message service (SMS) text messages, screen time, application usage,
accelerometer, and phone camera events). Through forward stepwise regression (FSR), we built personalized regression models
from the unobtrusive EMA variables to predict day-to-day variation in EMA mood ratings. The predictive performance of these
models (ie, cross-validated mean squared error and percentage of correct predictions) was compared to naive benchmark regression
models (the mean model and a lag-2 history model).

Results: A total of 27 participants (81%) provided a mean 35.5 days (SD 3.8) of valid EMA/unobtrusive EMA data. The FSR
models accurately predicted 55% to 76% of EMA mood scores. However, the predictive performance of these models was
significantly inferior to that of naive benchmark models.

Conclusions: Mobile phone-based unobtrusive EMA is a technically feasible and potentially powerful EMA variant. The method
is young and positive findings may not replicate. At present, we do not recommend the application of FSR-based mood prediction
in real-world clinical settings. Further psychometric studies and more advanced data mining techniques are needed to unlock
unobtrusive EMA’s true potential.

(J Med Internet Res 2016;18(3):e72) doi: 10.2196/jmir.5505
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Introduction

In mental health studies, researchers commonly rely on
self-report questionnaires to follow the course of patients’
clinical symptoms [1]. However, these instruments are limited.
They are retrospective and, therefore, susceptible to recall bias
[2]. In addition, they are typically administered in clinical
settings, which limit the degree to which measurements can be
generalized to everyday life [3]. To address these limitations,
there has been growing interest in so-called ecological
momentary assessment (EMA), in which psychological
phenomena are repeatedly assessed within patients’ natural
environments [4,5].

Ecological momentary assessment includes various data
collection methods and strategies, such as diaries and
paper-and-pencil questionnaires. More recently, EMA consists
of questions appearing on one’s mobile phone that need to be
completed/answered at prompted time points, often multiple
times a day (eg, ”on a scale from 1 to 10, how would you rate
your level of irritation in the past 30 minutes?”) or immediately
after a specific event of interest has occurred (eg, making a
record in one’s diary or pressing a button on one’s mobile phone
when experiencing a negative thought) [1]. As such, EMA
reduces recall bias and increases the ecological validity of
measurements, allowing researchers to better capture the
dynamics of behavioral and emotional processes in everyday
life (eg, [6,7]).

Despite EMA’s obvious advantages over retrospective
questionnaires, self-report EMA—the dominant form in EMA
research—still depends on explicit respondent input. This does
not remove systematic biases such as social desirability.
Furthermore, this dependence on explicit respondent input limits
the amount of information that can be captured because study
participants are usually willing to answer only a limited number
of questions per day. When EMA is applied for too long, the
cumulative response burden may negatively affect the validity
of the measurements (eg, through reactivity) and response rates;
for example, EMA compliance rates have been shown to erode
significantly after 2 weeks of data collection [8]. These aspects
limit the applicability of EMA in clinical practice and research.

Explicit respondent input may not be a necessary requirement
of EMA because traces of behavior and experiences are already
reflected in the log files of the technological devices that we
use in everyday life. In what might be called “unobtrusive”
EMA, hardware and software sensors embedded within mobile
phones are used as unobtrusive monitors of user behavior (eg,
physical activity, social activity) and contexts such as work or
at home. Unobtrusive EMA silently samples data on a patient’s
mobile phone. Data are collected, continuously if useful, without

the need to constantly prompt the patient, thus minimizing the
response burden and biases related to explicit respondent input.
As such, unobtrusive EMA holds promise as an EMA variant,
enabling rich data to be collected over longer periods of time.
Of course, unobtrusive EMA cannot directly tap mental states.
However, it may be useful for monitoring proxies of mental
health (ie, variables that are theoretically associated with mental
health), such as physiological states, behavioral patterns (ie,
activity, social interactions), and contextual triggers (ie, specific
locations or social environments). For instance, mobile phone
context sensing has been explored in relation to alcohol
dependence [9], academic performance [10], and depression
[11,12].

In a pioneering study, LiKamWa et al [13] explored personalized
regression modeling to predict day-to-day fluctuations of
self-monitored mood from unobtrusively collected proxy
variables of social activity, physical activity, and general mobile
phone use. With mobile phone-logged data collected from 32
participants over 2 months, they found the predictive accuracy
of personalized models to be high. Up to 93% of self-reported
mood scores were correctly predicted within a tolerated error
margin. These results suggest that mood studies could potentially
follow participants longer by reducing the assessment burden
of study participants through a mix of self-report EMA and
unobtrusive EMA. Intrigued by this, we conducted a pilot
replication study to further explore the feasibility of unobtrusive
EMA-based mood prediction and to gain a better understanding
of the challenges associated with collecting and processing
unobtrusive EMA data and personalized predictive regression
modeling.

Methods

Design and Study Procedures
This was an explorative uncontrolled pilot study, replicating
the methods of LiKamWa et al [13]. A small group of Dutch
university students (N=27) self-monitored their mood on their
mobile phones for 6 weeks. Meanwhile, a faceless mobile phone
app unobtrusively collected proxy variables of social activity,
physical activity, and general mobile phone use from mobile
phone sensors and app logs. Data collection was followed by a
predictive modeling study, in which we checked whether
personalized regression models could accurately predict
day-to-day fluctuations of self-monitored mood from the
unobtrusively collected mobile phone variables (see Figure 1).
Primary study data and the R-script used for analysis are
available for download (see Multimedia Appendices 1 and
documentation and the R-studio project ZIP file in Multimedia
Appendix 3).
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Figure 1. Overview of study setup.

Participants
Through information flyers, we invited students from the campus
of the Vrije Universiteit Amsterdam, the Netherlands, to take
part in this study. Inclusion criteria for participation were (1)
age 18 years or older and (2) owning an Android smartphone
(minimal OS 2.2) that would be in use as the primary mobile
phone during the study period (6 weeks). Applicants were
screened for depressive symptoms before the study because we

did not want to include participants with severe levels of
depression. For this, we used the Center for Epidemiologic
Studies Depression Scale (CES-D), which is a validated and
often used 20-item questionnaire to assess past-week depressive
symptoms [14] (Dutch Version [15]). CES-D total scores range
between 0 and 60, with scores greater than 16 signaling mild
depressive symptoms and scores greater than 27 signaling
clinical depressive symptoms [16,17]. Applicants reporting
clinical depression symptoms (ie, CES-D>27) were excluded
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from the study and referred to their general practitioner. To
encourage students to take part in our study, we offered them
a monetary reward depending on EMA response rates (ie, EMA
response rates ≥50%: €20; rates ≥75%: €35; rates ≥95%:
€47.50). Approval for the study was obtained from both the
Science Committee and the Research Ethics Committee of the
Psychology Department of the Vrije Universiteit Amsterdam
(reference number: VCW.1311.016). All participants signed an
informed consent form.

Measures and Materials

Ecological Momentary Assessment of Mood
To collect self-monitored mood data (the target of the prediction
task), we used eMate, an EMA mobile phone app developed at
the Vrije Universiteit Amsterdam. This app prompted
participants to rate their mood on their smartphone at five set
time points per day (ie, approximately 09:00, 12:00, 15:00,
18:00, and 21:00). As in the study by LiKamWa et al [13], we
assessed mood through the circumplex model of affect [18],
which conceptualizes mood as a two-dimensional construct
comprising different levels of valence (positive/negative affect)
and arousal. Levels on both dimensions were tapped on a 5-point
scale scored from -2 to 2 (low to high). Because recent studies
suggest that single-item mood measures can provide predictive
information on the development of depressive symptoms (eg,
[19]), we also added a one-dimensional mood question, which
asked participants to rate their current mood on a 10-point scale,
with 1 as the negative and 10 as the positive pole.

Unobtrusive Ecological Momentary Assessment of Mood
Predictors
For unobtrusive assessment, we developed iYouVU, a faceless
mobile phone app based on the Funf open-sensing-framework
[20,21] and prior research into communication habits based on
mobile phone data collected without the user’s full awareness
[22]. This app runs in the background, unnoticeable to the user,
to collect designated sensor data and app logs. The app logged
call events (ie, time/date of the call, duration, and contact of
both incoming and outgoing calls), short message service (SMS)
text message events (ie, time/date and contact), screen on/off
events (ie, time/date), app use (ie, what app was launched, when,
and for how long), and mobile phone camera use (ie, the

time/date a picture was taken). All collected sensitive personal
data, such as contact details (names, phone numbers), were
anonymized during data collection by the app through the
built-in cryptographic hash functions of the Funf framework.
At set intervals during each day, and only when participants’
mobile phones were connected to Wi-Fi, the app sent collected
data over the Internet to a remote central data server, in chunks
of approximately 5 to 10 MB per data file.

We could not—or, in some cases, decided not to—monitor some
of the features collected by LiKamWa et al [13]. Funf did not
provide access to the metadata and content of email messages,
so we could not include these variables in our study. Because
Funf hashed browser history entries, we were not able to cluster
the website domain. Furthermore, in a preliminary test, browser
URL history did not function well enough to provide useful
data; for that reason, we could not include this variable.

This was the first study with our experimental setup; therefore,
we decided against collecting global positioning system (GPS)
location data because we wanted to confirm adequate
functioning of the technical setup before collecting highly
sensitive personal data. Instead, as a proxy of activity, we
collected accelerometer data.

Data Preprocessing and Feature Engineering
Raw EMA and unobtrusive EMA data were preprocessed into
a data file that summarized each day of each participant in a
row of 53 variables, as described subsequently.

Prediction Targets: Ecological Momentary Assessment
Mood
As in the LiKamWa et al study [13], EMA data (ie, both the
one-dimensional mood measure and the two measures of the
circumplex model, valence and arousal) were aggregated to
daily averages as targets for the mood prediction algorithms.
Daily averages were standardized within each participant (ie,
using means and standard deviations calculated for each
participant separately).

Mood Prediction Feature Set
Raw unobtrusive EMA data were aggregated into daily
summaries and from these daily summaries we derived the
following features as presented in Table 1.
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Table 1. Mood prediction feature set.

RangeVariables, nRaw data and feature

Calls

0-15Caller top 5 contact frequency, 3-day window, normalized

0-15Caller top 5 contact duration, 3-day window, normalized

SMS text message

0-15SMS text message top 5 contact frequency, 3-day window, normalized

Accelerometer

0-11Percentage of high activity

Screen

–3 to 3a1Frequency of screen-on events (normalized within participant data)

–3 to 3a1Total screen duration events (normalized within participant data)

Apps

0-15Top 5 apps usage frequency, normalized

0-15Top 5 apps usage duration, normalized

0-111Categorized apps, usage frequency, normalized

0-111Categorized apps, usage duration, normalized

Images

0-11Number of images taken (normalized within participant data)

Mood history

–3 to 3a1Mood of yesterday, standardized

–3 to 3a1Mood of day before yesterday, standardized

a Standard normal distribution (ie, 99.7% of values ranging between –3 and 3).

For phone calls and SMS text messages, we counted the number
of interactions participants had with their five most frequent
contacts. Following LiKamWa et al [13], we created a histogram
of this interaction frequency over a 3-day history window and
used the normalized frequency count as samples in the feature
table. Similarly, we created a normalized 3-day histogram of
call durations with the top five contacts. Most participants
interacted only incidentally with persons outside their top five
through calls or SMS text messages. Therefore, we limited the
histograms to the five most frequently interacted contacts, in
contrast to LiKamWa [13], who monitored the top 10 contacts.
Altogether, raw call/SMS text message data were summarized
into three predictive features (top five call frequency and
duration and top five contact SMS text message frequency),
comprising 15 variables.

Raw mobile phone screen on/off events were transformed into
two features: (1) the total number of times the screen was turned
on per day and (2) the total amount of screen time per day
(calculated as the differences between the times of the screen
on/off events). Both features were transformed to standard
normal variables within each participant.

Accelerometer data represents the acceleration of the smartphone
on the x, y, and z planes. Acceleration was sampled for 5
seconds each minute (at sample frequencies estimated to vary
from 20-200 Hz, as determined by the hardware and software

characteristics of participants’ mobile phones). Raw data were
summarized (on the phone through Funf’s ActivityProbe) into
a high activity variable by calculating the percentage of time at
which the summed variance of the device’s acceleration (on the
x, y, z planes) was above a set “high activity” threshold (ie, in

which the summed variance exceeded 10 m/s2). These
percentages were aggregated to the day level to provide an
approximate measure of daily activity.

As daily measures of mobile phone app use, we created two
3-day normalized histograms for the daily frequency and
duration of the five most frequently used mobile phone apps.
In addition, we created normalized histograms of frequency and
duration of the use of app categories. In accordance with the
LiKamWa et al study [13], we categorized apps as either
built-in, communication, entertainment, finance, games, office,
social, travel, utilities, other, or unknown (11 categories).
Categories of logged apps were determined through a scripted
query of the Google Play Store. Apps that were unknown to the
Google Play Store were manually categorized on the basis of
an Internet search. In sum, the final dataset consisted of four
features based on app usage logs: top five app frequency, top
five app duration, app category frequency (11 categories), and
app category duration (11 categories). These features resulted
in 32 variables (5+5+11+11).
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Phone camera logs were summarized to the number of photos
taken per day. Next, this summary was transformed to the 0-1
scale for each participant separately by dividing all values by
the maximum number of photos taken.

Finally, similarly to LiKamWa et al [13], we extended the
predictive feature set with a simple representation of mood
history, by adding lag 1 and lag 2 transformations of each mood
variable (standardized within each participant).

In total, we derived a 53-dimensional variable set from 13
distinctive predictive features (Table 1). Because regression
models are sensitive to large differences in the scales of
independent variables, we transformed the scales of the variables
to the standard normal distribution (ie, 99.7% of values ranging
between –3 and 3). Interrelated variables (eg, top 5 call and top
5 app use) were normalized to the 0-1 range, following the
methods of LiKamWa et al [13].

Statistical Analysis

Personalized Predictive Model Training Algorithms
Replicating LiKamWa et al [13], personalized mood prediction
models were trained using forward stepwise regression (FSR),

a multiple linear regression technique in which variables relevant
to the prediction task are sequentially selected. We examined
two FSR-variants: (1) the stepAIC procedure, as defined in the
standard MASS toolbox of R [23], in which variables are
selected on the basis of the Akaike information criterion (AIC)
[24], and (2) the stepCV procedure, in which variables are
selected based on their ability to minimize the cross-validated
mean squared error. The algorithm of the second variant is
outlined in Figure 2. For each participant, starting with the
empty model (intercept only), the procedure sequentially adds,
one by one, those predictive variables to the model that reduce
the cross-validated mean squared error (MSE) the most until
the MSE starts to increase. For the cross-validation in this
algorithm, we used leave-one-out cross-validation (LOOCV),
which was implemented by using the predicted residual sum of
squares (PRESS) statistic on a single model run [25]. To prevent
severe overfitting of regression models, we maximized the
number of predictive variables in the models to the number of
data points divided by 5 (ie, amounting to a maximum of eight
variables with 42 data points).
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Figure 2. Predictive model building algorithm: forward stepwise regression with leave-one-out cross-validation.

Predictive Performance Assessment
We assessed the predictive performance of the two FSR
procedures through LOOCV. For each participant observation,
we noted the differences between the observed mood rating and
the mood rating predicted by the personalized FSR model trained
on all other observations of that participant. Because we used
both lagged mood prediction variables (ie, lag 1 and lag 2), we
started to train our models from day 3 (ie, use a model trained
on day 3:41 to predict day 42, etc). Thus, we assessed the degree
to which the selected models could be generalized to unseen
data.

We adopted two prediction performance measures. As a
continuous measure, we used the cross-validated MSE (ie, the

average squared difference between cross-validated predicted
and observed scores). To compare results to those reported by
LiKamWa et al [13], we also used a dichotomous
“correct/incorrect” performance measure by recording whether
cross-validated predicted scores fell within a preset tolerated
error margin of 0.5 around observed scores.

Benchmark Model Comparisons
To evaluate the personalized predictive regression models, we
compared their performance to that of two naive benchmark
prediction models that were agnostic of mobile phone usage
data. The first benchmark model, the mean model, predicted
the current mood state to be equal to the average observed mood
state (ie, an intercept-only model). The second model, the history

J Med Internet Res 2016 | vol. 18 | iss. 3 | e72 | p. 7http://www.jmir.org/2016/3/e72/
(page number not for citation purposes)

Asselbergs et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


model, used a more dynamic time-series approach by assuming
that the current mood state would be more similar to recent
mood states. This was implemented as a linear regression model
that included an intercept and two variables that represented the
mood entries of the last 2 days (ie, the lag 1 and lag 2 of the
dependent variable). Differences between the models in MSE
and percentages of correct responses were tested for significance
with the nonparametric Wilcoxon signed rank tests at a
significance level of α=.05 because core assumptions of the
parametric alternative (the paired t test) were not met.

Incremental Predictive Performance Assessment
Using the full dataset (ie, 42 days) to predict mood at day 10
does not provide a valid test of how the algorithm would perform
in an applied setting, in which increasing amounts of data
become available over time. Therefore, we also assessed how
trained models performed with increasing number of training
days. For this, we applied the full training procedures iteratively
on data from increasing numbers of training days (ie, day 4, 5,
41). For each number of training days, we tested how the trained
models performed in predicting mood on the next day (ie, days
1 to 7 were used to predict mood on day 8, days 1 to 8 to predict
mood on day 9, and so on). As we considered any attempt to
predict scores on less than 7 days of data to be unfeasible, only
mood scores between days 8 to 42 were included in this test.
We hypothesized that the predictive performance of the models
would increase with training sample size. We tested this by
fitting a multiple regression model on the differences between
the aggregated performance measures between the personalized
models and the mean model (eg, with stepAIC MSE–mean
model MSE as the dependent variable and the intercept and
study day as independent variables). The intercept estimate of
this model informed us on the comparative performance of the
model at the start of the study period, whereas the study day
regression parameter estimate informed us on the effect of
increasing data points on the predictive performance of
personalized models, in comparison to the most simple
nonpersonalized benchmark model.

Results

Recruitment Process and Participants
In response to the recruitment information flyers, 42 students
signed up for the study. Four participants scored above the
CES-D cut-off (and were excluded) and five participants
withdrew before collecting mobile phone data; therefore, 33
participants started the study. Mobile phone data of two
participants did not reach the central study data server and data
from four additional participants were not included in the
analyses because these participants provided less than 20 days
of complete data (ie, EMA and/or unobtrusive EMA data were
missing on too many days to allow valid inferences). Thus, the
final pruned dataset consisted of data from 27 participants. Table
2 shows the participants’characteristics. Participants were young
adults aged between 18 and 25 years. Mean CES-D screening
score was 9.4 (SD 5.8, range 1-25). Three participants reported
scores greater than 16, indicating mild depressive symptoms.

Description of Ecological Momentary Assessment
Measures

Ecological Momentary Assessment
In total, 4368 EMA mood ratings were collected. Of 27
participants, 18 (66%) provided mood ratings up to the study
day 42 (range 28-42 days; mean 40.3, SD 3.3 days). Because
some participants provided data intermittently, the mean number
of days with valid data was 35.5 (SD 3.8). On sampled days,
EMA schedule adherence, defined as the number of days on
which participants contributed at least one mood rating to the
dataset, was 88.80% (959/1080 days). On 91.9% (881/959) of
sampled days, participants provided four or more ratings. EMA
mood scores, on average, were neutral to positive
(one-dimensional mood: mean 7.0, SD 0.95; valence: mean 0.7,
SD 0.63; arousal: mean –0.1, SD 1.00) (Table 2).

Unobtrusive Ecological Momentary Assessment
Through the unobtrusive EMA mobile phone app, participants
contributed 28,026 mobile phone log databases with a total disk
size of 8.9 GB. Raw data logs detailed metadata of 5242 phone
calls, 1800 text messages, 11,158 images, 22,973 hourly
accelerometer-based activity summaries, 96,601 screen-on
events, and 233,533 instances of app usage.
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Table 2. Participant demographics, study adherence, and EMA summary statistics (N=27).

Descriptive statisticsMeasurements

Demographic characteristics

22 (78)Sex (female), n (%)

21.1 (2.2)Age (years), mean (SD)

9.4 (5.8)CES-Da baseline score, mean (SD)

EMA study adherence

35.5 (3.8)Number of days in study, mean (SD)

40.3 (3.3)Last day rated, mean (SD)

18 (67)Up to 42 days in study, n (%)

Responses per day (n), n (%)

9 (1)1

25 (3)2

44 (5)3

228 (24)4

653 (68)5

EMA mood measures, b mean (SD)

7.0 (0.95)One-dimensional mood

0.7 (0.63)Circumplex: valence

–0.1 (1.00)Circumplex: arousal

a CES-D: Center for Epidemiologic Studies Depression Scale (clinical cut-off: 16).
b One-dimensional mood: 1-10 scale; circumplex-based mood: –2 to 2 scale.

Predictive Performance of Personalized Models

Leave-One-Out Cross-Validation Results
Figure 3 shows observed versus predicted responses of a
representative participant, for days 3 to 42, without
cross-validation (in-sample; top) and with cross-validation
(out-of-sample; bottom). As expected, prediction errors were
larger with cross-validation.

Figure 4 shows the development of the cross-validated MSE
and the percentage of correct responses during the stepCV
training process, in which variables were sequentially added to
the personalized model for each participant. With 42 days of
training data, up to eight variables were selected (ie, the preset
maximum of variables was reached). Governed by the algorithm,
the MSE gradually decreased with each added variable. With
regard to the correct predictions, the percentages tended to

increase with increasing model complexity as well, but not
continuously and not for each participant. This was expected
because the percentage of correct predictions was not a
parameter in the model optimization process.

Table 3 summarizes the predictive performance of the
personalized models and the benchmark models, when trained
on 42 days of data. Averaged over all participants, the
percentage of correct cross-validated predictions of the
personalized models ranged from 55% to 76%. Consistently,
however, personalized model predictions were significantly
inferior to those of naive benchmark models (all Wilcoxon
signed rank test comparisons of differences in both performance
measures were P<.02 in favor of the benchmark models).
Compared with personalized models, the naive models improved
the percentage of correct predictions by 5% to 9%. With regard
to MSE, these improvements ranged from 0.07 to 0.27.
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Table 3. Predictive performance of personalized models and naive benchmark models.a

Multidimensional mood (circumplex), mean (95% CI)cOne-dimensional mood, mean (95% CI)cModelb

ArousalValenceMSECorrect

MSECorrectMSECorrect

0.58 (0.40-0.76)54% (47%-61%)0.22 (0.17-0.27)76% (71%-81%)0.67 (0.35-0.98)57% (50%-64%)Step CV

0.58 (0.42-0.74)55% (49%-61%)0.23 0.17-0.29)76% (71%-81%)0.58 (0.41-0.75)55% (49%-61%)Step AIC

0.34 (0.27-0.41)63% (57%-69%)0.15 0.12-0.18)85% (81%-89%)0.41 (0.30-0.52)62% (56%-68%)Mean

0.33 (0.27-0.39)63% (58%-68%)0.15 (0.12-0.18)83% (79%-87%)0.40 (0.29-0.51)64% (58%-70%)History

a Results shown are those obtained with 42 days of training data for N=27 participants.
b In personalized prediction models, Step CV and Step AIC, multiple regression models were constructed through stepwise forward variable selection
based on cross-validated MSE (see Figure 2) and the Akaike information criterion (AIC), respectively. The mean model included the intercept only and
the history model included the intercept and mood at T1 and T2.
c The MSE column shows the mean of the (cross-validated) squared prediction residuals, and the correct column shows the percentage of predictions
that fell within the tolerated error margin around the observed score (ie, cross-validated residual ≤0.5). All differences between the performance criteria
of the personalized model approaches and the benchmark models were significant (Wilcoxon signed rank tests: P<.02).

Figure 3. Observed versus predicted daily (one-dimensional) mood mean (range 1-10) for one participant with a personalized model trained on data
including the predicted day (top) or excluding the predicted day (bottom) from the training procedure (ie, in-sample vs out-of-sample performance,
respectively).
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Figure 4. Predictive performance (mean squared error and % correct predictions) of the personalized models as observed for the prediction of the
one-dimensional EMA mood measure for each participant (N=27) during cross-validated forward selection regression (stepCV).

Incremental Performance
In the incremental test, predictive models were built using
increasing days of training data. After 1 week, data up to day
d–1 were used to predict mood from unseen data collected at
day d (ie, days 1 to 7 to predict mood at day 8, days 1 to 8 at
day 9). As shown in Table 4 (for all outcomes), and illustrated
by Figure 5 (for one-dimensional mood), MSE was

predominantly higher in the personalized models in comparison
to the MSE of the mean model across the study period, whereas
the percentage of correct responses was lower. The predictive
performance in both procedures improved slightly with
increasing amounts of training data (ie, see the “study day”
regression parameter estimates in Table 4). However, these
improvements were significant for only 3 of 12 tests of the effect
of study day on predictive performance (see Table 4).
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Table 4. Relative predictive performance of the personalized models compared to the intercept-only benchmark regression model.a

% Correct, b (SE)MSE, b (SE)Measure

Study dayInterceptbStudy dayInterceptb

Mood

0.52 (0.24)c–18.9 (4.7)–0.0126 (0.0100)0.82 (0.20)stepAIC

0.46 (0.21)c–14.7 (4.2)–0.0045 (0.0086)0.50 (0.17)stepCV

Circumplex: valence

0.34 (0.16)c–21.2 (3.1)–0.0261 (0.0201)0.94 (0.40)stepAIC

0.03 (0.15)–12.1 (3.0)–0.0041 (0.0042)0.25 (0.08)stepCV

Circumplex: arousal

0.29 (0.15)–14.8 (3.0)–0.0003 (0.0061)0.49 (0.12)stepAIC

0.02 (0.18)–10.2 (3.6)0.0002 (0.0064)0.47 (0.13)stepCV

a Results show the estimated parameters of the linear regression model (ie, mood ~1 + “study day”); MSE: mean squared error; b: regression estimate
(unstandardized); SE: standard error of regression estimate.
b All intercept estimates were significant at α=.05.
c These study day estimates were significant.
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Figure 5. Relative predictive performance of stepAIC and stepCV (in comparison to the intercept-only model) as a function of increasing training data
size (one-dimensional mood).

Discussion

In this pilot study following up on previous research [13], we
examined whether personalized regression models could
accurately predict day-to-day fluctuations of self-monitored
mood from mobile phone usage logs. We found that
personalized regression models, trained through FSR, correctly
predicted 55% to 76% of self-reported EMA mood ratings.
However, the predictive performance of the FSR models was
clearly inferior to that of naive nonpersonalized predictive
benchmark models. The performance of the personalized models
tended to improve over time. Nonetheless, within our 42-day
study period, these improvements were not large enough to

compensate for the poor relative predictive performance of the
FSR approach.

Comparison to Previous Findings
Our study provides a sobering adjunct to the study of LiKamWa
et al [13], in which personalized FSR models predicted
self-reported mood ratings with 93% accuracy (and also
considerably higher than benchmark models). Their results
implied that mood inference models could be successfully
trained through FSR on personal unobtrusive EMA data. In our
replication, by contrast, we found no clear benefits of the
personalized feature selection approach over naive benchmark
prediction models. Based on our results and Ockham’s law of
parsimony (that the simplest of competing models should be
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preferred), we would recommend against FSR modeling on
unobtrusive EMA data to predict short-term mood variation.
To predict short-term mood variation, at least in the first 42
days and with study groups similar to ours, our results suggest
that it would suffice to simply predict the mean of past
responses.

Forward stepwise regression may not be the most suitable basis
for automated predictive modeling of day-to-day mood
fluctuations. Among other problems, the procedure is known
to be vulnerable to overfitting (ie, the selection of overly
complex models that perform poorly on unseen data) [26,27].
When the number of potential predictive variables exceeds the
number of training samples, as was the case in our study, FSR
appears to be too sensitive to random fluctuations in the training
data and instability of the regression parameters, resulting in
poor generalization to new data. We tried to avoid this by
building LOOCV into a variant of the FSR model selection
procedure (through the PRESS statistic); unfortunately, this did
not improve outcomes.

It should be noted that the 93% predictive accuracy rate in the
LiKamWa et al study [13] was observed with 60 days of data,
whereas we only collected data for 42 days. If more training
data had been collected, the performance of the FSR models
might have been better. As stated, we found some evidence that
the performance of the models improved slightly over time. But
how many individuals would be willing to self-report mood
ratings for 60 days? Our participants were paid and their
adherence to the 42-day EMA self-report schedule was
satisfactory probably for that reason. In real-life settings,
however, we expect the assessment burden of continued
self-report EMA to result in large dropout rates, even before
day 42. LiKamWa et al [13] recognized this problem. They
proposed a “hybrid personalized/all user” modeling approach
as a solution, in which data of other users are used to construct
a base predictive model, which is then tuned to individual data.
This approach might reduce the required amount of training
days. Unfortunately, due to time restrictions, we could not
follow up on this interesting suggestion.

The different outcomes of our study and that of LiKamWa et
al [13] may also be explained by differences in study populations
(ie, Dutch students versus a predominantly Chinese student
population). The performance of predictive algorithms may be
sensitive to the cultural background of study respondents.
Previous studies have found qualitative differences in the
presentation of psychopathological symptoms in Chinese and
Western participants [28]. In addition, we note that we excluded
individuals with severe depressive symptoms from our study
sample, whereas LiKamWa et al [13] did not. This possibly
reduced the variance in the mood data somewhat, making it
more difficult for the feature selection algorithms to select
effective predictors. Some support for this explanation can be
found in the similar results that were obtained with both
benchmark models (ie, the history model, which added recent
mood entries to the mean model, did not substantially improve
the predictive performance). However, because only four eligible
participants were excluded on the basis of this exclusion criteria,
we feel that this difference cannot fully explain the divergent
results. A new replication study in a clinical population would

be informative to explore whether the predictive approach works
better when mood variations are more salient.

Our study also differed from that of LiKamWa et al [13] in
terms of the type of unobtrusive variables that were assessed.
By using the Funf framework, we were not able to access
detailed email data (which was identified as one of the more
discriminative features in the LiKamWa study). Likewise, we
could not adequately capture anonymized browser history data.
Finally, we also refrained from collecting GPS location data. It
is possible that the availability of these omitted features would
have resulted in stronger predictive models. However, we doubt
whether the primary finding of our study, namely the inferior
predictive performance of the unobtrusive EMA regression
models, would have been different if email, browser history,
and GPS location data had been available. Even if these features
had been included in our feature set, we fear that FSR’s
proneness to overfitting would still result in the selection of
models that would explain too much of the variation in the
training data and too little of the variation in unseen data.

Finally, we should consider the reliability of the self-report
EMA mood measures. The circumplex model is a common
EMA mood measure and recent studies have suggested that
single-item mood measures can provide predictive information
on the development of depressive symptoms (eg, [19]).
However, there certainly remains much to be learned with regard
to the psychometric properties of single-item EMA measures
in different populations and contexts. Therefore, readers are
reminded that we cannot rule out the possibility that our results
were negatively affected by noisy measurement of the
day-to-day mood variations.

Next Steps
We wish to stress that the sobering results of our study—in our
opinion—do not dismiss the unobtrusive EMA method. On the
contrary, based on our experiences, we would argue that mobile
phone-based unobtrusive EMA is a technically feasible and
potentially powerful assessment method to collect a continuous
stream of objective patient data with little to no respondent
burden. Mobile phone-based unobtrusive EMA requires
innovative technology to capture mobile phone sensor data and
send the data to a remote central storage server. Its technical
requirements are complex. Despite this complexity, however,
data collection was quite successful in this study. Thus, although
we do not recommend real-world application of FSR-based
mood predictions in the field, we do recommend further
exploration and refinement of unobtrusive EMA methods.

Although conducting this study was instructive, we feel that
substantial progress can and should be made with regard to
unobtrusive EMA feature engineering. In our opinion, one of
the reasons for the poor performance of the predictive models
should be sought in the rather tentative and distant relationship
between the included unobtrusive predictors and mood.
Transforming raw data into meaningful features can significantly
improve predictive power [29]. This was recently shown by
Saeb et al [12], who transformed raw GPS data into several
variables relevant to depression. Unprocessed, GPS data are not
predictive of depressive symptoms. However, transformed into
features that represent, for example, home stay, number of
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locations visited (clusters), or circadian movement patterns,
Saeb et al [12] revealed significant correlations with a validated
depression measure. If we relate this to our dataset, we might
be able to transform raw accelerometer data into a circadian
rhythm index to construct a more relevant feature. Personalized
modeling and data mining are exciting fields. In the short term,
however, most progress will probably come from taking one
step back to construct meaningful, theoretically relevant features
that can be derived from (combinations of) raw unobtrusive
EMA data.

The aim of this study was to replicate the study of LiKamWa
et al [13] as much as possible; therefore, we did not deviate
from using FSR. For future feature selection/personalized
modeling studies with unobtrusive EMA data, however, more
advanced statistical techniques might have to be considered,
such as time-series analysis (eg, [30]), regression trees, support
vector machines, or LASSO/ridge regression [31]. The success
of these statistical techniques will probably also depend on the
availability of adequate training samples. From this perspective,
we recommend against the aggregation of unobtrusive EMA
data in future studies. By aggregating the unobtrusive EMA

data into daily summaries, as we did in this study to replicate
LiKamWa et al [13], one of the more interesting aspects of
unobtrusive EMA measures, their semicontinuous sample
frequency, was lost. With it, information was lost on processes
occurring during the day and statistical power was greatly
reduced. In short, we expect better results with unaggregated
unobtrusive EMA data.

Conclusion
Mobile phone-based unobtrusive EMA is a technically feasible
and potentially powerful EMA variant that may be key to future
advances in the study and treatment of psychiatric symptoms.
However, the unobtrusive EMA method is young and positive
experiences with early apps may not replicate. Forward stepwise
regression appears to be too vulnerable to overfitting to
accurately predict day-to-day mood fluctuations from aggregated
unobtrusive EMA data. Based on our results, and in contrast to
previous reports, we do not recommend the application of this
modeling strategy in real-world clinical settings. To come up
with more robust solutions, future studies should address feature
engineering and explore alternative advanced data mining
techniques.
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