Journal of Medical Internet Research
The leading peer-reviewed journal for digital medicine and health and health care in the internet age.
Editor-in-Chief:
Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria, Canada
Impact Factor 5.8 CiteScore 14.4
Recent Articles
In recent years, machine learning (ML)–based models have been widely used in clinical domains to predict clinical risk events. However, in production, the performances of such models heavily rely on changes in the system and data. The dynamic nature of the system environment, characterized by continuous changes, has significant implications for prediction models, leading to performance degradation and reduced clinical efficacy. Thus, monitoring model shifts and evaluating their impact on prediction models are of utmost importance.
Toxicity on social media, encompassing behaviors such as harassment, bullying, hate speech, and the dissemination of misinformation, has become a pressing social concern in the digital age. Its prevalence intensifies during periods of social crises and unrest, eroding a sense of safety and community. Such toxic environments can adversely impact the mental well-being of those exposed and further deepen societal divisions and polarization. The 2022 mpox outbreak, initially called “monkeypox” but later renamed to reduce stigma and address societal concerns, provides a relevant context for this issue.
Approximately 1 in 3 adults live with multiple chronic diseases. Digital health is being harnessed to improve continuity of care and management of chronic diseases. However, meaningful uptake of digital health for chronic disease management remains low. It is unclear how these innovations have been implemented and evaluated.
Metabolic syndrome (MetS) is a prevalent health condition that affects 20%-40% of the global population. Lifestyle modification is essential for the prevention and management of MetS. Digital health care, which incorporates technologies like wearable devices, mobile apps, and telemedicine, is increasingly becoming integral to health care systems. By analyzing existing research trends in the application of digital health care for MetS management, this study identifies gaps in current knowledge and suggests avenues for future research.
Systematic reviews (SRs) are considered the highest level of evidence, but their rigorous literature screening process can be time-consuming and resource-intensive. This is particularly challenging given the rapid pace of medical advancements, which can quickly make SRs outdated. Few-shot learning (FSL), a machine learning approach that learns effectively from limited data, offers a potential solution to streamline this process. Sentence-bidirectional encoder representations from transformers (S-BERT) are particularly promising for identifying relevant studies with fewer examples.
Patient experience data from social media offer patient-centered perspectives on disease, treatments, and health service delivery. Current guidelines typically rely on systematic reviews, while qualitative health studies are often seen as anecdotal and nongeneralizable. This study explores combining personal health experiences from multiple sources to create generalizable evidence.
Over the past decade, digital health technologies (DHTs) have grown rapidly, driven by innovations such as electronic health records and accelerated by the COVID-19 pandemic. Increased funding and regulatory support have further pushed the sector’s expansion. Despite early success, many DHT companies struggle to scale, with notable examples like Pear Therapeutics and Proteus Digital Health, which both declared bankruptcy after initial breakthroughs. These cases highlight the challenges of sustaining growth in a highly regulated health care environment. While there is research on success factors across industries, a gap remains in understanding the specific challenges faced by growth-stage DHT companies.
Empathy, a fundamental aspect of human interaction, is characterized as the ability to experience another being’s emotions within oneself. In health care, empathy is a fundamental for health care professionals and patients’ interaction. It is a unique quality to humans that large language models (LLMs) are believed to lack.
Hospital call centers play a critical role in providing support and information to patients with cancer, making it crucial to effectively identify and understand patient intent during consultations. However, operational efficiency and standardization of telephone consultations, particularly when categorizing diverse patient inquiries, remain significant challenges. While traditional deep learning models like long short-term memory (LSTM) and bidirectional encoder representations from transformers (BERT) have been used to address these issues, they heavily depend on annotated datasets, which are labor-intensive and time-consuming to generate. Large language models (LLMs) like GPT-4, with their in-context learning capabilities, offer a promising alternative for classifying patient intent without requiring extensive retraining.
Preprints Open for Peer-Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-