Journal of Medical Internet Research
The leading peer-reviewed journal for digital medicine and health and health care in the internet age.
Editor-in-Chief:
Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria, Canada
Impact Factor 5.8 CiteScore 14.4
Recent Articles
Over the past decades, health care systems have significantly evolved due to aging populations, chronic diseases, and higher-quality care expectations. Concurrently with the added health care needs, information and communications technology advancements have transformed health care delivery. Technologies such as telemedicine, electronic health records, and mobile health apps promise enhanced accessibility, efficiency, and patient outcomes, leading to more personalized, data-driven care. However, organizational, political, and cultural barriers and the fragmented approach to health information management are challenging the integration of these technologies to effectively support health care delivery. This fragmentation collides with the need for integrated care pathways that focus on holistic health and wellness. Catalonia (northeast Spain), a region of 8 million people with universal health care coverage and a single public health insurer but highly heterogeneous health care service providers, has experienced outstanding digitalization and integration of health information over the past 25 years, when the first transition from paper to digital support occurred. This Viewpoint describes the implementation of health ITs at a system level, discusses the hits and misses encountered in this journey, and frames this regional implementation within the global context. We present the architectures and use trends of the health information platforms over time. This provides insightful information that can be used by other systems worldwide in the never-ending transformation of health care structure and services.
Kawasaki disease (KD) is an acute pediatric vasculitis that can lead to coronary artery aneurysms and severe cardiovascular complications, often presenting with obvious fever in the early stages. In current clinical practice, distinguishing KD from other febrile illnesses remains a significant challenge. In recent years, some researchers have explored the potential of machine learning (ML) methods for the differential diagnosis of KD versus other febrile illnesses, as well as for predicting coronary artery lesions (CALs) in people with KD. However, there is still a lack of systematic evidence to validate their effectiveness. Therefore, we have conducted the first systematic review and meta-analysis to evaluate the accuracy of ML in differentiating KD from other febrile illnesses and in predicting CALs in people with KD, so as to provide evidence-based support for the application of ML in the diagnosis and treatment of KD.
Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist.
China is vigorously promoting the health management of chronic diseases and exploring digital active health management. However, as most medical information systems in China have been built separately, there is poor sharing of medical information. It is difficult to achieve interconnectivity among community residents’ self-testing information, community health care information, and hospital health information, and digital chronic disease management has not been widely applied in China.
Recent studies have identified significant gaps in equity, diversity, and inclusion (EDI) considerations within the lifecycle of artificial intelligence (AI), spanning from data collection and problem definition to implementation stages. Despite the recognized need for integrating EDI principles, there is currently no existing guideline or framework to support this integration in the AI lifecycle.
Mental health disorders are currently the main contributor to poor quality of life and years lived with disability. Symptoms common to many mental health disorders lead to impairments or changes in the use of language, which are observable in the routine use of social media. Detection of these linguistic cues has been explored throughout the last quarter century, but interest and methodological development have burgeoned following the COVID-19 pandemic. The next decade may see the development of reliable methods for predicting mental health status using social media data. This might have implications for clinical practice and public health policy, particularly in the context of early intervention in mental health care.
Preprints Open for Peer-Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-