Journal of Medical Internet Research

The leading peer-reviewed journal for digital medicine and health and health care in the internet age. 

Editor-in-Chief:

Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria, Canada


Impact Factor 5.8 CiteScore 14.4

The Journal of Medical Internet Research (JMIR) is the pioneer open access eHealth journal, and is the flagship journal of JMIR Publications. It is a leading health services and digital health journal globally in terms of quality/visibility (Journal Impact Factor™ 5.8 (Clarivate, 2024)), ranking Q1 in both the 'Medical Informatics' and 'Health Care Sciences & Services' categories, and is also the largest journal in the field. The journal is ranked #1 on Google Scholar in the 'Medical Informatics' discipline. The journal focuses on emerging technologies, medical devices, apps, engineering, telehealth and informatics applications for patient education, prevention, population health and clinical care.

JMIR is indexed in all major literature indices including National Library of Medicine(NLM)/MEDLINE, Sherpa/Romeo, PubMed, PMCScopus, Psycinfo, Clarivate (which includes Web of Science (WoS)/ESCI/SCIE), EBSCO/EBSCO Essentials, DOAJ, GoOA and others. The Journal of Medical Internet Research received a CiteScore of 14.4, placing it in the 95th percentile (#7 of 138) as a Q1 journal in the field of Health Informatics. It is a selective journal complemented by almost 30 specialty JMIR sister journals, which have a broader scope, and which together receive over 10,000 submissions a year. 

As an open access journal, we are read by clinicians, allied health professionals, informal caregivers, and patients alike, and have (as with all JMIR journals) a focus on readable and applied science reporting the design and evaluation of health innovations and emerging technologies. We publish original research, viewpoints, and reviews (both literature reviews and medical device/technology/app reviews). Peer-review reports are portable across JMIR journals and papers can be transferred, so authors save time by not having to resubmit a paper to a different journal but can simply transfer it between journals. 

We are also a leader in participatory and open science approaches, and offer the option to publish new submissions immediately as preprints, which receive DOIs for immediate citation (eg, in grant proposals), and for open peer-review purposes. We also invite patients to participate (eg, as peer-reviewers) and have patient representatives on editorial boards.

As all JMIR journals, the journal encourages Open Science principles and strongly encourages publication of a protocol before data collection. Authors who have published a protocol in JMIR Research Protocols get a discount of 20% on the Article Processing Fee when publishing a subsequent results paper in any JMIR journal.

Be a widely cited leader in the digital health revolution and submit your paper today!

Recent Articles

Article Thumbnail
Generative Language Models Including ChatGPT

Large language models (LLMs) are increasingly integrated into medical education, with transformative potential for learning and assessment. However, their performance across diverse medical exams globally has remained underexplored.

|
Article Thumbnail
Artificial Intelligence

Private-part skin diseases (PPSDs) can cause a patient’s stigma, which may hinder the early diagnosis of these diseases. Artificial intelligence (AI) is an effective tool to improve the early diagnosis of PPSDs, especially in preventing the deterioration of skin tumors in private parts such as Paget disease. However, to our knowledge, there is currently no research on using AI to identify PPSDs due to the complex backgrounds of the lesion areas and the challenges in data collection.

|
Article Thumbnail
Chatbots and Conversational Agents

Adequate health literacy has been shown to be important for the general health of a population. To address this, it is recommended that patient-targeted medical information is written at a sixth-grade reading level. To make well-informed decisions about their health, patients may want to interact directly with peer-reviewed open access scientific articles. However, studies have shown that such text is often written with highly complex language above the levels that can be comprehended by the general population. Previously, we have published on the use of large language models (LLMs) in easing the readability of patient-targeted health information on the internet. In this study, we continue to explore the advantages of LLMs in patient education.

|
Article Thumbnail
Digital Health Reviews

The integration of connected medical devices (MDs) into health care brings benefits but also introduces new, often challenging-to-assess risks related to cybersecurity, which have the potential to harm patients. Current regulations in the European Union and the United States mandate the consideration of these risks in the benefit-risk analysis (BRA) required for MD approval. This important step in the approval process weighs all the defined benefits of a device with its anticipated risks to ensure that the product provides a positive argument for use. However, there is limited guidance on how cybersecurity risks should be systematically evaluated and incorporated into the BRA.

|
Article Thumbnail
Digital Health Reviews

Wearable technologies have become increasingly prominent in health care. However, intricate machine learning and deep learning algorithms often lead to the development of “black box” models, which lack transparency and comprehensibility for medical professionals and end users. In this context, the integration of explainable artificial intelligence (XAI) has emerged as a crucial solution. By providing insights into the inner workings of complex algorithms, XAI aims to foster trust and empower stakeholders to use wearable technologies responsibly.

|
Article Thumbnail
Digital Health Reviews

Lumbar spinal stenosis (LSS) is a major cause of pain and disability in older individuals worldwide. Although increasing studies of traditional machine learning (TML) and deep learning (DL) were conducted in the field of diagnosing LSS and gained prominent results, the performance of these models has not been analyzed systematically.

|
Article Thumbnail
Digital Health Reviews

Mobile health (mHealth) interventions have gained popularity in augmenting psychiatric care for adults with psychosis. Interest has grown in leveraging mHealth to empower individuals living with severe mental illness and extend continuity of care beyond the hospital to the community. However, reported outcomes have been mixed, likely attributed in part to the intervention and adopted outcomes, which affected between-study comparisons.

|
Article Thumbnail
Generative Language Models Including ChatGPT

Structured and standardized documentation is critical for accurately recording diagnostic findings, treatment plans, and patient progress in health care. Manual documentation can be labor-intensive and error-prone, especially under time constraints, prompting interest in the potential of artificial intelligence (AI) to automate and optimize these processes, particularly in medical documentation.

|
Article Thumbnail
Digital Health Reviews

The development of wearable solutions for tracking upper limb motion has gained research interest over the past decade. This paper provides a systematic review of related research on the type, feasibility, signal processing techniques, and feedback of wearable systems for tracking upper limb motion, mostly in rehabilitation applications, to understand and monitor human movement.

|
Article Thumbnail
Digital Health Reviews

As health care continues to evolve with technological advancements, the integration of artificial intelligence into clinical practices has shown promising potential to enhance patient care and operational efficiency. Among the forefront of these innovations are large language models (LLMs), a subset of artificial intelligence designed to understand, generate, and interact with human language at an unprecedented scale.

|

Preprints Open for Peer-Review

|

Open Peer Review Period:

-

We are working in partnership with

  • Crossref Member

  • Committee on Publication Ethics

  • Open Access

  • Open Access Scholarly Publishers Association

  •  
  •  
  • TrendMD MemberORCID Member

  •  

 

This journal is indexed in

 
  • PubMed

  • PubMed CentralMEDLINE

  •  
  • DOAJDOAJ SealCINAHL (EBSCO)PsycInfoSherpa RomeoEBSCO/EBSCO Essentials

  •  
  • Web of Science - SCIE

  •  

  •  
  •